Dynamos Experiments

Cary Forest

École de Physique des Houches 2017 Frontier of non-equilibrium thermodynamics energy transformation between forms in plasma

$$\frac{MG}{r}, \ \frac{1}{2}\rho U^2, \ \frac{3}{2}nkT, \ \frac{B^2}{2\mu_0}, \ E_{C.R.}$$

Magnetic Reconnection:

$$\frac{B^2}{2\mu_0} \to \frac{1}{2}\rho U^2, \frac{3}{2}nkT$$

•Dynamos:
$$\frac{1}{2}\rho U^2 \rightarrow \frac{B^2}{2\mu_0}$$

Particle Acceleration:

Accretion and Jets:

$$\frac{1}{2}\rho U^2, \frac{B^2}{2\mu_0} \to E_{C.R.}$$
$$\frac{\rho GM}{r} \to \frac{3}{2}nkT, \ \frac{1}{2}\rho U^2$$

Shocks, reconnection and particle acceleration

ENERGETICS OF THE MAGNETIZED PLASMA UNIVERSE

Disk dynamo

Magnetized jets

Self-organization of radio lobes interacting with intracluster medium

Gravitational Energy of black hole is transformed into magnetic and plasma energy that fills the intracluster medium

Energetics Experiments Require: Frozen in flux: Rm= $\mu_0\sigma UL \gg 1$ $\rho U^2 \gg B^2/\mu_0$ Flow dominated: $nkT \gg B^2/\mu_0$ Pressure dominated: **Turbulent**: Re= UL/ $\mu \gg 1$ $T \gg \mu_0 \sigma L^2$ Continuous:

New regime for plasma experiments: require confined (hot and dense) and flowing, unmagnetized plasmas

<u>Outline</u>

- 1. Dynamo Basics (theory)
- 2. Dynamo Experiments
- Flow-dominated Experiments Magneto-rotational instabilities Parker Spiral Shocks

Philosophy of this talk: "What I cannot create, I do not understand" -Feynman

Astrophysical Dynamos

Systems which Continuously convert kinetic energy of Flowing plasma into magnetic energy

MAGNETOHYDRODYNAMICS IN THE LIMIT OF HIGH CONDUCTIVITY AND WEAK MAGNETIC FIELDS

Induction Equation

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{V} \times \mathbf{B} + \frac{1}{\mu_0 \sigma} \nabla^2 \mathbf{B}$$

$$\frac{\nabla \times V \times B}{\frac{1}{\mu_o \sigma} \nabla^2 B} \sim \mu_o \sigma L V_0 \equiv Rm$$

$\frac{\text{Equation of Motion}}{\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right)} = -\nabla p + \mathbf{J} \times \mathbf{B} + \rho \mathbf{g} + \mathbf{F}_{visc}$ $\frac{J \times B}{\rho V \cdot \nabla V} \ll 1 \text{ implies } \frac{1}{2}\rho V^2 \gg \frac{B^2}{2\mu_0} \text{ or } V/V_A > 1$

Dynamo Regime: Flow Dominated PlasmaFrozen in flux: $Rm = \mu_0 \sigma UL \gg 1$ Flow Dominated: $M_A = U/V_A \gg 1$ Continuous: $T \gg \mu_0 \sigma L^2$

Unexplored by plasma experiments

Behavior Depends upon: Pm=Rm/Re, $Re = UL/\mu$,

FUNDAMENTAL TENET OF PLASMA ASTROPHYSICS (WHEN $RM \gg 1$, $M_A \gg 1$)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{V} \times \mathbf{B} + \frac{1}{\mu_0 \sigma} \mathbf{N}^2 \mathbf{B}$$

Step 1: Shear flow induces new field.

STANDARD MODEL STEP 1: STRONG TOROIDAL FIELD FROM POLOIDAL

The " Ω effect"

STANDARD MODEL STEP 2: HELICAL TURBULENCE REGENERATES POLOIDAL FIELD

When the magnetic field and the fluid motions are symmetric about an axis...no stationary dynamo can exist.

T.G. Cowling(1933)

The " α effect"

$$J_{\phi} = \alpha B_{\phi}$$

E.N. Parker (1955)

TURBULENCE: FRIEND OR FOE?

Transport of B is controlled by turbulent EMF

$$\mathcal{E} = \left\langle \tilde{\mathbf{v}} \times \tilde{\mathbf{b}} \right\rangle$$

Closure ansatz: $\mathcal{E} = \alpha \mathbf{B} - \beta \nabla \times \mathbf{B}$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \mathbf{V} \times \mathbf{B} + \nabla \times \alpha \mathbf{B} + \eta_{turb} \nabla^2 \mathbf{B}$$

 β – effect is like resistivity (diffuses large scale B)

$$\beta = \frac{1}{3}\tilde{v}^2\tau_{corr} \equiv \frac{\tilde{v}\ell}{3} \qquad \eta_{turb} = \frac{1}{\mu_0\sigma} + \frac{\tilde{v}\ell}{3}$$

• α - effect driven by helical flow $\alpha = \frac{1}{3} \langle \widetilde{\boldsymbol{v}} \cdot \nabla \times \widetilde{\boldsymbol{v}} \rangle \tau_{corr}$

Dynamo Classification

small vs Large Scale

small: magnetic field generated at (or below) scale of flows (relies on chaotic stretching) Large: relies on lack of reflexional asymmetry

Slow vs Fast Dynamos

slow requires resistive diffusion (moderate Rm) Fast Dynamos: independent of resistivity (very large Rm)

Astrophysics: Large-Scale, Fast Dynamos (Rm>>1, turbulent generation of net Flux)

EXPERIMENTS?

... in magnetohydrodynamics one should not believe the product of a long and complicated piece of mathematics if it is unsupported by observation.

Enrico Fermi

Dynamo Experiments Require:Frozen in flux: $Rm = \mu_{0\sigma}UL \gg 1$ Flow Dominated: $\rho U^2 \gg B^2/\mu_0$

New regime for plasma experimentsastrophysical applications

Hydrodynamics: $Re = UL/\mu$, Pm=Rm/Re Plasmas are Challenging -difficult to stir -some confinement required with weak B

Use Liquid Metals

-confinement is free

-easy to stir

-BUT power scaling is challenging: $P_{mech} \sim Rm^3 / L$ [Rm=100, P_{mech} =100 kW] — just barely at threshold -Re = 10⁷ (Pm=10⁻⁵, turbulent)

THE MADISON SODIUM DYNAMO EXPERIMENT

The Madison Dynamo Experiment a=0.5m,V=10 m/s P=150kW, Rm_{max}=100

stretch-twist-fold Dynamo in Sphere

2001: RIGA SINGLE SCALE DYNAMO

Turbulence played no role in self-excitation
backreaction changed pitch of flow to saturate

KARLSRUHE MULTI-SCALE DYNAMO

- again, turbulence played no role in self-excitation
- backreaction on flow pitch of flow to saturate

Muller and Stieglitz (2001).

THE VON KÁRMÁN DYNAMO (CADARACHE)

Two Vortex Impeller Driven Flow

 $\begin{array}{l} \mbox{Rimpeller}=0.155\mbox{ m}\\ \mbox{Rvessel}=0.289\mbox{ m}\\ 160\mbox{ L liquid sodium}\\ 300\mbox{ kW mechanical power}\\ \mbox{T}^{\circ}\mbox{ between }120^{\circ}\mbox{C and }150^{\circ}\mbox{C (with }200\mbox{kW cooling)}\\ \mbox{Rm}^{max}\mbox{ = }90\\ \mbox{Re} > 10^{6} \end{array}$

Fe Impellers!!!

LIQUID METAL DYNAMOS ARE TURBULENT

For liquid metals Re~10⁵ Rm

LARGE SCALE DYNAMO SUPPRESSION: TURBULENT RESISTIVITY GOVERNS ONSET

Definitions

$$Rm = VL/\eta$$
 $Rm_T = \tilde{v}\ell/\eta$ $\eta = \frac{1}{\mu_0\sigma}$

Mean-Field Electrodynamics predicts (confirmed by measurements)

 $\eta_T = \eta \left(1 + Rm_T / 3 \right)$

Self-Excitation Requirement

 $Rm \ge Rm_{crit}(1 + Rm_T/3)$

NUMERICAL SIMULATIONS SHOW TURBULENCE SUPPRESSES LARGE SCALE DYNAMO

Reuter, Jenko, and Forest, (2011).

TURBULENT EMF DIRECTLY MEASURED

Rahbarnia 2012.

The turbulent EMF opposes the local current, Equivalent to increased resistivity (β effect)

 $\eta_{eff} = \eta + \frac{\tilde{v}\ell}{3}$

NEXT STEP: PLASMA DYNAMO EXPERIMENTS

- Rm > 1000
- Vary Pm: laminar/turbulent, small scale
- Rapidly Rotating
- Compressibility, stratification, buoyancy
- Plasma Effects beyond MHD: neutrals, kinetic effects, Hall MHD

→Study <u>confinement</u> and <u>stirring</u> in an <u>unmagnetized</u> plasma

Plasma parameters determine viscosity and conductivity

Dynamo experiments require:

$$Re = UL/\eta = 7.8 \frac{n_{18}}{I_{i,eV}} \frac{\sqrt{\mu}Z^4 U_{km/s} L_m}{Z} >100$$
 Dense
$$Rm = \mu_0 \sigma UL = 1.6 \frac{T_{e,eV}^{3/2} U_{km/s} L_m}{Z} >>1$$
 Hot

$$M_A = \sqrt{\mu_0 \rho} U/B = 0.46 \frac{\sqrt{n_{18} \mu} U_{km/s}}{B_G} > 1 \qquad \text{Unmagnetized}$$

Plasma Hydrodynamics controlled by Boundary

Spence, Reuter, and Forest, (2009).

Re=300

Slow Large Scale Dynamo

- -low Rm_{crit}
- -magnetic field grows on resistive time
- -No dynamo at high Rm

Velocity field controlled by Re

The Madison Plasma Dynamo Experiment

R=1.5 m Pcath=350 kW Pech=100 kW pulse = 10+ sec

Cooper et al, The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics, Phys. Plasmas 21 013505 (2014)

3000 permanent magnets confine unmagnetized plasma

3000 4 kG SmCo magnets

LaB₆ cathodes create high power discharges

Discharge	Discharge	Discharge	Uptime
Voltage	Current	Power	
200-500 V	< 100 A	< 36 kW	> 6 months

Total installed power: 360kW

LaB₆ cathodes facilitate high power discharges

Total installed power: 360kW

Plasma diagnostics measure parameters in plasma core and edge

- mm-wave interferometer (n_e)
- Fabry-perot interferometer (T_i)
- Langmuir/Mach 10-probe array (n_e, T_e, phi velocity, theta velocity)
- Pyroelectric bolometer
- Survey spectrometer array

Edge tile Langmuir probes

Pyroelectric bolometer

Mach / Langmuir probe

Magnetized cathodes stir from plasma edge

Viscously-coupled flow: counter-rotation

5

Ξ

Counter-rotating hemispheres successfully drive differential rotation

Counter-rotating hemispheres

Radius (cm)

Velocity field controlled by Re

Velocity field controlled by Re

NEXT STEP: 12 CATHODES TO SEARCH FOR A DYNAMO TRANSITION

small-scale or *turbulent*: magnetic field generated at (or below) scale of flows (relies on chaotic stretching) *Large*: net flux; relies on lack of reflectional asymmetry

S*low:* requires resistive diffusion (moderate Rm) *Fast*: independent of resistivity (very large Rm)

Astrophysics: Large-Scale, Fast Dynamos (Rm>>1, turbulent generation of net Flux)

SATURATED FIELDS ARE SMALL (FOR V=10 km/s, He, 10^{12} cm⁻³; B = 1 GAUSS)

Time dependent flows are also feasible

Chaos in time-periodic flow

Boundary: Re=200, ω=0.6

SMALL-SCALE FAST DYNAMOS FEASIBLE WHEN RM IS LARGE

Small Scale, turbulent, Fast dynamo is possible (at high Pm)

Re	Rm	V _{(km/} sec)	Tev	N (10 ¹¹ cm ⁻³)
100	200	3	10	3
200	800	6	17	3
500	5000	10	40	5

TDYNO Experiment at Omega

Experimental platform fielded at Omega, LLE (Tzeferacos et al. 2017a,b). The design was the outcome of radiation-MHD FLASH simulations that combine elements from pathfinder experiments carried out at Vulcan, RAL (Meinecke et al. 2014, 2015).

Developed Turbulence at High Rm

- The X-ray images of the turbulent region reveal good agreement with FLASH predictions. From the 2D intensity fluctuations we recover the 3D density power spectrum (Churazov et al. 2012), which is consistent with Kolmogorov scaling (analysis by Archie Bott).
- Thomson scattering data yield temperatures and velocities that correspond to Rm ~ 700, with peaks of ~ 1,400, in the Pm ≤ 1 regime. Such values of Rm are above the threshold value required for dynamo action (Schekochihin et al. 2007).

Dynamo Magnetic Field Amplification

Proton radiography reveals the topology and strength of the magnetic fields (Li et al. 2006).

Path integrated B-field reconstruction (Graziani et al. 2016, Bott et al. in preparation) yields quantitative estimates of the field strength. Magnetic field values are independently verified by Faraday rotation measurements (Thomson scattering polarimetry).

The Magnetorotational Instability

Conversion of gravitational energy into jets, magnetic fields and particles

Two classic geometries for fluid dynamics use boundary driven flows

Both rely on viscous coupling to moving boundaries

Couette: Flow Between Concentric Cylinders

Outer boundary rotation is hydrodynamically stable
Couette flow originally used for viscometer, centrifuge

Couette Flow Can Be Hydrodynamically Unstable

Rayleigh's criterion (1917):

An inviscid, rotating flow is centrifugally unstable for a rotating inner boundary and stationary outer boundary

Unstable Taylor - Couette Flow

This Talk: Couette Flow of Plasma

- •Keplerian flows of conducting fluids are hydrodynamically stable
- •Can be destabilized by a magnetic field: the magnetorotational instability (MRI)

•Conditions for MRI

 $\frac{\partial\Omega}{\partial r} < 0 \qquad \frac{\partial(r^2\Omega)}{\partial r} > 0$

Multicusp confinement and stirring

Differential flow!!!

Volumetric flow drive (VFD)

Te = 12 eV $n = 10^{12} \text{ cm}^{-3}$ $f_{\%} = 75 \%$

VFD on MPDX

- Weak 0.5G applied magnetic field
- <300A max discharge current
- Mach probe measurements made wrt floating faces due to low plasma potentials caused by discharge
- 3 axis Hall probe array provides B measurements
- 1D flow profiles made along a radial chord (converted to cylindrical R for following plots)

MHD 400A **B**∦Ω 4.0 2.5 1.1 $2 \times J_{\phi}$ $5 \times V_{pol}$ V_{ϕ} B_{ϕ} B_{pol} J_{pol} - 0.9 - 2.0 3.5 Current - 0.7 -1.5 - 3.0 injected 0.5 1.00.3 - 2.5 0.5at poles - 0.1 KA/M² KA-- 0.1 -2.0 S/WA 0.0 0 and -0.5 - 1.5 -0.3-1.0removed -0.5 1.0 -1.5-0.7 at 0.5 -2.0 -0.9equator - a.p -2.5 -1.1t = 39.05 msMHD 400A **B || Ω** 1.22.0 _2×J_¢ $5 \times V_{pol}$ V_{ϕ} B_{pol} B_{ϕ} J_{pol} 1.0 Current 1.5 - 0.8 - 0.Б injected 1.0- 0.4 0.5 at 0.2 Z 0.0 Z WW Z - 0.2 km/s 0.0 0 - a 0.0 equator -0.5 -1 -0.4and -1.0-2 -0.6removed -0.8 -1.5-3- _1.0 at poles -2.0 -1.24 t = 22.54 ms

t = 21.81 ms

So far Nimrod runs have not matched experimental data very well.

However, the antiparallel Hall case does have Bz compression and a density depletion in the center like the experiment.

Including a neutral profile (peaked at

Parker Spiral

test fundamental tenet...

Inverse Magnetosphere Confinement, Centrifugally Driven Stellar Winds, and Parker Spiral experiments now beginning

Outreach: Terella in Physics 407 (plasma confinement in magnetosphere)

Student Doug Endrizzi supported by NSF Graduate Student Fellowship

Diamagnetic current profile and flows have been measured

<u>Shocks</u>

Acceleration of particles by explosive jets of plasma

Rail Gun Accelerates Supersonic Plasma to 500,000 mph

T+:-0.218 ms Rate: 49026 Exp: 20 μs EDR: 10 μs

Space Weather

R≘te: 49026 Exp. 20 µs EDR: 10 µs.

