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Introductory remarks

This lecture is meant to be an introduction
to turbulence in fluids and plasmas;
no prior knowledge of turbulence is required

You are invited to ask questions at any time

Lectures may explain, motivate, inspire etc.,
but they cannot replace individual study...
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Turbulence in lab & natural plasmas

Space plasmas
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Fusion plasmas

Plasmadichte

What are the fundamental principles of plasma turbulence?
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Central role of plasma turbulence

Particle acceleration & propagation Cross-field transport

—

What is the role of plasma turbulence in these processes?



Some turbulence basics
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Turbulence is ubiquitous...

(|m|)/mL sdéw ANDILIOA



= S
...as well as an important unsolved
physics problem

According to a famous statement by Richard Feynman...

...and a survey by the British “Institute
of Physics” among many of the leading
physicists world-wide...

“Millennium Issue”
(December 1999)

TURBULENCE: E—
A challenging topic for both basic and applied research
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WHAT IS TURBULENCE THEN?

Turbulence...

* is an intrinsically nonlinear phenomenon

 occurs only in open systems

* involves many degrees of freedom &\M

* is highly irregular in space and time

» often leads to a statistically quasi-stationary
state far from thermodynamic equilibrium

Note that these are also the features of LIFE!
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WHAT IS THE CHALLENGE?

Theories that don’t apply directly:
* nonlinear dynamics
 equilibrium statistical mechanics

* nonequilibrium statistical mechanics near equilibrium

Co-existence of randomness and coherence

Two dangers constantly threaten the world:
order and disorder. Paul Valéry
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VISION BY J. VON NEUMANN

Supercomputers can help
to unravel the "mysteries”

of turbulence in the spirit of
John von Neumann (1949):

» There might be some hope to 'break the deadlock’ by extensive, but
well-planned, computational efforts. There are strong indications that
one could name certain strategic points in this complex, where relevant
information must be obtained by direct calculations. This should, in the
end, make an attack with analytical methods possible. “



J—
Milestones In turbulence research |

Osborne Reynolds (1842-1912)
1883  Transition from laminar to turbulent flows (Reynolds number)
1895 Reynolds decomposition into mean and fluctuating flows

Ludwig Prandtl (1875-1953)

1904 Recognition of the importance of boundary layers
1925 Mixing length model for turbulent transport

Lewis Fry Richardson (1881-1953)
1922 Book ,Weather Prediction by Numerical Process”
Notion of turbulent eddies & (local, direct) energy cascade

Geoffrey Ingram Taylor (1886-1975)
1935 Series of papers on the ,Statistical Theory of Turbulence”



Milestones in turbulence research |

Werner Heisenberg (1901-1976)

1923 ,Uber Stabilitdt und Turbulenz von FlUssigkeitsstromen*
(PhD Thesis, LMU Munchen, Advisor: Arnold Sommerfeld)

1948 Three papers on the statistical theory of turbulence

Andrey Kolmogorov (1903-1987)
1941 K41 theory: dimensional analysis, -5/3 law (energy spectrum)
1962 K62 theory: scale invariance is broken, problem of intermittency

Robert Kraichnan (1928-2008)

1957- Field-theoretic approach: Direct Interaction Approximation
1967 Inverse energy cascade in two-dimensional fluid turbulence

1973 Field-theoretic approach: Martin-Siggia-Rose formalism
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Milestones In turbulence research |l

Steven Orszag (1943-2011)

1966
1969-
1972

1948-
1963
1965
1977

2002

Eddy-Damped Quasi-Normal Markovian approximation
Towards Direct Numerical Simulations via spectral methods
First 3D DNS on a 322 grid by S. Orszag & G. Patterson

Numerical weather prediction by J. von Neumann & J. Charney
Large-Eddy Simulation techniques by J. Smagorinsky

Fast Fourier Transform algorithm by J. Cooley & J. Tukey
Cray-1 at the National Center for Atmospheric Research

First 3D DNS on a 409632 grid by Y. Kaneda et al.
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Turbulence: The bigger picture

Some grand challenges

« Design airplanes, ships, cars etc.

* Predict weather & climate

« Unravel role of turbulence in space & astrophysics
* Predict performance of fusion devices like ITER

Some open problems beyond Homogeneous Isotropic Turbulence
 Effects of inhomogeneity, anisotropy, compressibility

(role of walls, drive, stratification, rotation etc.)
* From fluid to magneto-/multi-fluid to kinetic turbulence

Conceptual approach
« Ab initio simulations of complicated problems are not feasible
« Seek physics understanding to construct reliable minimal models



On the physics of

3D fluid turbulence




Early observations
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Leonardo da Vinci (ca. 1500)



The Navier-Stokes equations (1822)

The NSE for incompressible fluids: : kinematic viscosity

—Vp + vV,

0 p: pressure / mass density

atv-l-v'Vv
V- v

Expressed in terms of vorticity @ =V A v

o =VA@WAo)+ Vo

Vol =20-Vo+ 20 A(V AD)

S :"

Claude Navier George Stokes
(1785-1836) (1819-1903)
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SELF-SIMILARITY & PIPE FLOWS

Osborne Reynolds (1883)
v=V%, x=Lx, t=(L/V)i, (p/p) =V"p

1
—Vp + R—Ai’r Similarity principle
e

V-v=0 , = e

OV + (V- V)¥
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Conservation laws

Spatial average in a 3D periodic box: (f) = % f(r)dr
3 /s,
Vorticity: w=VAv
Kinetic energy Enstrophy
1 . 1 2
E = <— v “>, = <— >
Ideal 2‘ | 2 @
invariants 1
HE<§v-w>, E< W - V/\(u>
Helicity Vortical helicity
d d
—FE = —-2vQ, —H =-2vH,
dt dt N
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Dissipative anomaly

Energy dissipation rate: £ = ——

v—0

lim V/ w|?dz # 0
V

In turbulent flows, the energy dissipation rate ¢
has a finite limit as the viscosity v tends to zero!

In this sense, the Euler and Navier-Stokes

equations are fundamentally different!
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Energy budget scale-by-scale

Low-/High-pass filter fir)=frlr)+ f2(r)
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Energy budget scale-by-scale (cont’'d)

Cumulative kinetic energy | 1
between wavenumbers 0 and K: Gk = 3 (Jog %) ~ 5 ]Z O]’
<K
Scale-by-scale . _
L = v 4 S
energy budget equation: 6k +Hx = —2vQk + Fk

Energy flux through
wavenumber K:

Cumulative enstrophy: Qy = l({w,f 7Y = ,I)ijjﬁklz
2 “ k<K
Cumulative energy injection: 7, = (f -vg) = Z fk Vg



"
Spectral energy transfer

Energy spectrum: E(k) =

Scale-by-scale . B ,
energy transfer equation: 0,E(k) = T(k) + F(k) — 2vk“E(k)

Net energy transfer spectrum: Tk) = _Q I

Ok

(o)

Energy injection spectrum: F(k) = 50._
k
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Spectral energy transfer (cont'd)

For homogeneous turbulence:

%E(k t) =| Pr(k,t) | — Tk(k t) | —2vk2E(k, t)
Product|on Spectral transfer Dissipation
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The Richardson cascade (real space)

,BIg whorls have little whorls, little whorls have smaller whorls
that feed on their velocity, and so on to viscosity “
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Injection of
energy ¢

Flux of
energy ¢

Dissipation of
energy ¢
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The Richardson cascade (Fourier space)

Turbulence as a local cascade in wave number space...

Ek ﬁ ~ Re3/4
k
dissipati .
inertial N 'S;'ES;O” Computational
ange N\ effort ~ Re3

Much turbulence research addresses the cascade problem.
(Important note: In this context, think of an Autobahn, not of a waterfall...)



S
Kolmogorov's theory from 1941

K41 is based merely on intuition and dimensional analysis —
it is not derived rigorously from the Navier-Stokes equation

Key assumptions:

« Scale invariance - like, e.g., in critical phenomena
 Central quantity: energy flux ¢

1 o0
E - f V2 d3X =fE(k) d k Quantity Dimension
2V Wave number 1/length
0 Energy per unit mass length2 /time?
Energy spectrum & (k) length3/time?
E(k) = C 82/3 k-5/3 Energy flux ¢ energy/time ~ length?/time>

This is the most famous turbulence result: the “-5/3” law.

However, K41 is fundamentally wrong: scale invariance is broken (anomaly)!
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Intermittency & structure functions
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Intermittency & non-Gaussian pdf's
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Direct numerical simulations
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Structure formation andbroken|scale invariance
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Key open issues: Inertial range

* Is the inertial range physics universal (for Re — «)?

* If so, can one derive a rigorous IR theory from the NSE?

* How should one, in general, handle the interplay between
randomness and coherence? Key issue: Intermittency!

Biferale et al. 2005

0.48 -
0.36 +
2024 -
0.12 +

Example: Trapping of tracers in vortex filaments

Note:

The observed deviations from self-similarity
can be reproduced qualitatively by relatively
simple vortex models.

Wilczek, Jenko, and Friedrichs 2008
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Key open issues: Drive range

 Often, one is interested mainly in the large scales. Here,
one encounters an interesting interplay between linear
(drive) and nonlinear (damping) physics. — Is it possible
to remove the small scales”

« Candidates: LES, dynamical systems approach etc.

fluid injection
g

/ wﬁde ‘

Orellano and Wengle 2001




On the physics of

2D fluid turbulence
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2D turbulence?

e strictly speaking, there are no two-dimensional flows in nature

e approximately 2D: soap films, stratified fluids, geophysical flows,
magnetized plasmas
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Basic equations: Vorticity

Taking the curl of the NS equations and discarding the zero x and vy
components of the equation gives

pro=(F+7V)w=g+rv%

for the vorticity w = (6 X r) .3

If g=(V x fort) -2 =0 and v = 0 (Euler equation), we have -BTW =0
— vorticity is conserved
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Energy and enstrophy

mean energy E = (3u?) & — _2y7
enstrophy Z = (3w?) 4 = _2p((Vw)?)

(mean square vorticity)

e in 2D with curl free forcing, energy and enstrophy can only decrease
with time, they are conserved in the inviscid case (v = 0)

e for v — O we get £ _ 0. energy is a “robust” invariant in 2D
dat

° %{- does not necessarily go to zero for v — 0, enstrophy is a “fragile
invariant” (dissipation anomaly!)
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Cascades

In spectral space, the expressions for energy and enstrophy read
E = / E(k, t)dk
7 = / K2E(k, t)dk

E, Ej
S — Ifl - —— AQ — k3 ——
e Z L .
E'_g — El -+ E;_),, EQTZQ Z-_j — Z] + Z;g.

Energy and enstrophy conservation for three Fourier modes ky, k> = 2k,
k3 = 3kq
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Dual cascade

6F1 + 6E> + 6E
k$6F + k30F> + k30F>

il
o o

with 6FE; = E(k;,t5) — E(k;,t1). Combining the equations gives

(EEl — —gﬁEg 5E3 —_ —§§E2
5 27
k26E1 = ——k26E k25E2 = ——k36E
1 1 39 2 2 3 3 39 2 2

— enstrophy goes to higher k (direct enstrophy cascade),

energy goes to lower k (inverse energy cascade)
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Kraichnan-Batchelor-Leith theory

e inertial range of the energy cascade: for kp < k < k;, the energy
spectrum can only depend on e.
Dimensional analysis:

k= [LI"Y E(k) = [LPPT)72 e = [LP?(T] 3 — E(k) = Ce?/3k3/3

e inertial range of the enstrophy cascade (k; < k < k;): the energy
spectrum can only depend on f3.
Dimensional analysis:

k=[L]7 B(k) = [LP[T] 72 8= [T]7% — E(k) =527k

', " constant and dimensionless.

e zero enstrophy transfer in the energy inertial range, zero energy trans-
fer in the enstrophy inertial range
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Inertial ranges in 2D turbulence

E(k}




The Hasegawa-Mima

model of drift-wave
turbulence (1977)
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Charney-Hasegawa-Mima equation

Hasegawa & Mima, PRL 1977

In a certain limiting case (in particular: cold ions), gyrokinetics leads
to the CHM equation which is closely related to the 2D NS equation;
used in geophysics already since 1948...

dt
d Jd dpd Jdb o

— — — __+__

dt— dt  dyox oxay

One-field model (for the
electrostatic potential);
no linear drive/damping

l’f"‘ e \‘%
3 T
B it
v, - T

J. G. Charney
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Basic assumptions

Homogeneous magnetic field: B=B81%

Electrostatic fluctuations: E=-V

Slowly varying background density:  Vyy =
—(no/Ly)X

,cold" ions: T: < T,

JAdiabatic” electrons!
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Perpendicular ion dynamics

J
Force balance: m;n; (E +vy - V) v, =en;(E4+v xB)
Expand in orders of ®/Q;: \a1 :v(f) —I—V(j) +...

%,
1st order: m;n; <g + V(f) -V) V(f) — eniv(j) X B

polari-
zation
drift
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Perpendicular ion dynamics (cont'd)
lon continuity equation:
0i+v, -Vng+v, -Vi+nyV-v, +iV-v; =0
(0) (1)

Low-order expansion: Vv, —vVv,’, V-.-v; —-V.v,

vyl =0, vl = QI-B <%+VEOV) vig

Hasegawa-Mima equation (Charney equation) in 2D:
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Non-dimensionalized HME

lon sound radius / speed: Ps = R C

Normalization:

e(T) L, X y Csl
? (I)a P — ), — —1
I, Ps Ps Ps Ly
HME: _ (similar to 2D NSE)
d d 909 90

g = VX2V =g o
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Similarity between HME and NSE

2D incompressible flow; introduce stream function:

u=2xVy where v =¢(z,y) =V -u=0

2D NSE: vorticity
9 -
(a—w X z-v> Vi =0

This corresponds to the HME in the high-k limit
(and without a background density gradient)
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Electron drift waves

Linearize HME and use Ansatz: {) o< exp(ikyx + ikyy — i)

_ _ _ _ electron
Linear dispersion relation: drift
waves

Waves drift in the electron diamagnetic (y) direction:
Wp ~ dop _ PsCs

~ ~ Vde =

& & Ok, L,

(DD 1 p%CSN(3_10)p%CS

g kJ_ Ps Ln Ln

Re-interpretation: D+



Electron drift waves (cont'd)
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Cascades and wavenumber spectra

Cmp. measurements of density fluctuation spectra

ldeal invariants: via microwave and laser scattering since ~1976

2 2
W = [dV¢ +§V¢) generalised energy

generalised enstrophy

o= [av (V) + (V9

iInverse energy cascade direct enstrophy cascade

ks>1  W(k) = ce 23k W(k) = 'n?/3k 3
e - 2/31.-11/3 ~ 23



Turbulence:

Further reading




Recommended reading
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TURBULENCE

Uriel Frisch

Also:

P. A. Davidson
Turbulence

S. B. Pope
Turbulent flows
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Some literature on 2D turbulence

General 2D turbulence:
e P.A. Davidson, Turbulence, Oxford University Press (2004)
e M. Lesieur, Turbulence in Fluids, Kluwer (1997)
e U. Frisch, Turbulence, Cambridge University Press (1995)

e P. Tabelling, Two-dimensional turbulence: a physicist approach, Phys. Rep. 362,
1-62 (2002)

Cascade classics

e Kraichnan, Inertial Ranges in Two-Dimensional Turbulence, Phys. Fluids 10, 1417
(1967)

e Leith, Diffusion Approximation for Two-Dimensional Turbulence, Phys. Fluids 11,
1612 (1968)

e Batchelor, Computation of the Energy Spectrum in Homogenous Two-Dimensional
Turbulence, Phys. Fluids 12, 1I-233 (1969)



= I
Fundamental literature on the HME

Stationary spectrum of strong turbulence in magnetized
nonuniform plasma
A. Hasegawa and K. Mima, Phys. Rev. Lett. 39, 205 (1977)

See also: Phys. Fluids 21, 87 (1978); 22, 2122 (1979)

Quasi-two-dimensional dynamics of plasmas and fluids
W. Horton and A. Hasegawa, Chaos 4, 227 (1994)



Plasma turbulence:

The context




Strong wave turbulence

Turbulence In planetary
atmospheres: Rossby waves

Turbulence in oceans:
Water surface waves

Turbulence in quantum liquids:
Kelvin waves on vortex filaments




