THE ENHANCED X-RAY TIMING AND POLARIMETRY MISSION

PHIL UTTLEY

University of Amsterdam

on behalf of Marco Feroci and the eXTP team

PORQUEROLLES 2017

The eXTP International Consortium

LOFT+XTP ⇒ eXTP

- Mission proposed to ESA to study matter under extreme conditions (NS EoS, SFG)
- Selected in 2011 by ESA as one of the 4 M3 candidate missions in Cosmic Vision
- Phase A study by ESA and LOFT Consortium in 2011-2014
- Mission proposed to CAS to study matter under extreme conditions (NS EoS, SFG, Strong Magnetism)
- Selected in 2011 as one of 8 «Background missions»
- Phase A study by IHEP in 2011-2014

eXTP

enhanced X-ray Timing and Polarimetry

Payload concept

- > Short focal-length for multiple modules
- Deployable panel for collimated modules
- Polarimeter with imaging capability
- Wide field monitor

eXTP Scientific Payload SFA – Spectroscopy Focusing Array

- Large collecting area achieved by multiple optics with short focal length. Baseline: 9 optics with 5.25m FL
- Non-imaging, PSF requirement 1 arcmin HPD, 12' FoV
- Multi-pixel SDD detector (to enable background subtraction). Single photon, <100µs
- Energy band: 0.5-10 keV
- Energy resolution: <180 eV FWHM @6 keV</p>
- Total effective area: >0.7 m² @1 keV, 0.5 m² @6 keV

eXTP Scientific Payload

LAD – Large Area Detector

- Total effective area: 3.4 m² @8 keV
- Energy band: 2-30 keV
- Energy resolution: <240 eV FWHM @6 keV</p>
- Based on the LOFT/LAD design
- 40 Modules on 2 deployable panels
- Collimated, large-area SDD detector.
 Single photon, <10μs

ea(cm2)

Effe

RXTE-PCA

eXTP-I AD

Collin

Collimate clam

SDDs +

FEEs

Energy(keV)

eXTP Scientific Payload PFA – Polarimetry Focusing Array

- Imaging, PSF 20 arcsec HPD
- ✤ Gas Pixel Detector: single photon, <100µs</p>
- Energy band: 2-10 keV
- Energy resolution: 20% FWHM @6 keV
- Total effective area: 900 cm² @2 keV (includes QE)

eXTP Scientific Payload WFM – Wide Field Monitor

- Field of View: 4 steradian (at 20% response)
- Imaging, <5 arcmin angular resolution, 1 arcmin PSLA</p>
- Energy band: 2-50 keV
- Energy resolution: 300 eV FWHM @6 keV
- Effective area: 80 cm² @6 keV (1 unit, on axis)
- Same design as LOFT/WFM, 3 units (6 cameras)
- ✤ Same detectors as LAD (SDD). Single photon, <10µs</p>

eXTP Mission Profile

Parameter	Value	
Orbit	550 km, <2.5° inclination	
Launcher	Long-March CZ-7	
Mass	3700 kg	
Power	3.6 kW	
Telemetry	3 Tb/day	
Ground Stations	China, Malindi	
Pointing	3-axis stabilized, < 0.01°	
Sky visibility	50% (goal 75%)	
Mission Duration	5 years (goal 10 years)	
Launch date	2025	

	Payload	Parameter	Specification
soft Response	SFA	Energy range	0.5-10 keV
		Effective area	>7000 cm ² @1 keV, >5000 cm ² @6 keV
		Energy resolution	<180 eV FWHM @6 keV
		FoV/HPSD	12 arcmin / 1 arcmin
		Focal plane detector	Pixelated SDD (19 pixels)
Large area LA		Energy range	2-30 keV (extended: 30-80 keV for out-FoV)
		Effective area	34000 cm ²
	LAD	Energy resolution	<240 eV FWHM @6 keV
		FoV	1° (FWHM)
		Detector	Large area SDD (640 units, 40 Modules)
polarization PFA	PFA	Energy range	2-10 keV
		Effective area	>900 cm ² @2 keV (including QE)
		Energy resolution	1.2 keV FWHM @6 keV
		FoV/HPD	12 arcmin / 20 arcsec
		Focal plane detector	GPD (4 units)
Monitoring	WFM	Energy range	2-50 keV
		Energy resolution	300 eV FWHM @6keV
		FoV	>4 sr (at 20% of peak response)
		Angular resolution	<5 arcmin
		Localization accuracy	<1 arcmin
		Detector	Large area SDD

LAD: 6x RXTE/PCA, 35x XMM-Newton (*but collimated*!) + hard-X response

- SFA: 8x XMM-Newton and 0.3-2x Athena/WFI (*but multiple optics and large PSF*!). Limiting sensitivity ~10⁻¹⁴-10⁻¹⁵ erg cm⁻² s⁻¹
- PFA: 5x IXPE, 2x XIPE. Sensitivity: 1% MDP in 50ks for a 100 mCrab source
- WFM: largest FoV ever, first time with 300 eV resolution. 3 mCrab in 50ks

LAD: 6x RXTE/PCA, 35x XMM-Newton (*but collimated*!) + hard-X response

SFA: 8x XMM-Newton and 0.3-2x Athena/WFI (but multiple optics and large PSF!).

PFA: 5x IXPE, 2x XIPE. Sensitivity: 1% MDP in 50ks for a 100 mCrab source

WFM: largest FoV ever, first time with 300 eV resolution. 3 mCrab in 50ks

LAD: 6x RXTE/PCA, 35x XMM-Newton (*but collimated*!) + hard-X response

SFA: 8x XMM-Newton and 0.3-2x Athena/WFI (but multiple optics and large PSF!). Limiting sensitivity ~10⁻¹⁴-10⁻¹⁵ erg cm⁻² s⁻¹

PFA: 5x IXPE, 2x XIPE. Sensitivity: 1% MDP in 50ks for a 100 mCrab source

WFM: largest FoV ever, first time with 300 eV resolution. 3 mCrab in 50ks

LAD: 6x RXTE/PCA, 35x XMM-Newton (*but collimated*!) + hard-X response

SFA: 8x XMM-Newton and 0.3-2x Athena/WFI (but multiple optics and large PSF!). Limiting sensitivity ~10⁻¹⁴-10⁻¹⁵ erg cm⁻² s⁻¹

PFA: 5x IXPE, 2x XIPE. Sensitivity: 1% MDP in 50ks for a 100 mCrab source

WFM: largest FoV ever, first time with 300 eV resolution. 3 mCrab in 50ks

eXTP Science Working Groups

- In support to the mission study, four international working groups were preliminarily formed on the main science topics, preparing 4 White Papers (currently advanced drafts):
 - Accretion in Strong Field Gravity
 - Dense Matter
 - Strong Magnetism
 - Observatory Science
- In the framework of the ongoing joint China-Europe study, the preliminary working groups were further opened and expanded to interested scientists. Currently, a total of >260 scientists are contributing. More info at:

http://www.isdc.unige.ch/extp/

• The 4 eXTP WPs are expected to be published on a special issue of the Science China journal by the end of 2017.

Dense matter

Accretion in strong field gravity

Strong magnetism

Observatory science

HFQPOs: probing general relativistic dynamical frequencies

Reverberation mapping the inner disk

100 ks on bright hard (1 Crab) state/hardintermediate state, lag vs energy measured in 50-150 Hz range, combination of measurements from SFA+LAD.

Simultaneous polarization variability in LFQPOs

www.youtube.com/watch?v=ieZYYfCapJg&feature=youtu.be

Ingram et al (2015)

Simulated eXTP detection

Courtesy: Adam Ingram

eXTP Programmatics

Mission currently entering an **extended Phase A** study in China, in collaboration with a consortium of European institutes. Formal European participation currently under discussion. Strong interest and support available in several member states institutions and agencies.

Baseline implementation schedule:

- 2011-2016: background study (Phase O/A1)
- 2017-2018: international coordination and preliminary design (Phase A2)
- 2019-2020: Detailed design (Phase B)
- 2021-2023: Space qualification model (Phase C)
- 2024-2025: flight model (Phase D)
- 2025: launch
- 2025-2035: science operation

Conclusions

eXTP is conceived as the most powerful and general observatory for compact Galactic and bright extragalactic objects ever.

eXTP will change the game. It will offer for the first time the most complete diagnostics of compact sources: excellent spectral, timing and polarimetry sensitivity on a single payload.

eXTP is proposed as a cooperative effort between (at least) China and Europe. The support and contribution of the wide scientific community is crucial to achieve this goal.