MODELING MAXI J1836-194 JET EMISSION USING THE ACCRETION FLOW VARIABILITY

Mathias Péault

Advisors: Julien Malzac & Mickael Coriat

Institut de Recherche en Astrophysique et Planétologie (IRAP) - Toulouse

Microquasars workshop - Porquerolles

September 27, 2017

JET EMISSION INTERPRETATION

Blandford and Konigl (1979) :

synchrotron emission from accelerated e- with a power law energy distrib

ADIABATIC LOSSES

Standard model \Longrightarrow neglects the cooling of e-

adiabatic cooling = jet expansion in the external medium

How to re-energise the electrons? \rightarrow need for a compensation

ONE POSSIBLE MECHANISM: INTERNAL SHOCKS

Solution: Gamma-ray burst model applied to X-ray binaries!

Internal shock model \Rightarrow shocks re-accelerate the electrons

(Description of a gamma-ray burst)

LORENTZ FACTOR FLUCTUATIONS

Results depend on amplitude & time scales of injected fluctuations \rightarrow input power spectrum

SED shape is -almost- ENTIRELY determined by the PSD of the velocity fluctuations !

FLICKER NOISE FLUCTUATIONS

- In Malzac 2013:
 - Flicker noise fluctuations of Lorentz factor (PSD ∝ f⁻¹)
 → maintain the good spectral shape
 - Accretion flow variability (X-rays) close to 1/f within a certain range of frequencies!!

Hypothesis: As natural connection between accretion flow and jets \rightarrow same variability in accretion flow & base of the jet

Model the multi- λ emission of the jet in MAXI J1836-194

Using:

- Multi- λ observations
- ISHEM (Malzac 2014): synchrotron only !
- Observed accretion flow fluctuations (X-rays)

PREVIOUS WORK

Reproduction of the jet spectrum in GX 339-4 in the hard state

MAXI J1836-194

BH transient discovered in 2011

- Quasi-simultaneous observations : VLA (Radio), VLT (IR), Faulkes Ts (Opt.), Swift, RXTE (X-rays)
- Failed state transition: Hard state \longrightarrow HIMS \longrightarrow Hard state

- Why interesting ?
 - Several data sets \Rightarrow Different levels of L \rightarrow study the jet evolution
 - The source is jet-dominated up to Optical \rightarrow Low inclination ? [4-15°] T.Russell et al., 2014

DATA SETS

POWER SPECTRA

MAIN PARAMETERS OF THE STUDY

Parameters

Distance [4-10kpc] Inclination [4-15°]

T.Russell et al., 2014

 \iff Related to the source

Index [2-3] Gamma min [<20]

 \iff Electron power law distribution

Jet power [few %L_{EDD}] Opening angle [around 1°] Average Gamma [1-?]

 \iff Jet properties

INFLUENCE OF THE PARAMETERS

13 / 17

RESULTING SEDS

ONE POSSIBLE SCENARIO

Distance=4kpc & Inclination=8°

Obs	Index	γ_{min}	Jet power	Opening	Γ_{av}
			L _{EDD}		
Sep 03	2.7	13	0.10	1°	9
Sep 17	2.9	13	0.19	1.2°	13
Sep 26	2.7	13	0.034	1°	6.5
Oct 12	2.7	13	0.008	1°	2
Oct 27	2.7	13	0.0032	1°	1.06

Need of at least two variable parameters !

STEEP RADIO/X CORRELATION

T.D. Russell (2015):

Weird radio/X correlation !

$$\rightarrow L_R \propto L_X^{1.8}$$

 \implies Possible solution: Γ_{av} increases with L

⁽T.D. Russell et al. 2015)

CONCLUSION

- \blacksquare Success: we now have a method to fit jet multi- λ emisson
- Jet evolution with at least 2 variable parameters: P et Γ_{av} Qualitatively in accordance with the 1.8 radio/X corr
- Huge degeneracy: lots of more possible sets of parameters Some "extreme" parameters → more reasonable using more variables parameters