Angular Momentum and Mass Transport in the Irradiated Accretion Discs of Low-mass X-ray Binaries

Bailey Tetarenko
University of Alberta

Jean-Pierre Lasota, Craig Heinke, Guillaume Dubus, and Gregory Sivakoff

Disc-Accretion in Compact Binaries

Black-hole Low-Mass X-ray Binaries

The Outburst of an Irradiated Disc Around a Stellar-mass Black-hole

Disc-instability picture, with the additional parameter of X-ray irradiation, predicts a three stage decay in the observed light-curve

The Outburst of an Irradiated Disc Around a Stellar-mass Black-hole

- ➤ Profile described analytically with a modified version of the "classic" King & Ritter formalism
- Five parameter analytical model fit to observed X-ray light-curves using a Markov-Chain Monte Carlo algorithm

Characterizing an Irradiated Accretion Disc

Deriving disc properties from BH-LMXB X-ray light curves

sample α -viscosity in the hot disc

Bayesian hierarchical modeling

A hierarchical model is a multilevel statistical model that allows one to estimate a posterior distribution by integrating a combination of known prior distributions with observed data.

Application to the Black-hole Low-mass X-ray Binary Population of the Galaxy

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 222:15 (98pp), 2016 February © 2016. The American Astronomical Society. All rights reserved.

doi:10.3847/0067-0049/222/2/15

WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

B. E. TETARENKO, G. R. SIVAKOFF, C. O. HEINKE, AND J. C. GLADSTONE
Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1, Canada; btetaren@ualberta.ca
Received 2015 October 9; accepted 2015 November 22; published 2016 February 10

The WATCHDOG Resource provides:

www.astro.physics.ualberta.ca/watchdog

α-viscosity in the outbursting discs of BH-LMXBs

we sample0.19<α<0.99 for21 outbursts in 12Galactic BH-LMXBs

 high α-viscosity derived for both canonical and failed outbursts

α-viscosity in the outbursting discs of BH-LMXBs

Typically simulations of the MRI in shearing boxes yield α_h ~0.02

<u>α-viscosity in the outbursting discs of BH-LMXBs</u>

Convection can enhance this transport to α_h ~0.2

α-viscosity in the outbursting discs of BH-LMXBs

Convection enhanced transport consistent with $\alpha_h^{\sim}0.1\text{-}0.2$ inferred in non-irradiated dwarf novae discs

<u>α-viscosity in the outbursting discs of BH-LMXBs</u>

- When net magnetic flux threads shearing box, simulations can reach α_h ~1
- high α-viscosity
 measured in BH LMXBs indicates
 presence of a large scale field in the
 disc, origin
 unknown

ightharpoonup Simulations with high α_h display strong mass outflows, significantly altering the outburst light-curve

disc-wind outflow toy model

$$M_w = \varepsilon_{wind} M_c$$

Simulations with high α_h display strong mass outflows, significantly altering the outburst light-curve

mass loss term within irradiated disc instability model mimics effect high α_h has on the light-curve profile.

disc-wind outflow toy model

$$M_w = \varepsilon_{wind} M_c$$

ightharpoonup How significant are the outflows in BH-LMXB discs, given our high α_h measurements in BH-LMXB discs?

ightharpoonup A measurement of α_h ~1 from an observed light-curve would require ϵ_w ~0.8 for the disc to have an intrinsic α_h ~0.2!!

disc-wind outflow toy model

$$M_w = \varepsilon_{wind} M_c$$

disc-wind (mass) outflows detected during LMXB outbursts

Lack of correlation observed between α_h and accretion state reached implies the outflow mechanism is likely magnetically-driven, rather then thermally-driven

Summary

- \triangleright Applying a Bayesian hierarchical methodology to the disc-instability picture, we derive α -viscosity in the irradiated discs around stellar-mass black-holes.
- \triangleright First time α -viscosity has been estimated in LMXB discs.
- \triangleright high α measured requires large-scale B-field threads the disc, with concurrent mass outflows shaping the outburst.
- These significant mass outflows that must exist throughout the decay are likely magnetically driven.

Important Announcement

I am currently looking for a postdoc position. If you are interested in giving me a job, please let me know!

