PANORAMA OF GROUND BASED OBSERVATORIES S. CORBEL (UNIV. P. DIDEROT & CEA SACLAY & OBS. PARIS)

CH

We say ground !

Outline Please note: this talk doen Please note: this talk doen Please note: this talk doen to cover all groun not aim to cover all ties

- Microquasars are multi wavel
- A forthcoming revolution in radio-astronomy
- Towards the big giants but not only: optical and infrared
- Getting bigger: high-energy gamma-rays
- See J. Wilms talk for observations from space

Ile de Porquerolles, 25-29 Sep 2017

From quiescence to outburst: when microquasars go wild !

Observational needs

- <u>Radio</u>: fast response to ToO, time coverage, polarimetry, multi-frequencies, high resolution imaging —> probing the jets
- <u>OIR</u>: Polarimetry, fast timing, SED, spectroscopy —> disentangling the various emitting components, mass function, base of the jets, ...
- <u>HE γ-rays</u>: sensitivity, **particles acceleration, HE process,**
- Surveys: searching for new transients to be later monitor by dedicated pointed observations, including satellites: e.g. LSST, RASM, ...

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	CTA P	rototypes	\Rightarrow			Science V	erification =	⇒ User Oper	ation	·	
Low Freq	uency Rad	io									
LOFAR				•		·		•	•	•	
MWA		77 4	[MWA	(upgrade))	:	:			
	VLITE on JV		>	<u>- (~2018? LU</u> FAST	DBO)						{
Mid-Hi Fr	equency Ra	adio	<u>·</u>	TAST							
JVLA,	VLBA, eMerli D	n, ATCA, EV	N, JVN, KV	N, VERA, L	LBA, GBT (1	many other sn	naller facilitie	es)	•	· ·	
Kat7	> MeerKAT	> SKA Phase	e 1			\rightarrow					
		<u> </u>				SKA	: 1&2 (Lo/Mid	:			
sub)Milli	meter Radi	0	:		•		:	;	:	:	
$\underbrace{\mathbf{JCMT}}_{\mathbf{ALMI}}$	LLAMA, LM	T, IRAM, NO	DEMA, SMA	A, SMT, SPT	, Nanten2, M	opra, Nobeyai	na (many	other smaller	facilities)		
	FHT	(prototy	ne _> full c	ns)							
						:	:	:	:	:	
Optical T	ransient Fa	ictories/Tr	ansient F	inders							
iPaloma Per ST	ar Transient Fa	actory	-> (~2017) Zwicky TF	,		T (buildup to	<mark>o full survey</mark> r	node)		
	$\frac{1}{1}$	Black	kGEM (Mee	erlicht single	dish prototy	pe in 2016)					
 Optical/IE	: Di argo Eco			i i i i i i i i i i i i i i i i i i i							
		mini Magalla	n (many c	thor smaller	r facilities)	:	:	:	:	:	
HST	eck, GIC, Gel	mm, magena	m(many o	other smaller	r facilities)			Y	<u>.</u>	(WFIRST
	:	:	:		-(JWST				÷)	<u>GMT</u>
X-ray	:	:			:		e	ELT (full ope	ration 2024) &	& TMT (time	line less clear)?)
Swift (i	ncl. UV/optica	l)									
	& Chandra							1			i
NUSIA		STROSAT									ATHENA (202
			(HXN	AT						<u> </u>	
			NIC	ER)		(XAH	RM			
		:		eRO	SITA						
Gamma-r	ау	:					SVOM (i	incl. soft gam	<mark>ma-ray + opt</mark>	ical ground e	lements)
	GRAL										,
Ferim	HAWC								:		Gamma400
		DAMPE								•	(2025+)
Gray Way				:	(LHAAS	50					
	Advance	d LIGO + A	dvanced VII	RGO (2017)			o include LI	GO India—)			Einstein Tel.?
Noutrince		:			(KAC	GRA					
r	> [:	Increh	SINCE 2	011)				1	:	:	LeoCubo Con 22
ANTARE	S	iceCub	KM3NF	Г-1		KM3NF	T-2 (ARCA)				KM3NET-3
	·				:			:	:		
UHE Cosi	mic Rays										
		Telescope Ar	ray ⇒	v upgrade tory	to IAx4	ada ta Augar	Drimo	Нарр	ily stolon	from S N	1arkoff /L hv
	-	Fierre Au	ger Observa	nory	upgra	aue to Auger	rime		ing scolen	110111 3 . 1	

Radio

MINUTE BREAK: RADIOASTRONOMY

Phased arrays

V.S.

pointed telescope

Main radio telescopes

Physical Map of the World, June 2003

An array of 66 antennas, using aperture synthesis over the entire accessible mm/submm wavelength range up to 1 THz

THE SKA PRECURSORS

SKA PRECURSORS: ASKAP

- Location: Australia
- Max Baseline : 6 km
- Frequency coverage: 0.7-1.8 GHz
- 36 antennas (12 m) with PAF (30 deg^2 FOV)
- Fully operational in 2017 ? (partially since 2015), not sure if all antennas equipped with PAF

Large FOV -> Surveys

FIRST ASKAP FRB IN MAY 2017!

« ASKAP has found its first FRB after less than four days of searching (8 antennas). The discovery came so quickly that the telescope looks set to become a world champion in this fiercely competitive area of astronomy. » ASKAP press release. CRAFT

THE VAST SURVEY

		VAS	I-Deep						
	VAST-Wide	Multi-field	Single Field	VAST-Galactic	Commensal				
Observing time (h)	4 380	3 200	400	600	1.5 years				
Survey area (deg ²)	10 000	10 000	30	750	10 000				
Time per field	40 s	1 h	1 h	16 min	12 h				
Repeat	Daily	7 times	Daily	64 times	None				
Observing freq (MHz)	1 130-1 430								
Bandwidth (MHz)	300								
RMS sensitivity (mJy beam-1)	0.5	0.05		0.1	0.01				
Field of view (deg ²)	30								
Angular resolution	10 arcsec								
Spectral resolution	10 MHz								
Time resolution	5 s								
Polarisation products	IQUV								

SKA PRECURSORS: MEERKAT

- Location: South Africa
- 64 antennas (13.5 m) over an 8-km baseline
- Frequency coverage: 0.5-10 GHz
- FOV: 1.69 deg² @ 1 GHz
- Fully deployed in March 2018 (32 in march 2017)

Commissioning image of MeerKAT

16 ant. 1.3° x 1.3° 1.4 GHz rms ~ 6.5 μJy

Goal with full array ~1 µJy

Ref: Fender (private com)

THUNDERKAT (PI: FENDER/WOUDT)

A MeerKAT Large Survey Project for synchrotron radio transients

- Survey and monitor populations of Galactic and extragalactic synchrotron radio transients
- Commensal observations + pointed observations (~2000 h) typically for followup + simultaneous optical observations with MeerLicht.
- Large international collaboration (56 co-ls from 9 countries)

SKA

SKA- KEY SCIENCE DRIVERS: THE HISTORY OF THE UNIVERSE

Testing General Relativity (Strong Regime, Gravitational Waves)

Cradle of Life (Planets, Molecules, SETI) Cosmic Dawn (First Stars and Galaxies)

> Galaxy Evolution (Normal Galaxies z~2-3)

Cosmology (Dark Energy, Large Scale Structure)

Cosmic Magnetism (Origin, Evolution)

Exploration of the Unknown

Extremely broad range of science!

SKA ORGANISATION: 10 COUNTRIES, MORE TO JOIN

- SKA Headquarters host country
- SKA Phase 1 and Phase 2 host countries
- This map is intended for reference only and is not meant to represent legal borders

THE SQUARE KILOMETER ARRAY (SKA)

3 sites; 2 telescopes + HQ ----> 1 Observatory

Design Phase: > €170M; 600 scientists+engineers

Phase 1:

Construction: 2018 – 2024

Construction cost cap: 674.1M€ (inflation-adjusted)

Operations cost: under development

Phase 2: start mid-2020s

~2000 dishes across 3500km of Southern Africa

Major expansion of SKA1-Low across Western Australia

A telescope available for 50+ years !!!

SKA1-LOW: 50 – 350 MHz Phase 1: ~130,000 antennas across 65km

SKA1-Mid: 350 MHz – 24 GHz Phase 1: 200 15-m dishes acrosserement 150 km

SKA Radio Telescope

Mihatha

Lesotho

Welkom

Construction: 2018 – 2024; Cost cap: €675M

SKA1 CAPABILITY VS STATE-OF-THE-ART

SLOW TRANSIENTS: MICROQUASARS

- SKA: probing a significant fraction of the whole outburst duration for almost all BHs in our Galaxy
- All flaring transient BHs accessible in the local Universe (possibly also up to Virgo @ 15 Mpc)

Other important radio facilities

- Low frequencies: LOFAR (Europe), NenuFAR (France). See J. Girard's talk.
- ngVLA (USA): Major upgrade of the VLA (sensitivity x 10, 1 to 116 GHz (20 GHz bandwidth), compact core + extended baselines 100s km)
- Do not forget **VLBI** with all current facilities. Important to probe the structure of the jets and their associated proper motion.

OIR

Thanks PG + D. Russell for inputs

ELT

First light instrumentations

- HARMONI, High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (spectroscopy in the 0.47–2.45 µm range)
- MAORY, Multi-conjugate Adaptive Optics RelaY for the ELT
- MICADO, Multi-AO Imaging Camera for Deep Observations (IR 0.8–2.4 µm image in large FOV, 6 to 12 mas)
- METIS, Mid-infrared 3-20 µm ELT Imager and Spectrograph

OIR Needs

- Not sure how much time of the giants will be devoted to our field (same applies to JWST).
- But what do we need ?
 - Broad band spectroscopy
 - Fast timing (e.g. HAWK-I @ VLT; e.g. Vincentelli's talk).
 - OIR polarimetry (inc. on short timescale, see jets).
 - VLTI ? See example of SS433 with Gravity (Petrucci et al. 2017)
- Can be done with smaller telescopes: CIRCE @ 10m GTC; SOXS @ 4m ESO/NTT

SOXS: Son Of X-Shooter @ NTT

- New instrument selected at ESO-NTT, PI: S. Campana. 2020?
- Wide spectral coverage (U to H: 0.35-1.75 µm) and good spectral resolution (R~4,500)
- Continuum spectrum R~20-20.5 S/N=10 in 1 hr
- Dedicated for transients. 180 n/yr (for 5 yr). 5% of time open for public fast ToO
- Will start in 2018 with current instruments (EFOSC2+SOFI)

LSST

- A 8.4 m telescope dedicated to Transients located in Chile
- 20,000 sq degree every 3-4 nights, twice a night
- $\sim 10^6$ transients/variable objects, released within 60s

acquired number of visits:

LSST in one sentence: An optical/near-IR survey of half the sky in ugrizy bands to r~27.5 (36 nJy)

based on 825 visits over a 10-year period: deep wide fast.

Left: a 10-year simulation of LSST survey: the number of visits in the r band (Aitoff projection of eq. coordinates)

High Energy Gamma-rays

CTA Observatory

- **CTA** : very wide energy range and excellent angular resolution and sensitivity in comparison to any existing gamma-ray detector.
- Energies up to 300 TeV will push CTA beyond the edge of the known electromagnetic spectrum, providing a completely new view of the sky.
- 2 sites:
 - CTA Southern Site: 4 <u>Large-Sized</u> Telescopes, 25 <u>Medium-Sized</u> Telescopes and 70 <u>Small-Sized</u> Telescopes (Chile)
 - CTA Northern Site: 4 <u>Large-Sized</u> Telescopes and 15 <u>Medium-Sized</u> Telescopes (Spain)

- Low-energy γ: high γ-ray rate, low light yield → require small ground area, large mirror area
- High-energy γ: low γ-rate, high light yield → require large ground area, small mirror area

Few large telescopes for lowest energies

Large 7 km² array of small telescopes,

Science with CTA

- Theme 1: Cosmic particles acceleration
 - How and where are particles accelerated?
 - How do they propagate?
 - What is their impact on the environment?
- Theme 2: Probing extreme environnement
 - Processes close to neutron stars and black holes?
 - Processes in relativistic jets, winds and explosions?
 - Exploring cosmic voids
- Theme 3: Physics frontiers, beyond the standard model (DM, ALP, ...)

CTA consortium

32 Countries, 210 Institutes, 1350 members

CTA sensitivity

CTA and microquasars

 HE detections: Cyg X-3 (Fermi LAT, Agile), V404 Cyg (Loh et al. 2016), Cyg X-1 (Magic?, Fermi)

Conclusions

- Excellent new facilities in radio, lots of excitements to come. Surveys + follow-up. Radio all sky monitor
- OIR: not clear how much time from the big giants will be devoted to microquasars. However, needs for dedicated instrumentation for polarimetry, timing, broad band spectroscopy. Alerts from LSST.
- HE γ-rays: CTA, a sensitive instrument, but need the targets to cooperate !