Accretion-ejection morphology of the microquasar SS 433 resolved at sub-au scale with VLTI/GRAVITY

P.-O. Petrucci¹, I. Waisberg², J.-B Lebouquin¹, J. Dexter², G. Dubus¹, K. Perraut ${ }^{1}$, F. Eisenhauer ${ }^{2}$ and the GRAVITY collaboration
${ }^{1}$ Institute of Planetology and Astrophysics of Grenoble, France
${ }^{2}$ Max Planck Institute fur Extraterrestrische Physik, Garching, Germany

What is SS 433?

-SS 433 discovered in the 70's. In the galactic plane. $\mathrm{K}=8.1$!

- At a distance of 5.5 kpc , embedded in the radio nebula W50
- Eclipsing binary with Period of ~ 13.1 days, the secondary a A-type supergiant star and the primary may be a $\sim 10 \mathrm{M}$ sun. BH .

W50 supernova remnant in rädio (green) against the infrared background of stars and dust (red).

Moving Lines: Jet Signatures

- Optical/IR spectrum:
- Broad emission lines (stationary lines)
-Doppler (blue and red) shifted lines (moving lines)

Moving Lines: Jet Signatures

- Optical/IR spectrum:
- Broad emission lines (stationary lines)
- Doppler (blue and red) shifted lines (moving lines)
- Variable, periodic, Doppler shifts reaching $\sim 50000 \mathrm{~km} / \mathrm{s}$ in redshift and $\sim 30000 \mathrm{~km} / \mathrm{s}$ in blueshift
- Rapidly interpreted as signature of collimated, oppositely ejected jet (v~0.26c) precessing (162 days) and nutating (6.5 days)

Precessing Jets

VLBA observations (Mioduszewski et al. NRAO/AUINSF)

- Collimation with opening angle $\sim 1^{\circ}$
- Jets mass-loss rate $>10^{-6} \mathrm{M} \odot \mathrm{yr}^{-1}$
- Lkin $>1039 \mathrm{erg} \mathrm{s}^{-1}>1000 \mathrm{~L}_{2-10} \mathrm{kev}$. (Lx,intrinsic may be much larger)
- They interact in a helical pattern with W50

Precessing Jets

VLBA observations (Mioduszewski et al. NRAO/AUINSF)

- Collimation with opening angle $\sim 1^{\circ}$
- Jets mass-loss rate $>10^{-6} \mathrm{M} \odot \mathrm{yr}^{-1}$
- Lkin $>1039 \mathrm{erg} \mathrm{s}^{-1}>1000 \mathrm{~L}_{2-10} \mathrm{kev}$. (Lx,intrinsic may be much larger)
- They interact in a helical pattern with W50

Stationary Lines

- Lines that do not share the large periodic Doppler shifts are called « stationary » lines
- The « stationary » lines vary in strength and profile shape during the orbital phase
- Fits with multiple-gaussians model reveal different components
$\mathrm{H} \boldsymbol{\beta}$ profiles

Wind, accretion and Circumbinary discs

Stationary lines generally consist of three components:

Wind, accretion and Circumbinary discs

Stationary lines generally consist of three components:

- A broad component is identified as emitted in that wind from the accretion disc.

Wind, accretion and Circumbinary discs

Stationary lines generally consist of three components:

- A broad component is identified as emitted in that wind from the accretion disc.
- Two narrow remarkably constant components, one permanently redshifted and the other permanently to the blue signature of a circumbinary ring (the inner rim of an excretion disc?)

Wind, accretion and Circumbinary discs

Stationary lines generally consist of three components:

- A broad component is identified as emitted in that wind from the accretion disc.
- Two narrow remarkably constant components, one permanently redshifted and the other permanently to the blue signature of a circumbinary ring (the inner rim of an excretion disc?)
- Some « extra » broadening can be due to the presence of two narrow components at comparatively extreme excursions in velocity signature. Signature of a ring or disc orbiting the compact object itself.

Basics of Interferometry

- In optical range we observe
 interference fringe patterns

Basics of Interferometry

- In optical range we observe

-van Cittert-Zernike Theorem:

Telescope Baselines

$$
V e^{i \Phi}=T F\{\operatorname{Object}\}(B / \lambda) \quad \Phi=2 \pi \frac{\vec{B}}{\lambda} \cdot \vec{s}
$$

If we collect enough V and ϕ (for different \vec{B}) we can reconstruct $I(\vec{\alpha})$

Basics of Interferometry

The smaller the V amplitude, the more resolved the object is!

Basics of Interferometry

The smaller the V amplitude, the more resolved the object is!

Basics of Interferometry

SOPD $=\vec{B} \cdot \vec{\alpha}-\vec{B} \cdot \vec{\beta}=\vec{B} \cdot(\vec{a}-\vec{\beta})$
Secondary Star
Primary Star

The larger the $Ф$ phase, the more dissymetric the object is!

Basics of Interferometry

The larger the Ф phase, the more dissymetric the object is!

GRAVITY Instrument http://www.mpe.mpg.de/ir/gravity

First light paper: GRAVITY Collaboration: Abuter et al. (2017)

- Combines the 4 UT ($8,20 \mathrm{~m}$) or the 4 AT ($1,80 \mathrm{~m}$) since 2016

GRAVITY Instrument http://www.mpe.mpg.de/ir/gravity

First light paper: GRAVITY Collaboration: Abuter et al. (2017)

- Combines the 4 UT ($8,20 \mathrm{~m}$) or the 4 AT ($1,80 \mathrm{~m}$) since 2016
-Devoted to the observation of the very close environment of the black hole at the galactic center
-Room for other science (AGN, stars, binaries, ...): open to ESO proposals!

The SS 433 Observation

- 3.5h with the 4 UTs, the 16th July 2016
- uv-plane (coincidentally) aligned with the jet PA

The SS 433 Observation

- 3.5h with the 4 UTs, the 16th July 2016
- uv-plane (coincidentally) aligned with the jet PA

- The jet precession phase at the observation date \approx Eastu [m] is ~ 0.7

Continuum Visibility

- Systematic drop versus baseline length
- No closure phase measurable
- Simple modeling with a Gaussian disk:

- 90% from emitting region of 0.8 mas
- 10\% from diffuse background (>15mas)

The GRAVITY Spectrum

Stationary lines

- $\mathrm{Br} \gamma$ is double-peaked
- Hel with P Cygni profile

The GRAVITY Spectrum

Jet lines

- Emission features agree with the jet line shifts expected at the observation date
- $\mathrm{Br} \gamma, \mathrm{Hel}$ from jet1 and jet2 and $\mathrm{Br} \delta$ from jet1

The GRAVITY Spectrum

Jet lines

- Emission features agree with the jet line shifts expected at the observation date
- $\mathrm{Br} \gamma, \mathrm{Hel}$ from jet1 and jet2 and $\mathrm{Br} \delta$ from jet1

The GRAVITY Spectrum

Jet lines

- Emission features agree with the jet line shifts expected at the observation date
- $\mathrm{Br} \gamma, \mathrm{Hel}$ from jet1 and jet2 and $\mathrm{Br} \delta$ from jet1

The GRAVITY Spectrum

Jet lines

- Emission features agree with the jet line shifts expected at the observation date
- $\mathrm{Br} \gamma, \mathrm{Hel}$ from jet1 and jet2 and $\mathrm{Br} \delta$ from jet1

Normalized Visibilities

Amplitudes

Phases

Jet line Model

Method: fit all jet lines (flux, vis. amplitude and phase) together assuming the same jet intensity profile moving at 0.26c

Jet line Model

Method: fit all jet lines (flux, vis. amplitude and phase) together assuming the same jet intensity profile moving at 0.26 c
-An exponentially decreasing intensity profile preferred to a gaussian one ($\Delta \chi^{2}>36$ for 57 dof)

-Best fit with:

- $\mathrm{PA}=75^{\circ} \pm 20^{\circ} \quad$ (3σ error)
- $s=1.7 \pm 0.6$ mas,
- $\mathrm{a}=-0.15 \pm 0.34 \mathrm{mas}$
-Transverse size < 1.2 mas

Stationary line: $\mathrm{Br} \gamma$

- Visibilities clearly drop across the line for all the baselines
- Deeper for longer baselines.
- Emitting region size is found to be ~ 1 mas
- Phases behavior suggest East-West oriented geometry, i.e., in a direction similar to the jet one

Jet precession (~164 daj/s)
 and putation (~ 6.5 days)
 fet1

ver apprioaching:
ACCRETION DISC COMPANION STAR

+ WIND

The SS-433 System

1. Most (90%) of the infrared continuium comes from'a partially resolved central source of typical size -0.8 mas

2. Most (90%) of the infrared continuum comes from a partially resolved central source of typical size $\sim 0.8 \mathrm{mas}$
3. 10% continutu flux left over produced by a completely resolved background on. a larger: scale (>15 mas):
4. Most (90%) of the infrared continuum comes from a partially resolved central source of typical size $\sim 0.8 \mathrm{mas}$
5. 10% continutu flux left over produced by a completely resolved background on.a larger scale ($>15 \mathrm{mas}$)
6. The Bry emitting region has typical size of 1 mas with an EastWest elongation, along the jet axis.
7. Most (90%) of the infrared continuum comes from a partially resolved central source of typical size $\sim 0.8 \mathrm{mas}$
8. to\% continutm flux left over produced by a completely resolved background on'a larger scale (>15 mas).
9. The Bry emitting region has typical size of 1 mas with an EastWest elongation, alon'g the jet axis.
10. Jet with a continuous (exponentially decreasing.)
 emitting profile. No signature of moving blobs.
Jet already at 0.26 c at $<0.2 \mathrm{mas}(1.61013 \mathrm{~cm}$) from the binary (line locking process on hydrogenoid ions for jet acceleration).

Perspectives

- Improve the uv coverage
- Days/Week/Month monitoring to follow the source on different time scales (orbital period, jet precession period)
\rightarrow jet stability, ejection phenomena, line substructure origin (e.g. Bry)

New data

- A GRAVITY (5h) + XSHOOTER (2h) observation accepted for P99 in A priority (PI: I. Waisberg): data analysis in progress...
- VLBA (15-86 GHz) (PI: I. Waisberg)

Thanks!

