Electron-impact excitation of diatomic hydride cations II: OH$^+$ and SH$^+$

James R. Hamilton,1 Alexandre Faure2★ and Jonathan Tennyson1★

1Department of Physics and Astronomy, University College, London, Gower St., London WC1E 6BT, UK
2University Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France

ABSTRACT

R-matrix calculations combined with the adiabatic-nuclei-rotation and Coulomb-Born approximations are used to compute electron-impact rotational rate coefficients for two open-shell diatomic cations of astrophysical interest: the hydoxyl and sulphanyl ions, OH$^+$ and SH$^+$. Hyperfine resolved rate coefficients are deduced using the infinite-order-sudden approximation. The propensity rule $\Delta F = \Delta J = \Delta N = \pm 1$ is observed, as is expected for cations with a large dipole moment. A model for OH$^+$ excitation in the Orion Bar photon-dominated region is presented which nicely reproduces Herschel observations for an electron fraction $x_e = 10^{-4}$ and an OH$^+$ column density of 3×10^{13} cm$^{-2}$. Electron-impact electronic excitation cross-sections and rate coefficients for the ions are also presented.

Key words: line: formation – molecular data; molecular processes – ISM: molecules.

1 INTRODUCTION

Cross-sections for electron collisions with molecular ions can be very large (>1000 Å2). If the ion in question contains a permanent dipole moment, the electron-impact rotational excitation rate coefficients far exceed those of H and H$_2$, meaning that in comparatively electron-rich regions, electron collisions can become the dominant excitation process. Rotational rate coefficients have already been used to quantify interstellar electron densities (Jimenez-Serra et al. 2006; Harrison, Faure & Tennyson 2013; Hamilton, Faure & Tennyson 2016), but the rate coefficients for many key species remain unknown. In this paper, we consider (de)excitation of the hydoxyl and sulphanyl ions: OH$^+$ and SH$^+$, respectively. Both the species have electronic ground states of $^3\Sigma^-$ symmetry which adds an extra complication as the rotational levels display fine structure due to the electron spin of the two unpaired electrons and a hyperfine structure due to the nuclear spin of the hydrogen atom.

Both OH$^+$ and SH$^+$ were only detected in the interstellar medium (ISM) within the last decade; OH$^+$ being first observed by Wyrowski et al. (2010) and SH$^+$ by Benz et al. (2010) and Menten et al. (2011). However, the ions are now known to be widespread (Gerin, Neufeld & Goicoechea 2016). In particular, OH$^+$ has now been found in a variety of locations including translucent interstellar clouds (Gupta et al. 2010; Krelowski, Beletsky & Galazutdinov 2010) and both OH$^+$ and SH$^+$ have been recently observed in absorption across the $\zeta = 0.89$ molecular absorber towards PKS 1830-211 (Muller et al. 2016, 2017). They have also been detected in dense photon-dominated regions (PDRs) where electron collision processes are thought to be important (Nagy et al. 2013; van der Tak et al. 2013). A number of these observations resolve the fine (and sometimes hyperfine) structure in the transitions (Benz et al. 2010; Gerin et al. 2010; Godard et al. 2012; Nagy et al. 2013).

To date, the only one laboratory measurement of electron-impact rotational rate coefficients for a molecular ion was by Shafir et al. (2009) for HD$^+$; this experiment actually measured de-excitation and only gave enough information to show agreement with the theoretical predictions. This means that thus far astronomically important electron-impact rotational rate coefficients for molecular ions have all been computed (Faure & Tennyson 2001, 2003). In a recent paper (Hamilton et al. 2016), we used improved theory to compute rotational rate coefficients for three closed-shell hydride cations, ArH$^+$, CH$^+$, and HeH$^+$; these hydrides were chosen due to their significant role in the ISM, see Faure et al. (2017) for example. In this work, electron-impact rate coefficients are calculated for the open-shell ions OH$^+$ and SH$^+$. R-matrix calculations are combined with the adiabatic-nuclei-rotation (ANR) approximation to produce rotational cross-sections at electron energies below 5 eV. We also present electron-impact electronic excitation cross-sections for the two ions considered. While these are unlikely to be important for models of ISM, OH$^+$ can be found in planetary ionospheres (Fox et al. 2015), and cometary coma (Nordholt et al. 2003; Haider & Bhardwaj 2005; Rubin et al. 2009), as well as around Enceladus (Gupta et al. 2010). In these environments, electron-impact electronic excitation may well be important.

Section 2 describes the R-matrix calculations and the procedure used to derive the cross-sections and rate coefficients is briefly introduced. In Section 3, we present and discuss the calculated rate coefficients. A model for the excitation of OH$^+$ in the Orion bar PDR is also presented in Section 4. Conclusions are summarized in Section 5.
Table 1. Vertical excitation energies for the lowest five excited states of OH$^+$ compared with measured adiabatic excitation energies.

<table>
<thead>
<tr>
<th>State</th>
<th>This work (eV)</th>
<th>Previous (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X $^3\Sigma^-$</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>a $^1\Delta$</td>
<td>2.509</td>
<td>2.190</td>
</tr>
<tr>
<td>b $^3\Sigma^+$</td>
<td>3.709</td>
<td>3.602</td>
</tr>
<tr>
<td>A $^3\Pi$</td>
<td>3.903</td>
<td>3.526</td>
</tr>
<tr>
<td>$^1\Sigma^+$</td>
<td>6.183</td>
<td></td>
</tr>
<tr>
<td>2 $^3\Sigma^+$</td>
<td>11.510</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Dipole moment, μ, and rotational constant, B, calculated for isotopologues of OH$^+$ are compared with published values.

<table>
<thead>
<tr>
<th>Property</th>
<th>This work</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{16}\text{OH}^+$</td>
<td>$^{17}\text{OH}^+$</td>
<td>$^{18}\text{OH}^+$</td>
</tr>
<tr>
<td>μ (D)</td>
<td>2.252</td>
<td>2.269</td>
</tr>
<tr>
<td>B (cm$^{-1}$)</td>
<td>16.796</td>
<td>16.737</td>
</tr>
</tbody>
</table>

Table 3. Vertical excitation energies for the lowest seven excited states of SH$^+$ compared with measured values.

<table>
<thead>
<tr>
<th>State</th>
<th>This work (eV)</th>
<th>Previous (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X $^3\Sigma^-$</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>a $^1\Delta$</td>
<td>1.472</td>
<td>1.280</td>
</tr>
<tr>
<td>b $^3\Sigma^+$</td>
<td>2.517</td>
<td>2.390</td>
</tr>
<tr>
<td>A $^3\Pi$</td>
<td>3.856</td>
<td>3.740</td>
</tr>
<tr>
<td>c $^1\Pi$</td>
<td>5.200</td>
<td>5.320</td>
</tr>
<tr>
<td>2 $^3\Pi$</td>
<td>10.304</td>
<td></td>
</tr>
<tr>
<td>2 $^3\Sigma^+$</td>
<td>10.373</td>
<td></td>
</tr>
</tbody>
</table>

The OH$^+$ target was represented using an augmented aug-cc-pVTZ GTO basis set. The use of augmented basis sets improves the treatment of the more diffuse orbitals for the excited states in the calculation. The ground state of OH$^+$ is X $^3\Sigma^-$ which has the configuration [1σ2 2σ2 3σ2] [1π2]. The target was represented using CAS-CI treatment freezing the lowest energy 1σ2 orbital and placing the highest six electrons in orbitals [2–8σ, 1–3 πl]. This target was constructed in an R-matrix sphere of radius 13 a$_0$. Nine electronically excited states were used in the close-coupling expansion.

The vertical excitation energies (VEEs) of the excited states of OH$^+$ calculated using this model at an equilibrium bondlength of 1.0289 Å are given in Table 1, where the VEEs are compared to measured values. The VEEs calculated in this work compare well to the measured adiabatic excitation energies (AEEs). VEEs naturally exceed AEEs and in this particular case the A $^3\Pi$ has a much larger equilibrium bondlength (1.134 Å) than the b $^3\Sigma^+$ state (1.032 Å), which results in a different order of the states at R = 1.029 Å. The excited states a $^1\Delta$, b $^1\Sigma^+$, and A $^3\Pi$ are within the electron energy range of interest in this investigation. Calculated equilibrium geometry dipole moment and rotational constant of OH$^+$ are compared to the best available values in Table 2.

Isotopic substitution shifts the centre-of-mass and hence, for anionic system, alters the permanent dipole moment. Oxygen exists in three isotopes giving $^{16}\text{OH}^+$, $^{17}\text{OH}^+$, and $^{18}\text{OH}^+$. While 16O is the most abundant isotope, the abundance of 18O is not negligible with an isotopic ratio 16O/18O = 498.7 ± 0.1 for the Solar system (Vienna Standard Mean Ocean Water value) (Asplund et al. 2009; Meijia et al. 2016). The abundance of 17O is much lower with an isotopic ratio 16O/17O = 2632 ± 7 (Asplund et al. 2009; Meijia et al. 2016). To our knowledge, only the main isotopologue 16OH$^+$ has been detected in the ISM so far. For this reason, the discussion and results presented in the main paper will be concerned with only 16OH$^+$ (henceforth referred to as OH$^+$) but data for the other isotopologues are also included in the supplementary data to this article.

2.1 OH$^+$

The SH$^+$ target was represented using a non-augmented Dunning cc-pVTZ GTO basis set. Unlike OH$^+$, an augmented basis set could not be used as it gave linear dependence problems and did not produce smooth results. The ground state of SH$^+$ has the configuration [1σ2 2σ 3σ 1π 4σ 5σ]2 [2π]2. The target was represented using CAS-CI treatment freezing electrons of the lowest energy 1σ and 1π orbitals and placing the highest six electrons in orbitals [4–8σ, 2–4 π, 1 δ]l. This target was constructed in an R-matrix sphere of radius 10 a$_0$. The VEEs of the excited states of SH$^+$ calculated from this model at the equilibrium bondlength of 1.3744 Å are given in Table 3 and compared to published values. The VEEs calculated in this work compare well to the measured VEEs. The calculated equilibrium geometry dipole moment and rotational constant of SH$^+$ are compared to the best available values in Table 4.

Sulphur exists as four isotopes giving 32SH$^+$, 33SH$^+$, 34SH$^+$, and 38SH$^+$. While 32S is the most abundant isotope, the abundance of 34S is significant with an isotopic ratio 32S/34S ~ 22 for the Solar system (Asplund et al. 2009; Meijia et al. 2016). The abundances of
Table 4. Dipole moment and rotational constant calculated for SH+ compared with published values.

<table>
<thead>
<tr>
<th>Property</th>
<th>This work</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ (D)</td>
<td>1.388</td>
<td>1.394</td>
</tr>
<tr>
<td>B (cm⁻¹)</td>
<td>9.135</td>
<td>9.125</td>
</tr>
</tbody>
</table>

The other isotopes are much lower with isotopic ratios 32S/33S~125 and 32S/36S~5000 (Asplund et al. 2009; Meija et al. 2016). Both isotopologues 32SH+ and 34SH+ have been detected in the (extragalactic for 34SH+) ISM (Müller et al. 2017). The discussion and results presented in the main paper will be concerned with only 32SH+ (henceforth referred to as SH+) but data for the other isotopologues are also included in the supplementary data to this article.

2.3 Cross-sections and rate coefficients

Working in C_2v symmetry, each of the above calculations produces eight fixed-nuclei T-matrices for each molecule: the four symmetries A_1, A_2, B_1, B_2 for both doublet and quartet states of the $N + 1$ electron systems. These T-matrices are used to calculate the electronic excitation cross-sections using standard equations (Tennyson 1998) using the rotational constants and isotope specific dipole moments given in Tables 2 and 4. ROTIONS computes the rotational excitation cross-sections for each doublet and quartet state independently. The total rotational cross-sections are thus obtained as the (weighted) sum of the doublet and quartet cross-sections.

2.3.1 Electronic transitions

Electronic excitation cross-sections were computed for collision energies E_{coll} in the range 0.01–5 eV. We consider electronic transitions from the ground state of each cation to all states with electronic thresholds below the 5 eV upper limit. The electronic thresholds are calculated using the fixed-nuclei approximation. Assuming that the electron velocity distribution is Maxwellian, rate coefficients for excitation transitions were obtained for temperatures in the range 1–5000 K.

2.3.2 Rotational transitions

As in I, we use a combination of the adiabatic nuclei rotation (ANR) method (Chang & Temkin 1970) with Coulomb-Born completion (for dipolar transitions only). To allow for threshold effect, we used an empirical correction: below the excitation threshold, cross-sections are set to zero, see Faure et al. (2006) for details. The validity of this approach was confirmed recently for HeH+ where the full-rotational multichannel quantum defect theory calculations by Čurik & Greene (2017) were found in good agreement with the ANR/Coulomb-Born calculations of I.

Rotational transitions between levels with $\Delta N \leq 11$ were considered. However, transitions were restricted to $\Delta N \leq 8$ owing to the finite number of partial waves in the T-matrices ($\ell \leq 4$). Rotational excitation cross-sections were computed for collision energies E_{coll} in the range 0.01–5 eV. For transitions with a rotational threshold below 0.01 eV, cross-sections were extrapolated down to the threshold using a $1/E_{\text{coll}}$ (Wigner’s) law, as recommended by Faure et al. (2006). Rate coefficients for excitation transitions were obtained for temperatures in the range 1–3000 K assuming a thermal electron energy distribution. The principle of detailed balance was used to compute de-excitation rate coefficients.

2.3.3 Hyperfine transitions

As discussed in the introduction, the fine and hyperfine structures of the OH+ and SH+ ions are resolved in astronomical observations. It is therefore necessary to provide hyperfine-resolved rate coefficients for these two ions. In the Hund’s case (b) coupling scheme, the fine structure levels are labelled by (N, j) where $j = N + S$ is the total angular momentum quantum number and $S = 1$ is the electronic spin. The hyperfine structure levels are labelled by (N, j, F) where $F = j + I$ is the hyperfine quantum number and $I = 1/2$ is the nuclear spin of the hydrogen atom. Each rotational level is thus split into three fine-structure levels $(j = N - 1, j = N, j = N + 1)$ (except $N = 0$) and each fine-structure level is in turn split into two hyperfine levels $(F = j + 1/2, F = j - 1/2)$ (except $(N, j) = (1, 0)$). The fine and hyperfine splittings are ~ 1 and ~ 0.001 cm⁻¹, respectively, i.e. they are much lower than the rotational and collisional energies. Thus, assuming that the electronic and nuclear spins play a spectator role during electron–molecule collisions, hyperfine-resolved rate coefficients can be computed using the simple infinite-order-sudden (IOS) approximation. Within this approximation, which is similar in spirit to the ANR approximation, the pure rotational rate coefficients obey the following equation (Corey & McCourt 1983):

$$
k^{\text{IOS}}_{N \rightarrow N'}(T) = [N'] \sum_{L} \left(\frac{N'}{0 L} \right)_{2}^{2} \sigma_{0 \rightarrow L}(T),
$$

where $[N']$ represents $(2N' + 1)$ and (\cdot) is a Wigner ‘3-j’ symbol. In practice, the rate coefficients $k_{N \rightarrow N'}(T)$ computed with ROTIONS do not strictly follow equation (1) due to the Coulomb-Born completion and the threshold correction applied to the cross-sections. Equation (1) is however satisfied to within 25 per cent, down to 10 K. Within the IOS approximation, the fine-structure rate coefficients can be obtained as follows (Corey & McCourt 1983; Lique, Bulut & Roncero 2016):

$$
k^{\text{IOS}}_{N'I \rightarrow N'F}(T) = [N' j'] \sum_{L} \left(\frac{N' N L}{0 0 0} \right)_{2}^{2} \left\{ j' \frac{N' N L}{j S} \right\}_{2}^{2} \sigma_{0 \rightarrow L}(T),
$$

where $\{ \cdot \}$ is a ‘6-j’ Wigner symbol and $k_{0 \rightarrow L}(T)$ are the rotational rate coefficients computed with ROTIONS. Similarly, the hyperfine-resolved rate coefficients can be obtained as (Daniel et al. 2005; Lique et al. 2016):

$$
k^{\text{IOS}}_{N'I'F \rightarrow N'F}(T) = [N' j' F] \sum_{L} \left(\frac{N' N L}{0 0 0} \right)_{2}^{2} \left\{ j' \frac{N' N L}{j S} \right\}_{2}^{2} \left\{ F' \frac{N' N L}{F I} \right\}_{2}^{2} \sigma_{0 \rightarrow L}(T),
$$

In practice, however, the hyperfine rate coefficients for transitions with $N \neq N'$ were computed as (Neufeld & Green 1994; Faure & Lique 2012)

$$
k^{\text{IOS}}_{N'I'F \rightarrow N'F}(T) = \frac{\sigma_{N'I'F \rightarrow N'F}(T)}{\sigma_{N \rightarrow N'}(T)} k_{N \rightarrow N'}(T).
$$

Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/2931/4880459 on 24 April 2018
This scaling procedure guarantees the following equality:
\[\sum_{j''F''} k^{INF}_{NjF\rightarrow N'j''F''}(T) = k_{N\rightarrow N}(T), \]

thus ensuring that the summed hyperfine rate coefficients are identical to the ANR/Coulomb-Born pure rotational rate coefficients. In addition, in order to improve the results at low temperatures, the fundamental excitation rate coefficients \(k_{0 \rightarrow L}(T) \) were replaced by the de-excitation fundamental rate coefficients using the detailed balance relation (within the IOS approximation) \(k_{L \rightarrow 0}(T) = |L|k_{L \rightarrow 0}(T) \), as in Faure & Lique (2012).

3 RESULTS

There are no previous studies on these systems against which we can compare. We start by considering results for electron-impact excitation of OH\(^+\).

3.1 OH\(^+\)

Fig. 1 shows the rate coefficients for the electronic excitation of OH\(^+\)(X \(\Sigma^+ \)) after electron impact. This figure shows that the excitation of OH\(^+\)(X \(\Sigma^+ \)) to OH\(^+\)(a \(^1 \Delta \)) has a lower temperature threshold than the subsequent transitions and has a greater magnitude over the investigated temperature range. This is to be expected due to the electron energy threshold of this transition, as shown in Table 1. This figure also shows that while the rate coefficients for excitation to OH\(^+\)(b \(\Sigma^+ \)) and OH\(^+\)(A \(^3 \Pi \)) have a similar temperature threshold, the rate coefficient for excitation to OH\(^+\)(A \(^3 \Pi \)) dominates at higher temperatures and in fact is converging towards the rate coefficient for excitation to OH\(^+\)(a \(^1 \Delta \)). This is a consequence of the fact that the OH\(^+\)(X \(\Sigma^+ \)) to OH\(^+\)(A \(^3 \Pi \)) transition is dipole allowed so this excitation tends to dominate at high impact energies. State-to-state Einstein coefficients for the \(^3 \Sigma^+ - ^3 \Pi \) band can be found in Gómez-Carrasco et al. (2014).

Fig. 2 presents rate coefficients for electron-impact rotational excitation of OH\(^+\) from its rotational ground state. The processes are dominated by the \(\Delta N = 1 \) transition due to the long-range effect of the dipole moment discussed above. As \(\Delta N \) increases, the temperature threshold of the process increases and the magnitude of the rate coefficients decreases.

Table 5 presents rate coefficients for electron-impact hyperfine de-excitation of OH\(^+\) from the initial levels \((N, J, F) = (1, 2, 5/2) \) and \((1, 2, 3/2) \). These two levels are the upper states of the observed transition of OH\(^+\) at 972 GHz that will be discussed in the next section. It can be noticed that transitions with \(\Delta F = \Delta j = \Delta N = \pm 1 \) are collisionally favoured, as observed previously for other \(\Sigma^+ \) targets colliding with neutrals (see Lique et al. 2016, and references therein). We note that radiatively the selection rule \(\Delta F = 0, \pm 1 \) holds strictly and transitions with \(\Delta F = \pm j = \Delta N \) are the strongest ones. We also observe that de-excitation rate coefficients decrease significantly with temperature, typically by a factor of 10 between 10 and 1000 K.

3.2 SH\(^+\)

Fig. 3 shows the rate coefficients for the electronic excitation of SH\(^+\)(X \(\Sigma^+ \)) after electron impact. This figure shows that the temperature thresholds of the three transitions considered in this work are fairly similar. The rate coefficient for the transition to SH\(^+\)(a\(^1 \Delta \)) dominates from relatively low temperatures whereas the rate coefficients for transitions to SH\(^+\)(b \(\Sigma^+ \)) and SH\(^+\)(A \(^3 \Pi \)) remain very similar up to around 2000 K. At higher temperatures, the rate coefficient for the transition to SH\(^+\)(b \(\Sigma^+ \)) exceeds that for the transition to SH\(^+\)(A \(^3 \Pi \)). This latter does however tend to converge towards the former as the temperature increases still further.

Fig. 4 presents rate coefficients for electron-impact rotational excitation of SH\(^+\) from its rotational ground state. The processes are again dominated by the \(\Delta N = 1 \) transition, particularly at low temperatures. As \(\Delta N \) increases, the temperature threshold of the process increases and the magnitude of the rate coefficient decreases...
The supplementary data associated with this paper include:

(i) Electronic excitation cross-sections and rate coefficients for 16OH$^+$ and 32SH$^+$. Data include all electronic states with thresholds below 5 eV.

(ii) Rotation excitation cross-sections and rate coefficients for the three isotopes of OH$^+$ and the four isotopes of SH$^+$. Rotational excitation data sets are published for transitions with starting values of $N = 0$ to $N = 11$.

(iii) Hyperfine de-excitation rate coefficients for 16OH$^+$, 18OH$^+$, and 32SH$^+$. Hyperfine de-excitation data sets are published for transitions with starting values of $(N, j, F) = (0, 1, 3/2)$ to $(11, 11, 21/2)$.

These data will also be placed in the BASECOL data base (Dubernet et al. 2013).

Hyperfine data for 16OH$^+$, 18OH$^+$, and 32SH$^+$ have been also combined with the spectroscopic data from the Cologne Database for Molecular Spectroscopy (CDMS) (Müller et al. 2005) in order to provide a full and consistent data set adapted to radiative transfer studies (see below). Hyperfine data for the other isotopologues are not provided due to the lack of spectroscopic data (the recent entry 34SH$^+$ at CDMS is currently limited to nine hyperfine transitions within $N = 1–0$).

4 OH$^+$ EXCITATION IN THE ORION BAR

The first detection of OH$^+$ in emission in a Galactic source was reported by van der Tak et al. (2013) using the Herschel Space Observatory. These authors presented line profiles and maps of OH$^+$ line emission towards the Orion Bar PDR. The Orion Bar PDR is the archetypal edge-on molecular cloud surface illuminated by far-ultraviolet radiation from nearby massive stars. The analysis of the chemistry and excitation of OH$^+$ by van der Tak et al. (2013) suggests an origin of the emission at visual extinctions $A_V \sim 0.1–1$ where most of the electrons are provided by the ionized carbon atoms and hydrogen is predominantly in atomic form. This is also the region where CH$^+$ and SH$^+$ emissions originate (Nagy et al. 2013).

In such an environment, the dominant formation pathway for OH$^+$ is $O^+ + H_2$ and the main destruction route is $OH^+ + H_2$ (van der Tak et al. 2013). The reaction of OH$^+$ with H is endothermic. Chemical pumping may thus play a role in the excitation of OH$^+$ only if the molecular fraction $f(H_2) = 2N(H_2)/(2N(H_2) + N(H))$ is large enough. Given that $f(H_2)$ is expected to be low (< 10 per cent) in the PDR layers where OH$^+$ ions form, the impact of chemical pumping should be small, as found by Gómez-Carrasco et al. (2014). This is in contrast with CH$^+$ which reacts rapidly with H to form C$^+$ + H$_2$ (Faure et al. 2017).

We have thus assumed that the excitation of OH$^+$ is entirely driven by inelastic collisions with electrons and hydrogen atoms. The hyperfine collisional data presented above for OH$^+$ + e$^-$ and those of Lique et al. (2016) for OH$^+$ + H were combined with spectroscopic data from CDMS and implemented in a non-LTE radiative transfer model. We have employed the public version of the RADEX code1 which uses the escape probability formulation assuming an isothermal and homogeneous medium. The cosmic microwave background is the only background radiation field with a temperature of 2.73 K. Radiative pumping by local dust and starlight is neglected in order to focus on collisional excitation

1 http://home.strw.leidenuniv.nl/~moldata/radex.html
effects. We assume that OH$^+$ probes a homogeneous region corresponding to the ‘hot gas at average density’ described by Nagy et al. (2017) for the Orion Bar: the atomic hydrogen density is taken as $n(H) = 2 \times 10^4$ cm$^{-2}$ and the kinetic temperature as $T_k = 500$ K, that is a thermal pressure of 10^8 K cm$^{-3}$ which is typical of a dense PDR. We adopted a typical electron fraction $x_e = n(e^-)/n(H) = 10^{-4}$, as expected if carbon is fully ionized. The line width was fixed at 4 km s$^{-1}$, as observed by van der Tak et al. (2013). Assuming a unit filling factor, the OH$^+$ column density is the single free parameter adjusted to best reproduce the observations of van der Tak et al. (2013). See the text for details.

Figure 5. OH$^+$ line flux of the strongest hyperfine components of the transition $\langle N, j \rangle = (1,1) \rightarrow (0, 1)$ as functions of the upper level energy, as predicted by our non-LTE calculations for the physical conditions used for the Orion Bar. The OH$^+$ column density was adjusted to best reproduce the observations of van der Tak et al. (2013). See the text for details.

5 CONCLUSIONS

Electronic and rotational excitation cross-sections and rate coefficients have been produced and made available for a range of rotational transitions of the open-shell hydrides OH$^+$ and SH$^+$ and their isotopologues. The electronic structure calculations were validated where possible against published data. The calculated excitation thresholds, calculated dipole transition moments, and rotational constants of both hydrides were validated against measured values or values recommended by the CDMS (Müller et al. 2005) and these comparisons are very good.

The R-matrix method was used to calculate T-matrices from which electronically and rotationally inelastic cross-sections were calculated. No published data were available to validate these inelastic cross-sections but the reliability of the ANR/Coulomb-Born approach was previously confirmed both experimentally and theoretically. Rate coefficients were calculated by integration of the cross-sections using Maxwell–Boltzman distribution of electron velocities. Hyperfine de-excitation rate coefficients were deduced from the rotational data using the IOS approximation. As with the closed-shell hydrides (Hamilton et al. 2016), the rotational excitation rate coefficients of the $\Delta N = 1$ transitions were found to be strongly influenced by the long-range effect of the dipole moment and have the largest magnitudes. This result was found to translate in the hyperfine propensity rule $\Delta F = \Delta j = \Delta N = \pm 1$.

The electron-impact excitation data were combined with the results of Lique et al. (2016) for OH$^+\rightarrow$H collisions in order to model the rotational/hyperfine excitation of OH$^+$ in the Orion Bar PDR. Very good agreement with the observations of van der Tak et al. (2013) was obtained for an OH$^+$ column density of 3×10^{13} cm$^{-2}$, which is similar to the prediction of the Meudon PDR model. We recommend using the present data in any model of OH$^+$ excitation in regions where the electron fraction is larger than 10^{-4}.

Finally, electron collisions can seed processes besides rotational excitation and electronic excitation. For molecular ions, both dissociative recombination (DR) and vibrational excitation can be astrophysically important processes. The mechanisms for these differ somewhat from that considered above as their cross-sections are dominated by the contribution of resonances. They thus require rather more extensive theoretical procedures, see for example Little et al. (2014). We note that electron-impact vibrational excitation and DR rate coefficients for OH$^+$ have very recently been computed by Stroe & Fílíř (2018).

ACKNOWLEDGEMENTS

We thank Yohann Scribano for help at the start of this project and François Lique for helpful discussions. This work has been supported by an STFC CASE studentship, grant number ST/K004069, for JRH, the Agence Nationale de la Recherche (ANR-HYDRIDES), contract ANR-12-BS05-0011-01 and by the