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ABSTRACT

Aims. We performed a Gaussianity analysis using a goodness-of-fit test and the Minkowski functionals on the sphere to study the
measured Archeops Cosmic Microwave Background (CMB) temperature anisotropy data for a 143 GHz Archeops bolometer. We
consider large angular scales, greater than 1.8 degrees, and a large fraction of the North Galactic hemisphere, around 16%, with a
galactic latitude b > 15 degrees.
Methods. The considered goodness-of-fit test, first proposed by Rayner & Best (1989, Smooth Tests of Goodness of Fit), was
applied to the data after a signal-to-noise decomposition. The three Minkowski functionals on the sphere were used to construct a χ2

statistic using different thresholds. The former method was calibrated using simulations of Archeops data containing the CMB signal
and instrumental noise in order to check its asymptotic convergence. Two kind of maps produced with two different map-making
techniques (coaddition and Mirage) are analysed.
Results. Archeops maps for both Mirage and coaddition map-making, are compatible with Gaussianity. From these results we
can exclude a dust and atmospheric contamination larger than 7.8% (90% CL). Also the non-linear coupling parameter fnl can be
constrained to be fnl = 200+1100

−800 at the 95% CL and on angular scales of 1.8 degrees. For comparison, the same method was applied
to data from the NASA WMAP satellite in the same region of sky. The 1-year and 3-year releases were used. Results are compatible
with those obtained with Archeops, implying in particular an upper limit for fnl on degree angular scales.
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1. Introduction

According to the inflationary universe theory (e.g. Guth 1981;
Linde 1990; Lyth & Riotto 1998; Liddle & Lyth 2000), the
primordial density fluctuations are distributed following very
precisely a Gaussian probability density function (pdf). These
fluctuations in the matter density will produce anisotropies
in the temperature of the Cosmic Microwave Background
(CMB) whose pdf is also Gaussian. In this manner, when the
Gaussianity of the CMB radiation is analysed the standard in-
flationary theory is tested as well as its alternatives (for exam-
ple cosmic strings) which generically predict deviations from it
in different ways. In addition, the search for non-Gaussianities
has become a powerful tool to detect the presence of resid-
ual foregrounds, secondary anisotropies (such as gravitational
lensing, Sunyaev-Zel’dovich effect) and unidentified system-
atic errors, which leave clearly non-Gaussian imprints on the
CMB-anisotropies data.

There are many techniques to test Gaussianity, many of
them developed previously as general statistical methods to
test the normality of a data set, and others specifically for
the CMB anisotropies. Among those methods, we can mention
the estimator for non-Gaussianity based on the CMB bispec-
trum (Ferreira et al. 1998; Magueijo 2000), geometrical esti-
mators on the sphere (Barreiro et al. 2001; Monteserín et al.
2005, 2006) Minkowski functionals(Gott et al. 1990; Komatsu
et al. 2003), goodness-of-fit tests (Rayner & Best 1989; Aliaga
et al. 2003; Barreiro et al. 2007), wavelets (Ferreira et al. 1997;

Hobson et al. 1999; Barreiro et al. 2000) and steerable filters to
search alignment structures (Wiaux et al. 2006).

Some of them have been applied to the CMB giving dif-
ferent results. For example WMAP data are compatible with
Gaussianity according to the WMAP team (Komatsu et al. 2003;
Spergel et al. 2007) whereas others have found evidence of non-
Gausssianities in the same WMAP maps, such as Copi et al.
(2004, 2006) (using a technique called multipole vector frame-
work), Eriksen et al. (2004, 2005) (finding asymmetries using
local estimators of the n-point correlations), Vielva et al. (2004)
and Cruz et al. (2005, 2006, 2007) (the Cold Spot detected with
wavelets), Larson et al. (2004) (cold and hot spots different from
those expected in Gaussian temperature fluctuations), among
others.

In this study the smooth goodness-of-fit test first proposed
by Rayner & Best (1989, hereafter R&BT) will be imple-
mented to analyse the Gaussianity of the Archeops data. This
method has already been applied successfully to the MAXIMA
(Cayón et al. 2003b) and VSA experiments (Aliaga et al. 2005;
Rubiño-Martín et al. 2006). The Archeops data will also be anal-
ysed with the morphological descriptors known as Minkowski
functionals (Schmalzing & Górski 1998; Gott et al. 1990). Our
approach is to use both methods in the Gaussianity analysis for
comparison of the sensitivities of the two techniques and cross-
checking of the results on the amount of dust contamination and
the amplitude of the non-linear coupling parameter.

This is the first Gaussianity analysis of the Archeops experi-
ment data. We analysed the data for one of the Archeops bolome-
ters at 143 GHz. This bolometer is the most sensitive and one of
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the most relevant for CMB observations. As a complementary
analysis, we present the results of the same goodness-of-fit test
applied to WMAP data with approximately the same mask as
that used for Archeops to check whether the results are consis-
tent for both data sets.

This paper is presented as follows: in Sect. 2 the R&BT ap-
plied to signal-to-noise eigenmodes and the Minkowski func-
tionals are described. The experiment, main properties of data
sets and masks are summarised in Sect. 3. Section 4 is dedicated
to the calibration and checking of both methods with some “re-
alistic” CMB anisotropy Gaussian simulations, where we know
in advance the output of the techniques. Section 5 contains the
Archeops data analysis as well as results. In Sect. 6, WMAP
1-year and 3-year data are analysed and compared with
Archeops results. Finally in Sect. 7 the main conclusions are pre-
sented.

2. Goodness-of-fit tests and Minkowski functionals
In this section, on the one hand we describe briefly the
“goodness-of-fit technique” applied to test the Gaussianity of a
set of signal-to-noise eigenmodes derived from measurements
of the CMB temperature anisotropies. On the other hand, we
will explain the Gaussianity analysis based on the Minkowski
functionals.

2.1. Smooth tests of goodness-of-fit

Given a set of n random numbers, {yi}i=n
i=1, it is sometimes inter-

esting to check whether they behave statistically according to
one specific pdf, f (y, θ), that is, if the probability of finding a
random number y in an interval between y0 and y0 + ∆y, with
∆y ≥ 0, is given by f (y0, θ)∆y. A scalar or vector variable θ is
introduced, which allows us to move smoothly between different
pdfs in their corresponding space of normalised functions.

This statistical analysis tests the null hypothesis, H0: {θ = 0}
against the alternative hypothesis, K: {θ � 0}.

From the family of smooth goodness-of-fit tests, we can con-
sider an order k alternative pdf gk(y, θ), characterised by a pdf
of the form (Rayner & Best 1989, 1990)

gk(y, θ) = C(θ) exp

[ k∑
i=1

θihi(y)

]
f (y) (1)

θ is a set of k parameters to smoothly cover our space of pdfs,
f (y) is the null hypothesis pdf (e.g. the Gaussian distribution),
hi(y) forms a complete set of orthonormal functions1 on f (y),
and C(θ) is a normalisation constant.

The “score statistic” is used to evaluate the simple null hy-
pothesis H0. With this statistic one can estimate the statistical
significance of θ through the “Maximum Likelihood Method”.
Following the notation by Aliaga et al. (2003), the score statistic
for this goodness-of-fit test is

S k =

k∑
i=1

U2
i , (2)

and the U2
i quantities are given by

Ui =

n∑
j=1

hi(y j)√
n
· (3)

In the case of a Gaussian pdf, hi(x) are the “normalised Hermite-
Chebyshev polynomials”. If the null hypothesis is satisfied then

1
∫ ∞
−∞ hi(y) f (y)hj(y)dy = δi j.

the Ui quantities have statistically normal behaviour and there-
fore U2

i behave like a χ2
1 distribution

f (U2
i ) =

1√
2πU2

i

e−
−U2

i
2 · (4)

It is possible to write the U2
i statistical quantities in terms of the

moments of order k derived from the set of n random numbers
to be analysed, µk = 1/n

∑n
j=1 y

k
j, (e.g. Aliaga et al. 2003, 2005).

We used the five first statistics U2
i which can be related to the

k-order moments as follows,

U2
1 = n(µ1)2

U2
2 =

n
2

(µ2 − 1)2

U2
3 =

n
6

(µ3 − 3µ1)2

U2
4 =

n
24

(µ4 − 6µ2 + 3)2

U2
5 =

n
120

(µ5 − 10µ3 + 15µ1)2. (5)

The first few statistics are generally the most sensitive for most
applications. In our case higher order U2

i statistics are dominated
by errors (because of the usual propagation of errors) and there-
fore are not very useful in practice. This is described in detail
in Sect. 4.

2.2. Signal-to-noise eigenmode analysis

We have described the method that is used to analyse a set
of n random numbers to test whether their pdf is the normal
distribution.

The next step is to compute the set of numbers to be anal-
ysed. In our case they come from the so-called “signal-to-noise
eigenmodes”, first introduced in the CMB field by Bond (1995).
Our observational data, (the fluctuation in the temperature of
the incoming blackbody radiation measured for each direction n
in the sky, ∆T (n)/T ), can be interpreted as originating from
several sources: all emissions coming from the sky (CMB sig-
nal, Galactic and extragalactic foregrounds and atmosphere) and
the measured instrumental Gaussian noise (Macías-Pérez et al.
2007).

The total area observed by the experiment is usually divided
into equal area pixels identified by their centre direction n and
to which the measurements, ∆T (n)/T , are assigned. To obtain
the signal-to-noise eigenmodes, we expand the pixel values of
the map, ∆T (n)/T , into a linear combination in which the trans-
formed instrumental noise (hereafter the noise) and the trans-
formed theoretical CMB signal (hereafter the signal) are not
correlated.

For the signal-to-noise decomposition it is necessary to cal-
culate signal and noise covariance matrices. The temperature co-
variance between two pixels i and j is given by

Ci j = 〈∆Ti∆T j〉 − 〈∆Ti〉〈∆T j〉 (6)

where the brackets 〈〉 represent the average over several realisa-
tions of temperature anisotropy maps. Thus we can construct the
signal (noise) covariance matrices, S (N), averaging over sig-
nal ∆Ts(n) (noise ∆Tn(n)) realisations. Since the data represent
temperature fluctuations around the mean then it is trivially sat-
isfied that 〈∆Ts(n)〉 = 〈∆Tn(n)〉 = 0. Therefore, Ci j = 〈∆Ti∆T j〉,
the correlation matrix.
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Once we select a set of n directions in the sky (pixels) and
construct S and N matrices, which have the same dimension n
and are symmetrical, we can compute the “signal-to-noise ma-
trix” A

A = L−1
N S L−t

N (7)

where LN is the Cholesky matrix of N, defined as N ≡ LN Lt
N .

LN can be obtained from the diagonalisation of the N matrix.
Suppose DN is the diagonal matrix of eigenvalues of N, and RN is
a matrix of the eigenvectors of N, related by Rt

N NRN = DN , then
LN = RN D1/2

N is satisfied where D1/2
N is the square root matrix

of DN .
If d is the vector of dimension n representing the data as-

signed to the pixels in the sky, the signal-to-noise eigenmodes
can be written as

ξ = Rt
AL−1

N d (8)

where RA is the matrix of eigenvectors of A and DA the diagonal
matrix of eigenvalues of A, Rt

AARA = DA.
The yi quantities to be analysed with the goodness-of-fit test

defined in the previous section are

yi =
ξi√

1 + (DA)i
· (9)

It can be easily demonstrated that if the vector of data d satisfies
〈d〉 = 0 then 〈yi〉 = 0. In the case ∆T = ∆Ts + ∆Tn, from the
definition of signal-to-noise eigenmodes in Eq. (8), the definition
of yi in Eq. (9), and properties of correlation matrices, it follows
that 〈y2

i 〉 = 1.
Supposing that the original map d is multi-normal, then our

{yi} numbers keep the Gaussian character because both sets of
numbers are connected by linear operations. More precisely,
they follow a normal pdf with zero mean and unit variance,
N(0, 1). Moreover, for different indexes i and j, yi and y j are
independent.

Finally, for Gaussian data d each U2
i statistics, defined in

Eq. (3), is distributed as a χ2
1. The decision to accept or reject

the null hypothesis will therefore be based on this pdf, as is seen
in Sects. 5 and 6 when the test is applied to the Archeops and
WMAP data.

2.3. Minkowski functionals

Considering the temperature anisotropies of the CMB as a scalar
field on the sphere we can define the set of coordinates Qν where
∆T (n) > ν for a given threshold ν, and its complementary set Vν.
As stated in Schmalzing & Górski (1998), any morphological
descriptor on the sphere is a linear combination of 3 Minkowski
functionals. These functionals are: the area A(ν) of the excursion
set Qν, the contour length C(ν) of the excursion set Qν, and the
genus G(ν) (defined as the number of hot spots above ν minus
the number of cold spots below that threshold).

For a Gaussian random field, the mean values of these func-
tionals are

〈A(ν)〉 = 1
2

(
1 − 2√

π

∫ ν/2

0
exp(−t2) dt

)

〈C(ν)〉 =
√
τ

8
exp

(
−ν

2

2

)

〈G(ν)〉 = τ

(2π)3/2
ν exp

(
−ν

2

2

)
(10)

where τ is a parameter related with the coherence angle (Barreiro
et al. 2001; Schmalzing & Górski 1998).

The Gaussianity test with the Minkowski functionals is
performed through a χ2 test as described for example in
Komatsu et al. (2003) and Spergel et al. (2007) for WMAP
data, and de Troia et al. (2007) for BOOMERanG 2003 data.
Considering nth possible thresholds ν, we can define a 3nth vec-
tor u = (A(ν),C(ν),G(ν)). The χ2 statistic is then defined

χ2 =
∑
i, j

(u(i) − 〈u(i)〉)C−1
i j (u( j) − 〈u( j)〉) (11)

where 〈u( j)〉 is the expected value of v( j) and C is the cor-
responding covariance matrix for all possible thresholds and
functionals.

3. Archeops data sets

3.1. The Archeops experiment

Archeops2 is a balloon-borne experiment dedicated to measure
the CMB temperature anisotropies from large to small angular
scales (Benoît et al. 2003a; Tristram et al. 2005). It has given the
first link in the C� determination between the COBE large angu-
lar scales data (Smoot et al. 1992) to the first acoustic peak as
measured by BOOMERanG and MAXIMA (de Bernardis et al.
2000; Hanany et al. 2000). Archeops was also designed as a
testbed for the forthcoming Planck High Frequency Instrument
(HFI), (Lamarre et al. 2003). Therefore, Archeops shared with
Planck the same technological design: a Gregorian off-axis tele-
scope with a 1.5 m primary mirror, bolometers operating at 143,
217, 353 and 545 GHz cooled down at 100 mK by a 3He/4He di-
lution designed to work at zero gravity and a similar scanning
strategy. Archeops was launched on February 7th, 2002, from
the CNES/Swedish facility of Esrange, near Kiruna (Sweden).
Twelve hours of high quality night data were gathered. This data
corresponds to a coverage of approximately 30% of the sky, in-
cluding the Galactic plane. More details about the instrument
and the flight performance can be found in Benoît et al. (2003b)
and Macías-Pérez et al. (2007). From its four frequency bands
the two lowest (143 and 217 GHz) were dedicated to the ob-
servation of the CMB and the others (353 and 545 GHz) to
the monitoring and calibration of both atmospheric and Galactic
emissions.

In the following, we focus on the analysis of the most sensi-
tive 143 GHz Archeops bolometer which also presents the low-
est level of contamination by systematic effects.

Although the Archeops resolution is typically 10 arcmin, for
this analysis we are interested in the Gaussianity of the large an-
gular scale anisotropies. Therefore, we decided to use low res-
olution maps at HEALPix (Górski et al. 2005) Nside = 32 to
consider scales above 1.8 degrees.

3.2. Data processing

We describe here briefly the way that Archeops data were pro-
cessed. For a more detailed description see Macías-Pérez et al.
(2007).

In the Time Ordered Information (TOI) corrupted data are
flagged (representing less than 1.5% of the whole data set). Low
frequency drifts, correlated to house-keeping data are removed
using the latter as templates. A high frequency decorrelation is

2 http://www.archeops.org
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Fig. 1. Archeops Best Fit Power Spectrum used to simulate the
Archeops CMB signal.

also performed to remove some bursts of non-stationary high-
frequency noise. Corrected timelines are then deconvolved from
the bolometer time constant and the flagged corrupted data are
replaced by a realisation of noise. Finally, low time frequency at-
mospheric residuals are subtracted using a destriping procedure
which slightly filters out the sky signal to a maximum of 5%.

Archeops-cleaned TOIs at 143 GHz are contaminated by
atmospheric and Galactic dust residuals, even at intermediate
Galactic latitudes. Atmospheric residuals contribute mainly at
frequencies lower than 2 Hz in the timeline and follow approxi-
mately a ν2 law in antenna temperature. Galactic dust presents a
grey body spectrum at about 17 K with an emissivity of about ν2.
To suppress both residual dust and atmospheric signals, data are
decorrelated using a linear combination of the high frequency
photometric pixels (353 and 545 GHz) and of synthetic dust
timelines.

In this study we used two kinds of map-making for the TOIs
of Archeops data and of the simulations. The first one is an
optimal map-making procedure called Mirage (Yvon & Mayet
2005). Mirage is based on a two-phase iterative algorithm, in-
volving optimal map-making together with low frequency drift
removal and Butterworth high-pass filtering. A conjugate gradi-
ent method is used for resolving the linear system. The second
is a procedure that performs coaddition. This means that all TOI
points corresponding to a given pixel are averaged.

To produce a CMB simulation, a random CMB map with
the power spectrum of the Archeops model (Benoît et al. 2003b,
Fig. 1) is generated and from this map an Archeops TOI is pro-
duced. This TOI is treated with the two map-making methods
described above to produce a map. To perform a noise simulation
we produce a Gaussian constrained realisation of the Archeops
noise power spectrum in the time domain. The TOI produced this
way is then projected onto a map using the above map-making
techniques.

The analysis was performed on a fraction of the Archeops
observed region masking out pixels with Galactic latitude be-
low 15 degrees, |b| < 15◦. The southern sky data were not
included in the analysis as they are more contaminated by
systematics in the form of residual stripes coming from the
Fourier filtering and destriping of the data in the time do-
main (Macías-Pérez et al. 2007) which produces ringing around
the Galactic plane. The southern sky region was used in the
CMB power spectrum analysis (Tristram et al. 2005) because
it increased significantly the signal-to-noise ratio at small angu-
lar scales. These scales are not affected by this systematic effect.
This is not the case for the analysis presented in this paper where
we are more interested in large angular scales where this sys-
tematic becomes important. In Fig. 2 we plot the region of data
considered for the analysis. These data correspond to 1995 pix-
els (16% of the sky) from a total of 12 288 pixels for a complete
map at this resolution.

Fig. 2. Mirage Archeops data from the best bolometer at 143 GHz pre-
sented at HEALPix resolution Nside = 32, (≈1.8 degrees). This map
is centred on Galactic longitude l = 180 degrees. Galactic and South
Equator pixels have been masked. Grid lines are spaced by 20 degrees.

Fig. 3. Number of normalised signal-to-noise eigenmodes yi for which
their associated A matrix eigenvalues, (DA)i, satisfy (DA)i ≥ (s/n)2

c .

4. Calibrating the method: analysis on Gaussian
simulations

To develop the R&BT non-Gaussianity test, it is necessary to
calculate the signal (S) and the noise (N) correlation matrices
among the selected pixels. We computed these matrices aver-
aging simulations by means of Eq. (6). For this purpose Monte
Carlo Gaussian simulations of Archeops CMB signal and instru-
mental noise were produced. The number of simulations per-
formed for the map generated with the Mirage map-making pro-
cedure were 2.86 × 105 for the signal and 2.75 × 105 for the
noise, whereas for the coaddition procedure they were 5 × 105

and 5 × 105 for the signal and noise respectively. Ninety dual-
core 3.2 GHz processors from the IFCA computing facilities
were used. Each Mirage simulation took 180 s of real CPU time
and 1.0 GB of RAM memory, whereas these values were 70 s
and 0.04 GB respectively for each coaddition simulation.

The high number of simulations and the corresponding com-
putational requirements were needed to achieve convergence in
the construction of the correlation matrices. The main reason for
the low convergence relies on the specific properties of our cor-
relation matrices. Archeops noise is correlated at large scales,
which means that the N matrix is neither diagonal nor sparse.
The Archeops signal correlation matrix contains correlations at
large scales for which the convergence is much slower than for
the small scales due to the cosmic variance. In both cases many
simulations (∼105) were required to compute these matrices.

One way to quantify the degree of convergence of these ma-
trices is by analysing Gaussian simulations. The U2

i statistics for
a set of Gaussian simulations should have a χ2

1 pdf. This can be
tested, for example, by calculating the mean and the variance of
the U2

i statistics for 104 Gaussian signal plus noise simulations.
For the Gaussian case, the mean should be equal to 1 and the
dispersion equal to

√
2 (this is the null hypothesis, H0).

Following Aliaga et al. (2005) and Rubiño-Martín et al.
(2006), the U2

i are computed for a subset of signal-to-noise
eigenmodes which are those associated with eigenvalues of the
signal-to-noise matrix A satisfying (DA)i ≥ (s/n)2

c, where (s/n)c
is a given signal-to-noise ratio cut. In Fig. 3 the number of
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Fig. 4. From left to right, mean and disper-
sion of U2

i statistics (where i goes from 1
to 5) for different signal-to-noise cuts, cor-
responding to 104 signal plus noise Mirage
simulations.

Fig. 5. From left to right, mean and disper-
sion of U2

i statistics (where i goes from 1
to 5) for different signal-to-noise cuts, cor-
responding to 104 signal plus noise coaddi-
tion simulations.

Fig. 6. From left to right, and from top
to bottom, distribution of the U2

i statistics,
from a set of 104 Gaussian Mirage simula-
tions analysed in the same region as the data
(Fig. 2). The signal-to-noise cut which has
been used is (s/n)c = 0.30. Solid lines are
the theoretical distribution (χ2

1) normalised
to the number of simulations and the size of
the binned cell.

eigenmodes {yi}’s, which obey (DA)i ≥ (s/n)2
c, in terms of s/n is

plotted.

In Fig. 4 we show the mean and dispersion of the five first U2
i

statistics for different signal-to-noise cuts corresponding to all
possible eigenvalues of the A matrix. The U2

i values come from
a set of 104 Gaussian Archeops signal plus noise Mirage simula-
tions. It can be seen that for (s/n)c <∼ 2 mean values are close to 1
and the dispersion close to

√
2 (except for the U2

5 statistic whose
dispersion is always larger than 2). As shown by e.g. Aliaga
et al. (2005), the expected value of U2

i is equal to 1 indepen-
dent of the number of {yi} used. This explains why the mean of
U2

i is very close to 1 for every signal-to-noise cut. The dispersion
is equal to

√
2 asymptotically, when the number of {yi} used is

high. In our case, this happens for low signal-to-noise cuts, when
enough {yi}s are used to compute the statistics. In Fig. 5 the same
quantities have been plotted for the 104 Gaussian Archeops sig-
nal plus noise coaddition simulations. Similar conclusions can
be derived in this case. Notice, however, that the results are
closer to theoretical values when the analysis is performed us-
ing the Mirage maps. In this case, the correlation matrices have
converged with fewer simulations than in the coaddition case.
This is one of the advantages of using Mirage simulations over
the coaddition ones, although the production of a Mirage map
requires more CPU time and RAM memory than a coaddition
map.

Since the computation of high order U2
i statistics involves

high powers of the eigenmodes, the convergence of their disper-
sion to the theoretical values at a given (s/n)c is slower than for
the low order ones (as seen in the right panels of Figs. 4 and 5).

A more exhaustive check for the convergence of the
U2

i statistics is done by comparing their theoretical pdf with the
histograms obtained from the simulated data. Given a signal-to-
noise ratio cut (s/n)c for the calculation of the U2

i statistics, it is
possible to make a histogram with the corresponding values of
the U2

i statistics from the same sets of 104 simulations. Figure 6
compares the histograms for the first five statistics calculated us-
ing all the eigenmodes (s/n ≥ 0.30) for the Mirage simulations
with the theoretical expectation of a χ2

1 distribution. In Table 1
the mean and the dispersion of these histograms are presented. In
Fig. 7 the same comparison is shown for the coaddition simula-
tions also considering all the eigenmodes (s/n ≥ 0.27). The cor-
responding mean and dispersion of these histograms are given in
Table 2.

In summary, the four statistics U2
1, U2

2 , U2
3 , and U2

4 have pdfs
compatible with the theoretical one whereas U2

5 starts to deviate
from it. The discrepancy, already present in the dispersion, in-
creases for higher orders. The reason is that high order moments
enlarge possible errors present in the computed correlation ma-
trices and are propagated in the diagonalisation processes. In any
case, the U2

5 statistic can still be used for the Gaussian analy-
sis if the distribution obtained from the simulations, instead of
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Fig. 7. From left to right, and from top
to bottom, distribution of the U2

i statistics,
from a set of 104 Gaussian coaddition sim-
ulations analysed in the same region as the
data (Fig. 2). The signal-to-noise cut which
has been used is (s/n)c = 0.27. Solid lines
are the theoretical distribution (χ2

1) nor-
malised to the number of simulations and
the size of the binned cell.

Fig. 8. From left to right, mean values
of the three Minkowski functionals and
their corresponding error-bars for a set
of 1000 (noiseless) CMB Gaussian simu-
lations. These simulations have been gen-
erated using Archeops best fit power spec-
trum and have not been masked. Note the
good agreement between the theoretical
predictions and the results obtained from
simulations.

Table 1. Mean and dispersion of U2
i statistics from 104 Mirage simula-

tions for a signal-to-noise ratio cut of 0.30.

... U2
1 U2

2 U2
3 U2

4 U2
5 χ2

1

µ 1.02 1.04 1.01 1.01 1.02 1.00
σ 1.45 1.47 1.43 1.55 1.96 1.41

Table 2. Mean and dispersion of U2
i statistics from 104 coaddition sim-

ulations for a signal-to-noise ratio cut of 0.27.

... U2
1 U2

2 U2
3 U2

4 U2
5 χ2

1

µ 0.99 1.02 1.02 1.02 1.00 1.00
σ 1.40 1.47 1.48 1.62 2.27 1.41

the theoretical one, is used as reference. Although this is not as
optimal as using the theoretical χ2

1 distribution, it is however a
good compromise taking into account the huge computational
resources needed to produce a very large number of simulations.

For the Minkowski functionals analysis the expected val-
ues given by Eq. (10) cannot be applied to our problem be-
cause of the contour restrictions of the mask and the pres-
ence of anisotropic noise. Nevertheless in order to test our
Minkowski functional codes we performed an analysis on
(noiseless) CMB Gaussian simulations over all sky and 1.8 de-
grees resolution generated using the best fit Archeops power
spectrum. Analysing them for thresholds from −2.5σ to 2.5σ
(where σ is the standard deviation of the corresponding simula-
tion), we obtained results from simulations compatible with the
theoretical predictions (Fig. 8).

5. Gaussianity test on Archeops data

We applied the R&BT to the Archeops 143K03 bolometer map.
The signal-to-noise eigenmodes were computed with the corre-
lation matrices described in Sect. 4, for each map-making case.
We checked in that section that these signal and noise matrices
provide U2

i statistics compatible with Gaussianity for Gaussian
simulations.

We applied this test to the Archeops data for the Mirage
and coaddition map-making. The U2

i statistics, computed for the
1995 pixels of the previously described Archeops data, are dis-
played in Figs. 9 and 10. The U2

i statistics are plotted, from i = 1
to 5, versus the signal-to-noise eigenmode cut.

For the Mirage map-making, results are displayed in Fig. 9.
We can see that all the U2

i statistics are below 5 for all the
signal-to-noise cuts. This means that the data are compatible
with Gaussianity.

For coaddition map-making, we can see from Fig. 10 that
whatever the signal-to-noise eigenmode cut is, U2

i statistics for
the 143K03 bolometer data are below 5, except for U2

2 for signal-
to-noise cuts below 0.5. It reaches the maximum value of 7.97 at
the minimum signal-to-noise cut of 0.27. The upper tail proba-
bility3 for U2

2 = 7.97 from the χ2
1 distribution (Eq. (4)) is 0.5%.

Comparing with the set of coaddition Gausian simulations we
found that this upper tail probability is 0.6%, (Table 3), in good
agreement with the theoretical expectation. Nevertheless, as we
computed U2

i statistics for all possible signal-to-noise cuts, it is
important to estimate the significance of finding any simulation
with U2

2 ≥ 7.97 in at least one of them. This is the so-called
“p-value” of U2

2 . The “p-value” is defined as the probability that
the relevant statistic takes a value at least as extreme as that ob-
served in the data when the null hypothesis is true. We found
for U2

2 that the “p-value” is 15.0%.

3
∫ ∞

a
f (y)dy.
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Fig. 9. U2
i statistics of Mirage Archeops Data for different signal-to-

noise cuts.

Fig. 10. U2
i statistics of coaddition Archeops Data for different signal-

to-noise cuts.

Table 3. U2
i from Archeops Mirage (coaddition) map for (s/n)c = 0.30

((s/n)c = 0.27) and the probability that one s + n Gaussian Mirage
(coaddition) simulation has a U2

i statistic larger than those of the data.
More precisely, the probability for U2

2 in the coaddition case is 0.6%.

... U2
1 U2

2 U2
3 U2

4 U2
5

Mirage 0.28 1.92 1.45 0.38 2.29
Prob. 0.60 0.17 0.23 0.54 0.12

Coaddition 0.11 7.97 0.10 0.04 0.34
Prob. 0.73 0.01 0.75 0.83 0.52

We can thus conclude that even if we have a relatively
strong U2

2 at the lowest signal-to-noise ratio, it is not improbable
to have such a high value by chance. Therefore, even consider-
ing the results from the coaddition map-making, Archeops data
is still compatible with our Gaussian simulations.

Although the high value found for U2
2 for the coaddition map

is not significant enough to be incompatible with Gaussianity, it
is clear that there is a steady increase of U2

2 when s/n decreases.
This suggests the presence of systematics in the coaddition maps
which can depend on the resolution. Moreover, the fact that it
only appears in coaddition data suggests the possibility that it is
a map-making issue. This also implies that systematics are bet-
ter controlled in the Mirage than in the coaddition map-making.
Therefore hereafter we focus only on the Mirage map-making
data.

We performed a χ2 test with the three Minkowski function-
als using 11 thresholds from −2.5σ to 2.5σ. We analysed the
Mirage data and a set of 1000 CMB Gaussian simulations with
noise of the Mirage type. The corresponding histogram of the
χ2 values of these simulations and of the data are presented
in Fig. 11. As can be seen, the data are compatible with the
Gaussian simulations.

5.1. Systematic and foreground contamination

The R&BT can also provide a powerful tool for estimating
the level of this contribution. The test consists of adding dif-
ferent percentages of a template map to the Archeops 143K03

Fig. 11. Distribution of the χ2 values from the Minkonwski Gaussianity
test for Archeops Mirage map. Vertical line shows the data results. Their
cumulative probability is 83.9%.

Fig. 12. Mean of 104 U2
2 statistics, from 104 signal plus noise Mirage

simulations plus a factor αd times the contamination template. 0.0 ≤
αd ≤ 0.5.

bolometer map, for the Mirage and coaddition simulations cases,
to compare the resulting U2

i statistics to those obtained with the
Archeops data at 143 GHz.

This template map is computed from the coadded Archeops
353 GHz map (Ponthieu et al. 2005). This map contains ther-
mal dust emission, atmospheric residuals as the dominant com-
ponents and also instrumental noise and CMB residuals. Thus,
extrapolated to 143 GHz it will provide a good template of
what could be a dust plus atmospheric contamination at this
frequency.

Thermal dust is assumed to have a grey-body emission:
ν2B(ν) which can be approximated in the Rayleigh-Jeans domain
to TRJ ∝ ν2 (Ponthieu et al. 2005). The atmospheric residuals
emission law has been estimated empirically by the Archeops
collaboration (Macías-Pérez et al. 2007) and is also proportional
to ν2 in the Rayleigh-Jeans domain. Dust and atmospheric resid-
uals being the two main components, the Archeops 353 GHz
map has been extrapolated to 143 GHz by assuming this emis-
sion power law. Due to the extrapolation, the CMB contribution
on the 353 GHz template map is negligible with respect to the
CMB at 143 GHz.

U2
2 statistic is the most sensitive to this effect as can be seen

in Fig. 12 for the Mirage case where this statistic presents a
prominent peak at signal-to-noise ratio cuts around 1.88.

To determine the level of contamination we performed a
χ2 test with the U2 statistic computed at (s/n)c = 1.88. It is
optimal to perform a χ2 test with U2 because U2 is normally
distributed for the null hypothesis. Thus we can define

χ2(αd) =
1

σ2
αd

(U2)
(U2 − 〈U2〉αd )2 (12)

where 〈U2〉αd and σαd (U2) are the mean and the dispersion of U2
for CMB Gaussian simulations with noise plus a factor αd times
the contamination template. In the left panel of Fig. 13 we
present the χ2 of Archeops Mirage data for different αd. We
can see that the minimum χ2 (best fit) occurs for αd = 0.0.
Analysing Gaussian simulations without dust we find that most
of them reach the best fit for low values of αd (right panel;
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Fig. 13. From left to right, χ2 value of
Archeops data for different αd and the
histogram of best fit αd for a set of
1000 Gaussian simulations without dust.
These results have been obtained with the
U2 statistic.

Fig. 14. From left to right, χ2 value of
Archeops data for different fnl and the his-
togram of best fit fnl for a set of 1000
CMB Gaussian simulations with noise.
Results were obtained with the Minkowski
functionals.

Fig. 13). Specifically αd ≤ 0.27 for 90% confidence level (CL),
and αd ≤ 0.33 for 95% CL. By comparing the dispersion of
both maps, Archeops and 0.27 times the contamination template,
we can exclude a dust plus atmospheric contamination larger
than 7.8%.

We computed another χ2 statistic using the Minkowski func-
tionals for the dust analysis. In this case

χ2(αd) =
∑
i, j

(u(i) − 〈u(i)〉αd )C−1
i j (u( j) − 〈u( j)〉αd ) (13)

i and j cover 11 thresholds from −2.5σ to 2.5σ and the three
Minkowski functionals. 〈u(i)〉αd is the mean value of the corre-
sponding functional at the corresponding threshold for Gaussian
CMB simulations with noise plus αd times the dust template.
C is the covariance matrix for Gaussian CMB simulations with
noise. The value of αd that best fits Archeops data is αd = 0.0.
Analysing Gaussian simulations without dust we find that αd ≤
0.28 for 90% CL, and αd ≤ 0.35 for 95% CL.

5.2. Primordial non-Gaussianity

There are several possible inflationary scenarios in which the
primordial fluctuations are not Gaussian distributed. The idea
is to work with a simple non-Gaussianity model and to impose
some constraints on it. In particular, we consider the “weak non-
linear coupling case” (Komatsu & Spergel 2001; Liguori et al.
2003; Bartolo et al. 2004)

Φ(x) = ΦL(x) + fnl{Φ2(x) − 〈Φ2(x)〉} (14)

where Φ(x) is the primordial gravitational potential, (which
satisfies 〈Φ(x)〉 = 0), ΦL(x) is the linear random component
(Gaussian distributed), and fnl is the non-linear dimensionless4

coupling parameter.
Scales larger than 1 degree are larger than the horizon scale

at the recombination time, when CMB was formed (Liddle &
Lyth 2000). In this regime it is possible to make a good ap-
proximation linking CMB fluctuations and gravitational fluctu-
ations through the Sachs-Wolfe effect (Sachs & Wolfe 1967)
∆T (n)/T = Φ(n)/3 (notice however that a better approximation
should include the integrated Sachs-Wolfe effect).

4 We use the units system with c = 1.

We analysed signal plus noise simulations with a fnl term in
this way,

∆T ′s (n) = ∆Ts(n) +
3 fnl

T
{∆Ts(n)2 − 〈∆Ts(n)2〉}

∆T (n) = ∆T ′s (n) + ∆Tn(n), (15)

where ∆Ts is a Gaussian signal simulation, ∆Tn is a Gaussian
noise simulation, T = 2.725 K and ∆T is the analysed
simulation.

We performed a χ2 analysis for the primordial non-
Gaussianity similar to the dust case for both U2 and the
Minkowski functionals. The signal-to-noise eigenmodes yi are
weakly dependent on fnl. It can be seen that the mean value of y2

i
for simulations with fnl is

〈y2
i 〉 fnl = 1 +

ai

1 + (DA)i
∗ fnl +

bi

1 + (DA)i
∗ f 2

nl (16)

ai =
1
T

∑
j,k

(Rt
AL−1

N )i j(〈s j s
2
k〉 + 〈sk s2

j〉)(L−t
N RA)ki (17)

bi =
1

T 2

∑
j,k

(Rt
AL−1

N )i j(〈s2
j s

2
k〉 + 〈s2〉2)(L−t

N RA)ki (18)

where bi is about an order of magnitude larger than ai for most of
the s/n eigenmodes. This implies that 〈y2

i 〉 fnl − 1 ∼ O( f 2
nl) which

explains the low sensitivity of U2 to fnl variations. In particu-
lar, we found that it is much less sensitive than the Minkowski
functionals. If we consider for example, a value of fnl = 2300,
we find a relative variation (〈y2

i 〉 fnl − 〈y2
i 〉0)/〈y2

i 〉0 � 0.05 (and
therefore a similar ratio for U2 and U2

2) for the former and
(〈F2〉 fnl − 〈F2〉0)/〈F2〉0 � 0.50 for the latter.

Therefore we performed a χ2 test with the three Minkowski
functionals using different thresholds between −2.5σ and 2.5σ.
In the left panel of Fig. 14 we present the χ2 value of the data
for different fnl cases. We can see that the minimum χ2 value
is reached for fnl = 200. Taking into account also the re-
sults obtained when analysing Gaussian simulations (right panel;
Fig. 14) we can put the following constraints on fnl from the
Archeops data: fnl = 200+600

−300 at 68% CL, fnl = 200+900
−600

at 90% CL, and fnl = 200+1100
−800 at 95% CL.
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6. Complementary analysis: WMAP in the same
region

WMAP is a NASA satellite dedicated to observe the anisotropies
of the CMB with high accuracy at five different frequencies be-
tween 23 and 94 GHz. Scientific results of this mission have pro-
vided us a clearer image of the early universe, and reduced the
uncertainties in several cosmological parameters. Data products
of this mission can be found on the web5.

6.1. The WMAP data

We have analysed WMAP data with the same goodness-of-fit
and the Minkowski functionals tests already used on Archeops
data. The main purpose of this analysis is to compare Archeops
results with a different experiment to discriminate among sys-
tematics, foreground emissions and intrinsic CMB non-Gaussian
features. It is clear that the WMAP frequencies complement
very well those of Archeops. A detailed analysis of the possi-
ble WMAP non-Gaussianities with this goodness-of-fit method
deserves further study.

The maps we analysed were produced from the 1-year and
3-year WMAP foreground cleaned maps for the differencing as-
semblies corresponding to the cosmological frequencies 40, 60
and 90 GHz. The main properties of these maps are described
in detail in Bennett et al. (2003a) and Hinshaw et al. (2007)
respectively.

Specifically we have used the “combined map” as described
in Bennett et al. (2003a), (see also Vielva et al. 2004). The
WMAP CMB simulations which are used in the analysis are also
combined simulations, that is, CMB signal simulations were pro-
duced for each channel and then combined in the same manner
as for the data.

According to Bennett et al. (2003a), WMAP noise is highly
uncorrelated, that is, the noise from a given pixel i is independent
of the noise from another pixel j. The noise combined simula-
tions are produced from the “combined variance map” as shown
for example in Vielva et al. (2004).

We have analysed both combined maps, 1-year and 3-year
(hereafter WCM1 and WCM3). The WMAP mask considered
for both analyses was the 3-year Kp0 one because it is the most
conservative for WCM3 and also contains the 1-year Kp0 mask.
See Hinshaw et al. (2007) for details about new masks and
Bennett et al. (2003b) for original masks. The actual mask we
used is the 3-year WMAP Kp0 degraded to our resolution times
the Archeops mask6. Its number of pixels is 1648. In Fig. 15
WCM3 data is plotted using this mask.

6.2. Gaussianity test on WMAP data

In order to perform the R&BT test on WCM1 and WCM3 maps
we followed the same steps as for the Archeops analysis. We cal-
culated their corresponding S and N matrices for the 1648 pixels
available after applying the combined Archeops-WMAP mask.

We assume the best fit model of the 3-year WMAP data for
both analysis, WCM1 and WCM3. At the resolution with which
we are dealing, 1.8 degrees, the power spectra of the 1-year and
3-year data are very approximately the same. This assumption
implies that the S matrix is the same for both releases. The S

5 http://lambda.gsfc.nasa.gov/
6 For comparison, we also repeated the goodness-of-fit analysis on

Archeops data using this combined mask, finding similar results to
those obtained in Sect. 5 using the Archeops mask.

Fig. 15. WCM3 Data at HEALPix resolution Nside = 32 (it corresponds
to a pixel size of ≈1.8 degrees). This map is centred on Galactic longi-
tude l = 180 degrees. The pixels contaminated by Galactic and extra-
galactic emission are covered with the mask described in the text. Grid
lines are spaced by 20 degrees.

Table 4. Mean and dispersion of U2
i statistics from 103 WCM1 simula-

tions for (s/n)c = 3.64.

... U2
1 U2

2 U2
3 U2

4 U2
5 χ2

1

µ 1.09 1.15 1.02 1.09 1.02 1.00
σ 1.56 1.50 1.47 1.71 2.02 1.41

Table 5. Mean and dispersion of U2
i statistics from 103 WCM3 simula-

tions for (s/n)c = 6.33.

... U2
1 U2

2 U2
3 U2

4 U2
5 χ2

1

µ 1.00 1.18 1.04 1.10 1.22 1.00
σ 1.42 1.56 1.51 1.56 2.81 1.41

matrix is computed from 1.2×105 Gaussian simulations accord-
ing to Eq. (6). Each simulation was produced in the same 90 dual
core processors mentioned previously, and took an average CPU
time of 360 s and an average RAM memory of 0.4 GB.

As commented above, WMAP noise is highly uncorrelated
and therefore we can assume that the noise matrices are diag-
onal. This means that the correlation element corresponding to
pixels i and j is Ni j = σ

2
i ∗ δi j, where σ2

i is the combined noise
of pixel i. Noise matrices for WCM1 and WCM3 must be con-
structed with their corresponding noise variances which differ by
an approximate factor of 3.

Two additional sets of 103 Gaussian signal plus noise sim-
ulations (corresponding to WCM1 and WCM3 maps) were per-
formed for the calibration of the matrices. In Fig. 16, we present
the mean and the dispersion of the U2

i statistics at different
signal-to-noise cuts for the WCM3 case. Note that the numerical
range for the possible signal-to-noise cuts (s/n)c is wider than
for the Archeops case, because WCM3 noise is smaller than that
of Archeops at this resolution. The (s/n)c range for WCM1 is ap-
proximately the same as that of WCM3 reduced by a factor

√
3.

The mean and the dispersion for WCM1 simulations are simi-
lar to those obtained for WCM3. It can be seen that mean val-
ues of U2

i statistics are close to 1 for almost all signal-to-noise
cuts and all the computed statistics, but the dispersion becomes
higher than square root of two for high signal-to-noise cuts and
for statistics with high order moments, such as U2

5 and higher
order statistics.

As for the Archeops case, these high values are explained
by the small errors present in the computed correlation matrices
plus small numerical errors in the diagonalisation of these ma-
trices, which are amplified through the high order moments. In
Table 4 we present the mean and the dispersion of U2

i statistics
for 103 WCM1 simulations with noise for all the eigenmodes
(s/n ≥ 3.64). Note how the dispersion increases with the or-
der of the statistics. In Table 5 the same quantities are presented
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Fig. 16. From left to right, mean and disper-
sion of U2

i statistics (where i goes from 1
to 5) for different signal-to-noise cuts, cor-
responding to 103 signal plus noise WCM3
simulations.

Fig. 17. From left to right, U2
i statistics for

WCM1 and WCM3 presented for different
signal-to-noise cuts.

Table 6. WCM1 U2
i statistics for (s/n)c = 21.81, and their correspond-

ing upper tail probabilities.

... U2
1 U2

2 U2
3 U2

4 U2
5

WCM1 0.90 7.15 0.32 0.63 0.09
Prob. 0.37 0.01 0.52 0.35 0.67

Table 7. WCM3 U2
i statistics for (s/n)c = 37.92, and their correspond-

ing upper tail probabilities.

... U2
1 U2

2 U2
3 U2

4 U2
5

WCM3 0.13 7.15 0.00 0.61 0.01
Prob. 0.73 0.01 0.95 0.36 0.88

for 103 WCM3, obtained also from all the eigenmodes (s/n ≥
6.33). The effect is the same for the high order moment statis-
tics. The results for the U2

i statistics for WCM1 and WCM3 data
maps are presented in Fig. 17. As can be seen, all U2

i values
satisfy U2

i ≤ 7.15. The upper limit 7.15 corresponds to a up-
per tail probability of 0.7% for the theoretical distribution. To
confirm or rule out a possible non-Gaussian detection, this result
should be studied more carefully. Firstly, we have that for both
WCM1 and WCM3 U2

2 is the only statistic which reaches some
sharp peaks above 6.6 (which corresponds to a upper tail proba-
bility for the theoretical distribution of 1.0%). From the plots in
Fig. 17, U2

2 reaches this peak at (s/n)c = 21.81 for WCM1 and
(s/n)c = 37.92 for WCM3. We estimated the upper tail proba-
bility for the U2

i statistics of the data at the mentioned signal-to-
noise cut by performing 103 Gaussian simulations. These results
are presented in Tables 6 and 7. As we can see for the U2

2 statis-
tic, we have this probability as 1.0% and 0.7% for WCM1 and
WCM3 respectively, very similar to the theoretical value.

This probability is obtained for the precise signal-to-noise
cut where U2

2 reaches its maximum. Since the width of the
maxima is much smaller than the range of variation of the
signal-to-noise eigenvalues, it makes sense to ask for the sig-
nificance of the detection. Thus, from the simulations we com-
puted the “p-value”, i.e. the probability of finding a value of
U2

2 larger than 7.15 at any signal-to-noise cut, the maximum
value reached by the data. This probability is 18% for WCM1
and 17% for WCM3.

Fig. 18. Distribution of the χ2 values from the Minkonwski Gaussian
test for WCM3 data. Vertical line shows the data results. Their cumula-
tive probability is 12.0%.

From the previous discussion, we conclude that the sharp
peaks found in the data are not significant. Also, well stud-
ied cases of artificial CMB non-Gaussianities, such as skew-
ness or kurtosis produced using the Edgeworth expansion
(Martínez-González et al. 2002, for applications of this
expansion to the CMB non-Gaussianity analyses), usually show
deviations of the U2

i statistics in the form of a large plateau.
Besides, we note that at the signal-to-noise cuts where the max-
ima are found, there are fewer than 100 {yi} numbers to compute
the U2

i statistics (around 70), and the test only works correctly
asymptotically (n� 1).

WCM3 data were also analysed with the Minkowski func-
tionals as in the Archeops case (that is, using 11 thresholds be-
tween −2.5σ and 2.5σ and the three functionals). The histogram
corresponding to the χ2 values for 1000 Gaussian simulations
and the value for WCM3 data are presented in Fig. 18. As we
can see, the WCM3 data are again compatible with Gaussianity.

Finally, we performed an analysis on simulations with the fnl
parameter as defined in Eq. (15). The procedure was the same as
that performed for Archeops case. As discussed in Sect. 5.2, we
only use the Minkowski functionals for the fnl case. The χ2 value
for WCM3 data is minimum for fnl = 100. Analysing Gaussian
simulations, the constraints found for fnl are: fnl = 100+200

−200
at 68% CL, fnl = 100+400

−300 at 90% CL, fnl = 100+500
−400 at 95% CL.

These limits are compatible with those obtained from Archeops
since the tighter constraints found for WCM3 can be explained
by the significantly smaller noise in that experiment. In particu-
lar, if we analyse simulated Archeops data with noise normalised
to the same amplitude as that of WCM3 we find similar limits
for fnl.
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7. Conclusions

The expected behaviour of the U2
i statistics as a χ2

1 distribution
has been confirmed for the order index interval 1 ≤ i ≤ 4 with
“realistic” simulations assuming Gaussian CMB anisotropies.
For higher moments, i > 4, the mean of the distribution is µ � 1
but the variance is σ >∼ 2. This is because of the propagation of
errors through higher order moments which in practice compli-
cates the use of high order U2

i in our analysis.
From the analysis of both kinds of Archeops maps, coaddi-

tion and Mirage, we have found that both are compatible with
Gaussianity. Only the U2

2 statistic for coaddition map is close
to 8.0 for low (s/n)c. Although in principle the probability that
U2

2 takes values greater than 8.0 for a given signal-to-noise cut
in the Gaussian hypothesis is very low (see Table 3), the corre-
sponding “p-value” for having U2

2 larger than 8.0 at any signal-
to-noise cut is 0.1482. This is not negligible and thus this detec-
tion is not significant. Moreover this effect does not appear in the
Mirage map, and therefore should be assigned to issues related
to the map-making process.

The analysis with the Minkowski functionals on the Mirage
map also returns compatibility with Gaussianity.

Our analysis also implies constraints on the amount of con-
tamination that can be present at 143 GHz. Using as template
for dust and atmosphere the Archeops map at 353 GHz, we limit
the possible contamination to be lower than 7.8% at 90% CL us-
ing U2 statistic. A similar limit is obtained with the Minkowski
functionals.

We also compared the Archeops results with the WMAP 1
and 3-year data in the same region of the sky. For both sets
of data, a sharp peak in U2

2 was found at specific signal-to-
noise cuts. Although the probability of finding such a peak at a
given signal-to-noise cut is very small, the “p-value” obtained
when different cuts are allowed is appreciable. Therefore we
can conclude that the WMAP data, when the same region as
Archeops is considered, are also consistent with Gaussianity.
The same conclusion is reached when the data are analysed with
the Minkowski functionals.

Finally, we established a constraint in the value of the non-
linear coupling parameter fnl. Analysing Archeops data, we
found that fnl = 200+900

−600 at 90% CL, and fnl = 200+1100
−800 at

95% CL. When the same analysis was done with WMC3 data us-
ing Archeops-WMAP combined mask, we found fnl = 100+400

−300
at 90% CL, fnl = 100+500

−400 at 95% CL. These limits are similar
to those expected for an Archeops-like experiment with a noise
amplitude similar to that of WCM3.
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