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Vlasov-(Landau)-Maxwell kinetics everything \ {                } 

Hybrid kinetics �D, me/mi ! 0
fluid electrons, kinetic ions

Gyrokinetics kkL ⇠ k?⇢ ⇠ 1!/⌦ ⌧ 1
and small fluctuations

Kinetic MHD k⇢ ⇠ !/⌦ ⌧ 1, Ma ⇠ 1

Hall-MHD MHD + finite skin depth

MHD so 20th century…

Braginskii-MHD fluid equations + anisotropic 
transport due to magnetization

Landau fluid (magneto)fluid equations + closure 
mimicking collisionless damping



First, a brief review of where Vlasov comes from…
(due to Klimontovich)

positions of  
particles of 
species α

velocities of  
particles of 
species α

lim
drdv!0

Z
drdv F↵(r,v, t) is either 1 or 0

F↵(r,v, t) =
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�(r �R↵i(t))�(v � V↵i(t))
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then you know everything. Done.



r ·Bm = 0

r ·Em = 4⇡
X

↵

q↵

Z
dv F↵(r,v, t)

r⇥Bm =
1

c

@Em

@t
+

4⇡

c

X

↵

q↵

Z
dv vF↵(r,v, t)

r⇥Em = �1

c

@Bm

@t

“Microphysical” fields computed from Maxwell’s equations

Rather than evolve         and        , solveR↵i V↵i


@

@t
+ v ·r+

q↵
m↵

✓
Em +

1

c
v⇥Bm

◆
· @

@v

�
F↵(r,v, t) = 0

“Klimontovich equation”



The Klimontovich equation is equivalent to phase-space 
conservation, but it is NOT a statistical equation.  

It looks like the Vlasov equation, but it is completely different! 

With proper initial conditions,  
it is deterministic, not probabilistic . 

This makes it cumbersome… but it does form the basis of 
particle-in-cell (PIC) methods and statistical plasma kinetics. 

Let’s see the latter…



Ensemble averaging over all microscopic realizations  
of the macroscopic plasma (which is equivalent  
to a coarse-graining procedure by ergodicity),
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LHS = Vlasov equation
RHS = collisions due to discrete nature of particles
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�1 ⌧ 1 the LHS

this is probabilistic (even more so once the RHS is simplified)
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or

in 6D phase space (“Eulerian”)

for a finite number of (macro)particles (“Lagrangian”)  
( f = const on these characteristics)

solve



In the Lagrangian case, you really don’t want to do  
particle pairing for ~1010 particles per Debye cloud!

concept of (macro)particles communicating with one another 
electromagnetically via a grid; reduction in # of pairings

particle-particle particle-mesh (PIC)

number of pairs: N(N � 1)

2
/ N2 / N



Lagrangian
(Klimontovich/PIC)

• Only 3D grid needed for real space;  
Monte-Carlo sampling of velocity space;  
means that parallelization is easy and  
usually gives good scaling 

• Easy to write 
• “Unlimited” dynamical range for particle  

velocities; no boundary conditions on v

• Difficult to include explicit collisions; 
usually not even implemented 

• Limited phase-space density resolution 
• Errors from finite-size particles (smoothing) 
• Load balancing issues

• √N noise! Need lots of particles to capture  
phase mixing, collisionless damping, and  
small-amplitudes fluctuations properly 

• Things can go unpredictably wrong



Eulerian
(Vlasov-Landau)

• No noise 
• Good control over dissipation;  

easier to include collisions 
• No issues if plasma very inhomogeneous

• 6D grid -> extremely expensive; often  
results in poor velocity-space resolution 

• Difficult to parallelize efficiently

• Velocity space isn’t (easily) adaptable, …



PIC Simulations: Some History

• Dawson’s sheet model (1962): 1000 sheets in 1D;  
started late 1950s at Princeton, later @ UCLA 

• Hockney, Buneman (1965): introduced grids and 
direct Poisson solve 

• Finite-size particles and PIC (Dawson et al. 1968; 
Birdsall et al. 1968) 

• Short-wavelength and high-frequency particle noise  
minimized via charge sharing and smoothing 
schemes; noise studied by fluctuation-dissipation 
theorem (Klimontovich 1967; Langdon 1979; Birdsall 
& Langdon 1983; Krommes 1993 for GK PIC) 

• 1980s-90s 3D electromagnetic PIC booms;  
“PIC bibles” 1988 and 1990



general idea:

note: sometimes fields are subcycled to reduce cost,  
but great care must be taken to avoid instability



Step 1: Push Particles
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leapfrog 
algorithm

2nd-order 
accurate 
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reversible 

symplectic

?



Step 1: Push Particles
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makes small phase error

can overstep gyromotion without stability issues (just accuracy issues…)



n↵(r) =
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Step 2: Deposit Particles to Grid
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simulation particles are not delta functions in real space; 
they represent large number of physical particles: 

“macroparticles” or “Lagrangian markers”

“shape function”
dictates how much phase-space density 

is assigned to a given grid cell



0th-order particle weighting (nearest neighbor)

assigned to whatever cell contains particle  
(bad: discontinuous forces)

effective particle shape
“interpolation

function”



1st-order particle weighting (cloud-in-cell; CIC)

assignment proportional to overlapping volume  
(ok: continuous forces, discontinuous derivatives)

effective particle shape
“interpolation

function”



effective particle shape

assignment proportional to overlapping volume  
(good: continuous forces and first derivatives)

2nd-order particle weighting (triangular shaped cloud; TSC)

2 ∆ x

CHARGED CLOUD
TRIANGULAR SHAPED

“interpolation
function”



in principle, higher-order shape functions can be used, 
which result in better spatial filtering of high-frequency 

components; but these require a larger stencil, 
which means many more accesses of memory 

> 2nd-order deposition rarely used

instead, spatial filtering performed to smooth moments 
spectral code: trivially done in k space 

grid code: done by “digital filtering” (Hamming 77)

cannot be done in place; Birdsall & Langdon, App C

replace



Coulomb force between finite-size particles

inter-particle forces 
inside a cell are 
underestimated; 

collisions must be 
re-introduced for 

controlled dissipation 
(rarely done)

Finite-size particles 
considerably reduce 
Coulomb interactions



key idea:

smooth particle trajectories 
are not due to small-angle 

deflections mediated by a Debye 
sphere of many charged particles

rather, relatively few near neighbors  
produce weak interactions due to  

overlapping shape functions

fewer particles acting 
more weakly ~ Λ ≫ 1



Step 3:  Update Fields
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evolution equations:

constraints:

broken by truncation error if you’re not careful!



symmetry of Maxwell’s equations suggests leapfrog:
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Stability Condition

�t  1

c

✓
1

(�x)2
+

1

(�y)2
+

1

(�z)2

◆�1/2

exact
unstable!
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error at small wavelengths;

causes numerical  
Cerenkov radiation



but how should we enforce field constraints?
r ·B = 0
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“Yee mesh”



r ·B = 0

NB: (at least) some hybrid-kinetic codes don’t do this. 
Instead, they either use:  

(a) vector potential                     , as long as  
               vanishes identically … but it’s a bit  
cumbersome and there’s gauge freedom…;  

(b) divergence cleaning… but it can get expensive  
and is ideologically disturbing; or  

(c) ignorance, which is inexpensive but can  
cost you in unknown ways.

B = r⇥A
r ·r⇥

but how should we enforce field constraints?



r ·E = 4⇡
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total charge is conserved, but not  
necessarily that deposited on grid

options: 
(a) correct the E field ex post facto to satisfy Poisson  

(expensive, but might be easiest on non-orthogonal grids); 

Section 15-6 of Birdsall & Langdon (also Boris 1970):

=) r · (E �r�') = 4⇡⇢q =) r2�' = r ·E � 4⇡⇢q

correction E0
= E �r�' such that r ·E0

= 4⇡⇢q

but how should we enforce field constraints?



r ·E = 4⇡
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total charge is conserved, but not  
necessarily that deposited on grid

options: 
(a) correct the E field ex post facto to satisfy Poisson  

(expensive, but might be easiest on non-orthogonal grids); 
(b) hyperbolic divergence cleaning (Marder 1987); or  
(c) charge-conserving deposition.

but how should we enforce field constraints?
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= �r · j

charge-conserving deposition

If currents are handled with care,  
Poisson equation is just an initial condition 

(the same way that div-B is just an initial condition 
if electric fields are handled with care)

instead of volume weighting, count the  
“volume current” through appropriate faces 

(Villasenor & Buneman 1992)

can take as much time as particle mover (sometimes more) 



Step 4:  Interpolate Grid to Particles

interpolation to/from grid must be done in same way, 
or else you get self-force

E(Rp) =
X

i,j,k

E(ri,j,k)S(ri,j,k �Rp)

B(Rp) =
X

i,j,k

B(ri,j,k)S(ri,j,k �Rp)

(i, j, k) (i+ 1, j, k)

(i+ 1, j + 1, k)(i, j + 1, k)

X

i,j,k

E(ri,j,k) ·B(ri,j,k)S(ri,j,k �Rp)
?
= E(Rp) ·B(Rp)

better be…



slide from Benoît Cerutti



load balancing sometimes required

must think about how particle list is stored in memory

slide from Benoît Cerutti



https://tristan-mp.wikispaces.com

Anatoly 
Spitkovsky

2D/3D cartesian EM PIC code 
various BCs; moving window 
charge-conservative current deposition 
fully parallelized domain decomposition



http://benoit.cerutti.free.fr/Zeltron/

Benoît 
Cerutti

includes radiative losses 
spherical Yee mesh (Cerutti et al. 2015, 2016) 
non-Euclidean metric (Philippov et al. 2015)



(VPIC at Los Alamos)
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Hybrid kinetics
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difficulty: E is now a quasi-neutrality constraint

Byers et al. 1978; Harned 1982; Hewett & Nielson 1978

Hybrid kinetics



usually some kind of  
predictor-corrector 

method is used 
(or worse)

Lipatov book 
Winske et al. (2003) review 

Kunz et al. (2014) Pegasus paper

can solve either by continuum 
or PIC methods



application to:
• non-relativistic shocks (Gargate & Spitkovsky 2011, Caprioli & Spitkovsky 2014) 
• firehose/mirror instabilities  

(Hellinger, Matteini, Trávnácek; Kunz, Stone & Schekochihin 2014) 
• kinetic magnetorotational instability (Kunz, Stone & Quataert 2017) 
• Alfvén-wave propagation in high-ß plasma (Squire, Kunz, Quataert, Schekochihin) 
• solar-wind turbulence 

(Califano, Cerri, Fraci, Hellinger, Matteini, Servidio, Valentini, …) 
• reconnection (Burgess, Cerri & Califano 2017, …) 
• near-Earth space physics (Karimabadi, Lin, Quest, Omidi, Swift, Winske, …)



spectral representations of velocity space
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see Kanekar, Schekochihin, Dorland & Loureiro (2014) for more

SpectroGK: J. Parker & Dellar (2015); J. Parker thesis (arXiv:1603.04727) 
Viriato: Loureiro, Dorland et al. (2016)

@�f0
@t

+

@

@z

�f1p
2

= source

@�f1
@t

+

@

@z

✓
�f2 +

1 + ↵p
2

�f0

◆
= source

@�fm
@t

+
@

@z

 r
m+ 1

2
�fm+1 +

r
m

2
�fm�1

!
= �⌫m�fm, m � 2

...

phase mixing!

spectral representations of velocity space



m = 24

m = 12

m = 0

J. Parker thesis (arXiv:1603.04727)



Plunk, Dorland, Parker, Tatsuno,…

can also spectral-ize perpendicular velocity space using Hankel transform:

�f(v?) =

Z 1

0
dp pJ0(pv?)�f(p)

Z 1

0
dv?v? pJ0(pv?)J0(qv?) = �(p� q)

nonlinear perpendicular  
phase mixing

spectral representations of velocity space



• Exploit modern computing architectures: 
leverage long vector lengths, port to Xeon Phi and KNL 

• Speed up algorithms for particle deposition and interpolation 
• Improve data locality: array of structures vs structure of arrays 
• Build efficient non-orthogonal meshes 
• Implement AMR for velocity-space grid 
• Discontinuous Galerkin methods (Hammett, Hakim, TenBarge, Juno) 
• Improved electron physics in Hybrid (must enforce quasi-neutrality…)

Future for Vlasov-Maxwell and PIC codes

Some gyrokinetic codes of interest

PIC: 
GTS (PPPL), GTC (UCI & PPPL),  

GEM (Colorado), GT3D (JAEA, Japan),  
ORB5 (CRPP, Switzerland)

continuum: 
GS2 (UMD), GENE (IPP, Germany), 

GYRO (GA), GKV (NIFS, Japan), 
GYSELA (CEA, France),  

Astro-GK (UMD, Iowa), GKELL (PPPL)
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I will convergence test m
y PIC code.

thank you
with special thanks to:  

Jim Stone, Anatoly Spitkovsky, Xuening Bai, Benoît Cerutti, 
Greg Hammett, Damiano Caprioli, Alex Schekochihin, Geoffroy Lesur




