an extremely abridged and biased introduction to

Numerical Methods for
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Vlasov-(Landau)-Maxwell kinetics everything \ { -

Hybrid kinetics AD, Me/m; — 0
fluid electrons, kinetic ions
Gyrokinetics w/Q <1 kyL~kip~1
and small fluctuations
| andau fluid (magneto)fluid equations + closure

mimicking collisionless damping

. . fluid equations + anisotropic
Braginski-MHD transport due to magnetization

Hall-MHD MHD + finite skin depth

MARD so 20th century. ..



First, a brief review of where Vlasov comes from...
(due to Klimontovich)

(r,v,1t) ié (1 — Roi(t))0(v — Viu(t))
/ \

positions of velocities of
particles of particles of
species a species a

lim drdv F,(r,v,t) iseither 10or0
drdv—0

if you know R.;(0) and V,;(0), and can solve

dROAi dvai 4o 1 ]
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then you know everything. Done.




“Microphysical” fields computed from Maxwell's equations
V-B,=0

V-E, :47Tan/dvFa(r,v,t)
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Rather than evolve R.; and V,; , solve

0 o 1 0
| ‘ | m — m | * ~ Foz » U, —
E v-V - (E —I—C’UXB ) o (r,v,t) =0

"Klimontovich equation”



The Klimontovich equation is equivalent to phase-space
conservation, but it is NOT a statistical equation.
It looks like the Vlasov equation, but it is completely different!

With proper initial conditions,
it Is deterministic, not probabilistic .

This makes it cumbersome... but it does torm the basis of
particle-in-cell (PIC) methods and statistical plasma kinetics.

L et’s see the latter...



Ensemble averaging over all microscopic realizations
of the macroscopic plasma (which is equivalent
to a coarse-graining procedure by ergodicity),

G, o, 1 0 B
E v-V o~ (E C’UXB) 9o falr,v,t) =

do <<5E+1v><53> -aFa>
M C Ov

LHS = Vlasov equation

RHS = collisions due to discrete nature of particles
~ A= (nA) " <« 1 the LHS

this is probabilistic (even more so once the RHS is simplified)



solve

0

8 o 1 _ 8f04
a+vov+m—a(E+EUXB) a—v] fa(’r,"v,t)—<8t >COH

in 6D phase space (“Eulerian™)

or

solve

dR,; dVai 4o 1
= Vi = — | By + =Voi X By,
d? dt M ( " c 8 )

for a finite number of (macro)particles (“Lagrangian”)
( f = const on these characteristics)



In the Lagrangian case, you really don't want to do
particle pairing for ~1019 particles per Debye cloud!

concept of (macro)particles communicating with one another
electromagnetically via a grid; reduction in # of pairings

particle-particle particle-mesh (PIC)
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Lagrangian
(Klimontovich/PIC)

Only 3D grid needed for real space;
Monte-Carlo sampling of velocity space;
means that parallelization is easy and
usually gives good scaling

Easy to write

“Unlimited” dynamical range for particle
velocities; no boundary conditions on v

Difficult to include explicit collisions;
usually not even implemented

Limited phase-space density resolution
Errors from finite-size particles (smoothing)
Load balancing issues

VN noise! Need lots of particles to capture
phase mixing, collisionless damping, and
small-amplitudes fluctuations properly
Things can go unpredictably wrong



Eulerian
(Vlasov-Landau)

No noise

Good control over dissipation:;

easier to include collisions

No issues if plasma very inhomogeneous

6D grid -> extremely expensive; often
results in poor velocity-space resolution
Difficult to parallelize efficiently

Velocity space isn’t (easily) adaptable, ...



PIC Simulations: Some History e —

VIA COMPUTER
SIMULATION

Dawson’s sheet model (1962): 1000 sheets in 1D;

Sf

arted late 1950s at Princeton, later @ UCLA

H
d

F

inite-size particles and PIC (Dawson et al. 1968;
Birdsall et al. 1968)

Short-wavelength and high-frequency particle noise
minimized via charge sharing and smoothing
schemes; noise studied by fluctuation-dissipation
theorem (Klimontovich 1967; Langdon 1979; Birdsall
& Langdon 1983; Krommes 1993 for GK PIC)

1980s-90s 3D electromagnetic PIC booms;
“PIC bibles” 1988 and 1990

ockney, Buneman (1965): introduced grids and
irect Poisson solve




general idea:

Integration of equations

of motion, moving particles

N T

Weighting At Weighting
(E,B)j —»F; (x,v ), —(p, J)]

Integration of field
equations on grid

(E,B)j 0——(P, J)]

note: sometimes fields are subcycled to reduce cost,
but great care must be taken to avoid instability



Step 1: Push Particles

VELOCITY N\ yd > 4 2nd-order
1 accurate
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Step 1: Push Particles

n+1/2 n—1/2
Crank-Nicholson (Buneman 1967): v = Vi ‘;Vz‘

Vn—|—1/2 _ Vn—l/Z Vn—|—1/2 4 Vn—1/2

— ? ? ::_[Dﬁb_[{ﬁ’ I t
in: 1 ( 1 ) :2

x B"(R})

Boris (1970) algorithm (time-reversible, conserves energy):

makes small phase error
Vo =V B R S —
L 2 I
vi=v (Y ) s ,
At - ‘
V2 vt L BPN(RY) =
i T EI RS A T T

0 10 20 30 40 50

can overstep gyromotion without stability issues (just accuracy issues...)



Step 2: Deposit Particles to Grid

simulation particles are not delta functions in real space;
they represent large number of physical particles:
‘macroparticles” or “Lagrangian markers”

Na (1) = /dv F, = i o(r — Ry;) — Z S(r — Ra;)

N, N
No (T)Un (7)) = /dv vF, = Z Vaio(r — Ry;) — Z Vi S(r — Ry;)
i—1 /
“shape function”

dictates how much phase-space density
IS assigned to a given grid cell



Oth-order particle weighting (nearest neighbor)

it cell I
| ! e_’l

Xj I X].H X

n (x;) effective particle shape

/ | “interpolation

function”

(b) |

assigned to whatever cell contains particle
(bad: discontinuous forces)



1st-order particle weighting (cloud-in-cell; CIC)

(a)
l /() / o : {
[V /)
X X, | X. /% X /] X X
j-1 j- = i /% Ket j+]
2 2
| /)77 /) |
| UNIFORMLY | |
| CHARGED CLOUDA | |
| / / A /// | |
I X I |
effective particle shape

R o—

function”

/I “Interpolation

assignment proportional to overlapping volume
(ok: continuous forces, discontinuous derivatives)



2nd-order particle weighting (triangular shaped cloud; TSC)

Vo I

X / X, X
j-1 i- j l+- i+l
| / // / |
| TRIANGULAR SHAPED |
| CHARGED CLOUD |
/ /
| / [yt L1 , }
effective particle shape
(b)] nj

“Interpolation =
function” |

<l

assignment proportional to overlapping volume
(good: continuous forces and first derivatives)



in principle, higher-order shape functions can be used,

which result in better spatial filtering of high-frequency
components; but these require a larger stencil,
which means many more accesses of memory

> 2nd-order deposition rarely used

instead, spatial filtering performed to smooth moments
spectral code: trivially done in k space
grid code: done by “digital filtering” (Hamming 77)

W, + ¢, + Wo,.
replace ¢; with il 'liﬁjzw——d)’ '

cannot be done in place; Birdsall & Langdon, App C



Coulomb force between finite-size particles

F|n|t_e-S|ze particles —
considerably reduce ”239“
Coulomb interactions =— Point Particle % .

Two Dimensions

Ap = Debye Length
Thermal Velocily

Wp

inter-particle forces _
inside a cell are B
underestimated;

collisions must be

re—mtroduped for FIG. 2. Force law between finite-size particles in two dimen-
controlled dissipation sions for various sized particles. A Gaussian-shaped charge-

(I’arely done) density profile was used.

Coulombd Behavior
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key idea:

smooth particle trajectories

are not due to small-angle
deflections mediated by a Debye
sphere of many charged particles

rather, relatively few near neighbors o o 1
produce weak interactions due to
overlapping shape functions

fewer particles acting
more weakly ~ A » 1



Step 3: Update Fields

evolution equations:
0B

—— = —¢cV E
ot eV X
OF Yo

constraints:

V-B=0

Nq
V-E=47) qo Y S(r— Rq:)

o 1—=1

broken by truncation error if you're not careful!



symmetry of Maxwell's equations suggests leapfrog:

2 m_r_.p,x ¢, S

n—I l n time
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Stability Condition

1

C

st (m

1 —1/2
(Az)2 ~ (Ay)? (AZ)Q)

> o

w— CAUAX = 0
- = CAVAX = 0.5
0.8 vvvn CAVAX = 0.8
= CAVAX = 1
e CAUAX = 1.2

064 _. =Imag:cAaVAx = 1.2
04
0.2+

00 0.2 04

unstable!

stable, but exhibits phase

error at small wavelengths;
causes numerical
Cerenkov radiation



but how should we enforce field constraints?

V:-B=0
n+1/2 _ pn—1/2
<
_ At — E" (O y
At . .
T Ay ( i, j+1/2,k—1/2 x;z’,j—l/Q,k—l/Q)
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but how should we enforce field constraints?
V:-B=0

NB: (at least) some hybrid-kinetic codes don't do this.
Instead, they either use:

(a) vector potential B =V x A, as long as
V -V X vanishes identically ... but it's a bit
cumbersome and there's gauge freedom...;

(b) divergence cleaning... but it can get expensive
and Is ideologically disturbing; or

(c) ignorance, which is inexpensive but can
cost you Iin unknown ways.



but how should we enforce field constraints?
N,
V-E=47) qo Yy S(r— Rq)
Q 1=1

total charge is conserved, but not
necessarily that deposited on grid

options:

(a) correct the E field ex post facto to satisfy Poisson
(expensive, but might be easiest on non-orthogonal grids);

Section 15-6 of Birdsall & Langdon (also Boris 1970):

correction E' = E — V¢ such that V - E' = 47p,
— V- (E —Vép) = 4rp, = V?5p = V- E — 4mp,



but how should we enforce field constraints?
N,
V-E=47) qo Yy S(r— Rq)
Q 1=1

total charge is conserved, but not
necessarily that deposited on grid

options:

(a) correct the E field ex post facto to satisfy Poisson
(expensive, but might be easiest on non-orthogonal grids);

(b) hyperbolic divergence cleaning (Marder 1987); or
(c) charge-conserving deposition.



charge-conserving deposition

%——V-j

ot

It currents are handled with care,
Poisson equation Is just an initial condition

(the same way that div-B is just an initial condition
if electric fields are handled with care)

instead of volume weighting, count the

“volume current” through appropriate faces
(Villasenor & Buneman 1992)

can take as much time as particle mover (sometimes more)



Step 4: Interpolate Grid to Particles

interpolation to/from grid must be done in same way,
or else you get self-force

(2,5 + 1, k) (t4+ 1,57+ 1,k)
. ° -
";o::' ZErwk (rijx— Rp)
"', . e i3k
! @ s,
o Z B ’I"Z . k ’I"Z Gk — R )
:"’ PY ‘\\ 1,9,k
(1,7, k) (i+1,4,k)

{?

> E(ri;x)B(rijr) S(rijr — Ry) = E(R,) - B(R,)

1,7,k
better be...



Parallelization: Domain decomposition

PIC code are really demanding in computing resources => Need to parallelize the code!

A common practice is to use the Message Passing Interface (MPI) library and the
domain decomposition technique.

Example: Consider a 2D mesh 9x9 cells and 9 CPUs.

1D decomposition 2D decomposition
#8 #9
#6
#1 #2 #3

slide from Benoit Cerutti



load balancing sometimes required

- Few particles
Processor #9 is
Many particles / waiting for all the
Processor #5 is others
slowing down all
the others

must think about how particle list is stored in memory

slide from Benoit Cerutti



2D/3D cartesian EM PIC code

various BCs; moving window
charge-conservative current deposition
fully parallelized domain decomposition

“ tristan-mp

https://tristan-mp.wikispaces.com

4
Anatoly
Spitkovsky

A Wiki Home

® Recent Changes
[) Pages and Files
& Members

‘(A J Search

Home
User's Manual

» Code Features

» Input Structure

» User file

» Example: Weibel instability

» Example: Collisionless shock
» Compilation

» Running

Developer's Manual

Weibel 4 Edt =0 O5

Weibel instability run

If you use one of the example input files provided with the current distribution of the code (input.weibel in the Samplelnputs directory), you will generate the weibel
instability. For this run, two (electron-positron) plasmas are distributed uniformly across the box, and are given a flow velocity in the x direction corresponding to a

relativistic gamma factor of 15. One of the plasmas is flowing to the right, the other one is flowing to the left. After some iterations, a magnetic field should start to

grow from noise. The total plasma density and the Bz component of the magnetic field should look like this (at time t=22 wpe-1):

dens

~

wpﬂt:'l_-' out=10



http://benoit.cerutti.free.fr/Zeltron/

iIncludes radiative losses
spherical Yee mesh (Cerutti et al. 2015, 2016)
non-Euclidean metric (Philippov et al. 2015)

The Zeltron code

Benoit
Cerutti

Gall
Features ry
Download This page presents a few applications of the Zeltron code to astrophysical problems.
Quickstart
User guide
20 rlatisti
reconnection simulation

Publications e

400 = = ‘@ Electron-positron plasma density of a

»® - . . L
Developers = 2D simulation of relativistic
LE . .

Contact 460 reconnection with synchrotron

radiation reaction force. White

contours show the magnetic field

e lines. This simulation was performed
to explain flashes of energetic
gamma rays from the Crab Nebula

c=@=-> o <
100
(see Cerutti et al. 2013).
o RS e e T R s 0,0
0 100 200 300 400 500 Play movie P
2 menu X/Po

¥/Po




XOOPIC (2D RPIC, free unix version, Mac and Windows are paid through Tech-X);
VORPAL (1,2,3D RPIC, hybrid, sold by Tech-X)

TRISTAN (public serial version), 3D RPIC (also have 2D), becoming public now
OSIRIS (UCLA) 3D RPIC, mainly used for plasma accelerator research

Apar-T, Zeltron.

PIC-on-GPU — open source

LSP -- commercial PIC and hybrid code, used at national labs

VLPL -- laser-plasma code (Pukhov ~2000)

Reconnection research code (UMD, UDelaware)

Every national lab has PIC codes. (VPIC at Los Alamos)

All are tuned for different problems, and sometimes use different formulations (e.qg.
vector potential vs fields, etc). Direct comparison is rarely done.



Hybrid kinetics

often, ¢, Ap, wpe, de: pe, §le 1S 100 MucCh
and not even affordable without severe sacrifice

Nq
% CVXB—47T;QQZVQQ;S(T‘—RO”;)

1=1

Nq
V/E(: 4wzqa28(r — R.;)
s 1=1

c 1 &
m :—V-Pe—ene<E+—uexB>+/dvmev<af>
coll

vyl (4

must assume something; must assume something;
usually isotropic and: usually Ohm’s law:
Isothermal or barotropic MeNe

- (u; — Ue) = enenJ



Hybrid kinetics

0f; +v-Vfi+@<E+%va)-afi B (8fi>
coll

Ot m; ov \ Ot
1 1 .
E=— Vpe — —ues X B+1n3g
N C
XLQ LLg:u. J
= /n; ' Zen;
j:iVxB
41
0B
E:—CVXE V-B:O

difficulty: E is now a quasi-neutrality constraint

Byers et al. 1978; Harned 1982; Hewett & Nielson 1978



usually some kind of
predictor-corrector

method Is used
(or worse)

Lipatov book
Winske et al. (2003) review
Kunz et al. (2014) Pegasus paper

can solve either by continuum
or PIC methods
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application to:

non-relativistic shocks (Gargate & Spitkovsky 2011, Caprioli & Spitkovsky 2014)
firenose/mirror instabilities

(Hellinger, Matteini, Travnacek; Kunz, Stone & Schekochihin 2014)

kinetic magnetorotational instability (Kunz, Stone & Quataert 2017)

Alfvén-wave propagation in high-8B plasma (Squire, Kunz, Quataert, Schekochihin)
solar-wind turbulence

(Califano, Cerri, Fraci, Hellinger, Matteini, Servidio, Valentini, ...)

reconnection (Burgess, Cerri & Califano 2017, ...)

near-Earth space physics (Karimabadi, Lin, Quest, Omidi, Swift, Winske, ...)
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spectral representations of velocity space

2mm |

Hm(UH) - (_1)m ev2 d™ e—'v2 /d?]” Hm(’UH)Hm/(UH) FO(UH) _ 5mm,

) =3 Hu(opFolvy) oo 50 _ /dv” Hyn (v))) 5 (v))

H,,(v)Fy(v)/v/2™m!

vV 2mm




spectral representations of velocity space

9o | 9 N — source
ot 022
09 f1 | 0 | 1+« B
5 T3, (5 J2 0 f()) = source

V2

00 fm 0 \/m—l—l m
| m = Y m— — ms >
Y 5’2( 5 of +1+~/25f 1) vmo f m > 2

N J/

phase}rnixing!

see Kanekar, Schekochihin, Dorland & Loureiro (2014) for more

SpectroGK: J. Parker & Dellar (2015); J. Parker thesis (arXiv:1603.04727)
Viriato: Loureiro, Dorland et al. (2016)
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spectral representations of velocity space

can also spectral-ize perpendicular velocity space using Hankel transform:

60 Hankel basis functions

50- | 6f(vy) = /OoodppJo(pm)éf(p)

40

30 | 00

ZO\K ‘ / dv vy pJo(pvi)dolqur) = d(p — )
0

10 | _

of \\ X Plunk, Dorland, Parker, Tatsuno,...
—10¢ >

—-20}
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2
1

2Jy (Prv1)/J

_3 ! ! ! J !
80 0.2 0.4 0.6 0.8 1.0 1.2
v _L/v(:ut
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OGiem ' +1 g phase mixin
gkat(P) + tvmi k) (\/Tgk,mﬂ(m + %gk’m_l(p)> l g
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Future for Vlasov-Maxwell and PIC codes

e Exploit modern computing architectures:
leverage long vector lengths, port to Xeon Phi and KNL
e Speed up algorithms for particle deposition and interpolation
* Improve data locality: array of structures vs structure of arrays
e Build efficient non-orthogonal meshes
* Implement AMR for velocity-space grid
e Discontinuous Galerkin methods (Hammett, Hakim, TenBarge, Juno)
 Improved electron physics in Hybrid (must enforce quasi-neutrality...)

Some gyrokinetic codes of interest

P|C: continuum:
GTS (PPPL). GTC (UCI & PPPL). GS2 (UMD), GENE (IPP, Germany),

GEM (Colorado), GT3D (JAEA, Japan), GYRO (GA), GKV (NIFS, Japan),

. GYSELA (CEA, France),
ORBS (CRPP, Switzerland) Astro-GK (UMD, lowa), GKELL (PPPL)



thank you

with special thanks to:
Jim Stone, Anatoly Spitkovsky, Xuening Bai, Benoit Cerutti,
Greg Hammett, Damiano Caprioli, Alex Schekochihin, Geoffroy Lesur
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guiding-centre coordinates gyro-centre coordinates
6D phase space 5D phase space

<gyro-centre transform>




