Thoughts on dust sublimation in discs

Mihkel Kama presented by J.-C.Augereau EXOZODI project meeting LAOG, Grenoble 2011

The sublimation temperature

- Evaporation always happens.
- If a_d = const, gas pressure and evaporation balance out.
- Balance at $T_{dust} = T_{subl} = T(n_{gas}, T_{gas})$.
- For details, see Kama et al. (2009).

The main question

"We assume there is **no gas** in these debris disks, and therefore the inner radial limit for the debris disk is the dust sublimation radius. For **a sublimation temperature of 1600 K** and assuming large grains in thermal equilibrium emitting as blackbodies, **the sublimation radius is**..." - Akeson et al. (2009)

But without gas, $T_{subl} = 0$ K. So, we ask:

Which grains can survive at a given T_{dust} on timescales relevant in debris discs?

How large must a grain be to survive t [yr] at some T? 10⁸ With n_{gas} 10⁶ a [um] 104 10^{2} 10⁰ Graphite ivine

2000

T [K]

Kama, Dominik, Augereau, in prep.

3000

2500

 10^{-2}

1000

1500

The subroutine

- For a given grain type and temperature, return the survival time.
- For a given temperature and timescale, return the surviving grains.
- Option to include gas pressure.