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Introduction

* |n this chapter, we will define radiative quantities needed to describe radiation
and radiative transfer

* Approximation of radiative transfer: photons move in a straight line between
scattering events

 Each photon has a direction of propagation, an energy, and a polarisation
 Radiation can be seen as a photon ensemble moving through space

 We are not interested in individual photons, but rather an amount of radiative
energy Iin a given volume.

 What we need is a quantity that contains as much information as possible



1. Luminosity

* Total energy emitted by a source per unit time (e.g. a star)
* |t is a characteristic feature of the emitting object, not of the observer

* |ntrinsic quantities give us information about the physics, but it is not the ones that we measure

e Unit: in cgs // solar luminosity
33 —1
« 1 L,=3.38310"erg-s
 Bolometric luminosity: integrated over the whole frequency spectrum

 Monochromatic luminosity: luminosity per wavelength or frequency unit

» L, with L = J Ldv
0

» Unit:



2. Flux

* [hought experiment

o Cavity with black internal walls: all incoming photons are absorbed
* Insulated from the outside

* Light can penetrate through a small opening

 The heat capacity of the cavity is known

 The thermal energy coming out of the opening can be neglected

 The temperature increase as a function of time measures the total
amount of energy that penetrates into the cavity per unit time

 The measured quantity should not depend on the experimental
setup: the energy measured is divided by the area of the opening
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2. Flux

* We measure the . the energy per unit time and per unit area
e Unit: iIn cgs // in MKSA
 The flux is a . the measured flux depends on the angle between the

radiation source and the normal to the opening

* The previous setup measures the component F of the flux vector F along the normal to
the opening 1’

—

- F=F.7n
> with 3 measures along orthogonal directions, the flux vector can be wholly determined

* Bolometric flux: integrated over the whole frequency spectrum



2. Flux

 We now place a filter in front of the opening

» The filter only lets radiation between v, and v, + Av
through

* [The temperature increases slower, because less
energy penetrates

e As before, we do not wish that the measurement
depends on the experimental setup

« We therefore divide the energy by Av

e This gives the monochromatic flux £,




2. Flux

 Monochromatic flux: flux per wavelength or frequency unit — also called

» I, with F=[ Fdv — Unit (cgs) // (MKSA)
0

» I, with F=J' F,di — Unit: (cgs) // (MKSA)
0

> |t is (one of) the most widely used quantity in radiative transfer

e Other units
» Jansky (radioastronomy): 1Jy =107 erg s™! ecm™? Hz™ ! = 107°° W m~? Hz™!
> magnitudes: logarithmic scale in which the flux is compared to that of a standard star (Vega).

Historical unit, widely used in the visible / IR, but rarely in radiative transfer
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3. Intensity



3.1 Definition

 The information carried by the flux vector is still incomplete

* Another quantity is defined: the [ (bolometric case) and the
[, (monochromatic case)

* New experimental setup which includes another compartment, and
an additional smaller opening

 The thermometer is placed in the rightmost cavity

» Part of the radiation passing through the first opening does not
make it through the second one. We assume those photons do not
contribute to the temperature increase in the setup

* Only photons passing through both openings contribute to the
temperature increase

 Those are the photons that come from the direction defined by both
openings



3.1 Definition

* The flux is defined as the amount of energy per unit area per unit time
that passes through the first opening

* The second opening selects radiation coming from a specific direction

 |f the first aperture is small with respect to the second one, the energy
flux comes from a solid angle

A
AQ = —
L2

where A Is the surface of the second aperture and L the distance
between both apertures. |

e If AQ < 47 the measured flux is proportional to A€2, so we can
divide by A€2 to have a result independent from the setup

» We obtain the intensity I = F/AL2
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3.1 Definition

o : amount of energy received per unit time per unit area per
unit solid angle

e units: erg s~ em ™2 sr! (cgs) — W m~—2 sr~! (MKSA) — MJy / sr — mag ]pix‘2

» As with the flux, we can add a filter of bandwidth Ar and divide the amount of
energy by Av

¢ (monochromatic): amount of energy received per unit time per
unit area per unit solid angle per unit frequency

e units: erg s~ em™? sr~! Hz™! (cgs) — W m~—2 sr—! Hz™! (MKSA)

» Similarly, one can define [,. Note that: v, = A1,

11



3.1 Definition

 The intensity is a (not a vector quantity) and depends on the direction

. If 7 is defined as a vector pointing from the first to the second aperture, then what is measured is I(77) or I (7).

* This is correct if the first aperture is much smaller than the second one and if the second aperture is much smaller
than L.

. IU(W) can theoretically be measured at every point X and contains a large amount of information. In practice,
one is limited by the angular resolution

« In radiative transfer the intensity is considered to have infinite resolution and is defined at all X in space, i.e. the
six-dimensional function [, (x’, n’)

» 7 has 3 dimensions but only two are independent

» If we knew [ ( X, ') with an infinite resolution, we would have all astrophysical information! We do have
surveys giving us I (x, n’) for one X (the Earth) and a few v (e.g. 2MASS in NIR)

- In radiative transfer, one has to deal with the intensity at many frequencies and X simultaneously, which is a
complex problem
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3.2 Solid angle and angular coordinates

* A solid angle is the 3D equivalent of a plane angle

—a__ )1 —= ()4

r r
Plane angle (rad) solid angle ( or sr)
a=I1r Q=A/r’
is the angle that subtends the arc [ is the solid angle that subtends the surface A

(spherical surface)

» The solid angle of the whole space is the area of the unit sphere = 4 sr

 The solid angle is a dimensionless quantity, but it does have a unit
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3.2 Solid angle and angular coordinates

Solid angle in spherical coordinates

0 0dD X rd0
o = [SMUAB XAV 0 do dd

72

¢ angle between 7 and e,

—

rde ® angle between the projected vector n’ in the plane xy and e,
' n e
rS|n9d¢ COSH: n>,€£ COS(I): _)X /=7_(W.?Z) ?Z)
|’ |

The components of the vector 7” along x, y and z are

n,=smnf cos®

n, = sin @ sin ©

n, = cos @
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3.2 Solid angle and angular coordinates

« The intensity /  is therefore a function of
> X,V, Z:spatial coordinates
> @, ® : angular coordinates

» We write

* |n radiative transfer, it is common to define

> We write
> nx=\/1—,uzcoscl>
nyz\/l—,uzsind)

I/ZZ://t
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3.3 Conservation of intensity along a beam

* The intensity measures the energy flow along a ray

* But one infinitesimal ray does not carry energy so we have to consider a collection of rays,
l.e. a beam

 The beam diverges, but since the intensity is given per steradian, it is not affected by this
divergence

» To show the conservation of intensity along a beam, we consider 2 infinitesimal areas dA
and dA’ separated by r, centred on the points M and M’

« @ is the angle between the direction MM’ and 7', normal to dA

—>

» @' is the angle between the direction MM’ and n’, normal to dA’

» We consider the photons that pass through both surfaces dA and dA’
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3.3 Conservation of intensity along a beam

» The energy carried by the photons leaving M is dE = I, dt dv dA cos 0 d<

» dA cos @ : projected (emitting) surface on MM’
dA’ cos 0’

72

» dS : solid angle subtended by dA’ from M dC) =

» The energy carried by the photons arriving at M' is dE’" = I/ dt dv dA’ cos 0" d€2’

» dA’ cos @' : projected (receiving) surface on MM’
- dA cos0

72

» d€2’ : solid angle subtended by dA from M’ dC’
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3.3 Conservation of intensity along a beam

» The conservation of energy vields: dE = dE’
e Itfollowsthatl =1/

* The intensity is a quantity which is conserved along the direction of propagation, in the absence of
emission or absorption. This property of the intensity is fundamental.

—

» This can be written vectorially (7" - V is the derivative in direction 7))

, 1 he differential form is , Where s Is the coordinate along a ray of direction 7. The

distance along this ray is given by x(s) = X, + s7

* This does not mean that the intensity is constant in the entire space, because it can be different
for parallel rays (it depends on x') and for different directions.
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3.4 Flux and intensity

* Flux: energy per unit time, per unit area, per unit frequency

* |ntensity: energy per unit time, per unit area, per unit frequency, per unit solid
angle

* The flux is given by integrating the intensity over the directions

> A common expression Is also which is the z-component

of the flux. This is used in plane parallel or 1D geometries.

 What is the value of the flux when the intensity is isotropic?
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3.4 Flux and intensity

 Contrary to the intensity, the flux is not conserved

e Calculate the flux at point P at a distance r from a star (assumed to be a uniform sphere radiating
iIsotropically)

R. ’ R? R?
@ ------ ; b =al, 5 =FR)
_______ » »

 The flux decreases with the square of the distance

 Which quantity to use between flux and intensity
> In physics, we like using quantities which are conserved

> The flux does not contain information on the direction of the photons

» The intensity Iis hard to work with, as it has 6 dimensions Iin the general case: Iy(x, v,2,0,D,1)
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4. Moments of intensity

* The intensity contains much information, which makes radiative transfer hard to solve
* |t is possible to develop the intensity along tensor moments

> The complete method can be found in Thorne 1981, MNRAS, 194, 439
* |n most cases, it is enough to consider the first three moments

e /Zeroth order moment

> J =—@ (1) dQ, where 7 is the direction of the ray
dr

> J  is the mean intensity. It is the angular mean of the intensity.

> What is J,, for an isotropic source?
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4. Moments of intensity

e First order moment

— 1 W
* H =—Q[(n) n d
dr

» H  is the (Eddington) flux. It is a vector quantity.

1%

» Its components are H ;= o L(m) (e - m) d
: T

> |t is the flux we talked about previously, to within a factor 47

. F, = 4)1,/( )W dQ =4r H,

> Both can be used, depending on which is more convenient

—
» What is H,, for an isotropic source?
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4. Moments of intensity

e Second order moment

L(n)n ndQ

N

47z

‘gl

IS a symmetric tensor of rank 2, of dimensions 3 x 3.

— |
» The components of K are: K L(n)(e -n)(e - n)dQ
v vij 471_ ]

|
(W

> For homogeneous and isotropic radiation, K, = — 3 J where 3 IS the unit tensor of rank 2

_ 4

., K is linked to the radiation pressure: p =



4. Moments of intensity

» These moments can be written explicitely in cartesian coordinates, using 4 = cos ¢

1 +1 27
- J, = —j d,uj IL(u, D) do
dr ) _, 0

1 +1 2T
> Hyi:_[ d//t" Iy(//t, (I)) F; dD
" dr ) 0

1 +1 27
» K .= — d L(u,®)n n do
v,l,] 471_ J_l I[/t J'O I/(lu ) ]

. . —_—>
n;, n;are the projections of n on the axes x, y, z
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4. Moments of intensity

 For a 1D or plane parallel geometry we can reduce the problem to the z axis

|
»J_— Iydﬂ

Y Ax
» H =— [, cos0 df2
A
1 2
» K [ cos” @ dS2

I/: L
A
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4. Moments of intensity

 Radiation pressure is due to the momentum carried by photons

» For one photon of frequency v, the momentum is Aiv/c: ]71; -k
C
— I —_— —_—
» Momentum of a ray of intensity [, : dp, = — (dA k )drd€2 k

* The pressure applied by one ray of intensity A
I inthe dlrectlon nis: %
dpy I —__ BV
dP, = = — cos0dQ k n dA
dA dt C .
* For all the rays we therefore have k is the direction of propagation

| _
P, = ;{) 1, cos” 0 dQ dA = dA 7 is the surface of normal 7’
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4. Moments of intensity

 The Is the energy per unit volume
n
0 dC
_______ = ___d_S______
dA dA
A%

» The energy per unit frequency crossing the area dA during dt in a solid angle df2 is:
dE, =1, cos 0 dA df2 dt

 This energy is contained in a volume dV = cos 8 dA ds = cos O dA c dt

|
The integration yields: £, = —[ J I, dQdV
CJavio

E

. From the definition of u, = —— , we obtain
AV

* unit:
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4. Moments of intensity

» The energy density 1, can be linked to the mean intensity J,

A
g ul/z L
C

For isotropic radiation, the radiation pressure is easily expressed as function of the energy
density

py_ 3
1, dr
> I/[yz— dQ:_ID
C C
4 > 2 ", r [cos?01”  4r
> Py = cos“0dQ) =—1 1 cos“0sin0d0 =—1, =—1
- c 0 & 3 - 3c
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5. Stokes parameters and Stokes vector

e Radiation can be polarised (e.g. scattering can polarise radiation)

* Jo describe polarisation, we need to consider the electromagnetic waves

« The EM waves are solutions to the Maxwell equations, in particular, if the propagation direction is along ?Z’

« [ the electric field vector is perpendicular to the propagation direction

——

« B the magnetic field is perpendicular to the propagation direction
+ BLlEand |E|=|B|
* At a given point P, the components of the electric field are
« E(P,1) =E jcos(wt— ¢p,)
o Ey(P, ) = E cos(wt — ¢y)
. @ = 2zvis the angular frequency, ¢, and ¢, are the phases

+ A = ¢, — ¢, is the phase difference between both components. If A > 0, the y component is late with respects to x
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5. Stokes parameters and Stokes vector

At agiven x the EM wave can be described by

— )
— )

» k isthe wave vector, | k | = w/c

« E(X,t)=E, qcos(wt — k-x
« E(X,0)=E jcos(wt - kX

. The electric field vector is E (X, 1) = E(X,0)e, +E(X,1)e,

. The magnetic field B (X, ) = e. A E(X,1)

—

 The mean Poynting vector (flux vector) F' = < f/\ ? >

* A perfectly coherent wave is entirely described by its propagation direction ? its frequency v,
its amplitudes £, ; and E,  and its phase difference A (coherent = constant phase difference)
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5. Stokes parameters and Stokes vector

 For a coherent or a polarised wave, the radiation can be described with the Stokes vector //
parameters

— 2 2
= Ex02+ Ey02
Q = ExO _ EyO
U=2EHE, cosA

« [ is the total flux (or the intensity)

e (), U, V have the same dimension as /, but describe the polarisation state
e If ) = U = V = 0, the radiation is not polarised

. For completely polarised radiation I = Q° + U? + V?

. In the general case 0 < Q* + U* + V* < I?
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5. Stokes parameters and Stokes vector

Linearly polarised light




5. Stokes parameters and Stokes vector

Circularly polarised light




5. Stokes parameters and Stokes vector

Elliptically polarised light




5. Stokes parameters and Stokes vector

 For a partially polarised wave, there is a polarised contribution and a non-polarised one

[=1"+ < E2 + E2

0 =< Ex2 — E2 Sum of the non polarised
y0 contribution and the polarised
U=<2EyEy,cosA> contribution, averaged over time

V=<2EHE,sinA>

» Forl =V (A = n/2):right circular polarised wave (for an observer towards whom the wave
is propagating, the tip of £ moves clockwise along a circle). What are E , and E

» For I = Q: linear polarisation along the x axis.
« For [ = U: linear polarisation along a direction ?

- For elliptical polarisation, £, # E,, (amplitude and phase difference take any values, but
remain constant)
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5. Stokes parameters and Stokes vector

* TJo define the Stokes vector, a coordinate system has to be specified

—

» The reference polarisation vector is chosen as k, along the propagation direction

—

» A supplementary unit vector s along y is defined. Obviously 5 - k = 0

« 5 gives the direction of E fora polarised wave with O = —Jand U =V =0

 To change coordinate system (e.g. rotation by an angle y to switch from (x, y) to (x’, y"), we

| | ( x’) ( cosy sin 1//) X
use the rotation matrix ] = : ( )
y —siny cosy /) \V

[ 1 0 0 0) (1
! 0 cos2 sin2y 0
 The new Stokes vector is given by the Muller matrix ¢ = : ~ “ Q
U’ 0 —smn2y cos2y O||U
4 0 0 0 1)\V
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