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Radiative Transfer

2. Radiative quantities



Introduction
• In this chapter, we will define radiative quantities needed to describe radiation 

and radiative transfer


• Approximation of radiative transfer: photons move in a straight line between 
scattering events


• Each photon has a direction of propagation, an energy, and a polarisation


• Radiation can be seen as a photon ensemble moving through space


• We are not interested in individual photons, but rather an amount of radiative 
energy in a given volume.


• What we need is a quantity that contains as much information as possible
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1. Luminosity
• Total energy emitted by a source per unit time (e.g. a star)


• It is a characteristic feature of the emitting object, not of the observer


• Intrinsic quantities give us information about the physics, but it is not the ones that we measure


• Unit:  in cgs // solar luminosity 


• 


• Bolometric luminosity: integrated over the whole frequency spectrum


• Monochromatic luminosity: luminosity per wavelength or frequency unit


‣   with 


‣ Unit: 

erg ⋅ s−1 L⊙

1 L⊙ = 3.83 1033 erg ⋅ s−1

Lν L = ∫
∞

0
Lνdν

erg ⋅ s−1 ⋅ Hz−1
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2. Flux
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• Thought experiment


• Cavity with black internal walls: all incoming photons are absorbed


• Insulated from the outside


• Light can penetrate through a small opening


• The heat capacity of the cavity is known


• The thermal energy coming out of the opening can be neglected


• The temperature increase as a function of time measures the total 
amount of energy that penetrates into the cavity per unit time


• The measured quantity should not depend on the experimental 
setup: the energy measured is divided by the area of the opening



• We measure the flux: the energy per unit time and per unit area


• Unit:  in cgs //  in MKSA


• The flux is a vector quantity: the measured flux depends on the angle between the 
radiation source and the normal to the opening


• The previous setup measures the component  of the flux vector  along the normal to 
the opening 


‣ 


‣ with 3 measures along orthogonal directions, the flux vector can be wholly determined 


• Bolometric flux: integrated over the whole frequency spectrum

erg ⋅ s−1 ⋅ cm−2 W ⋅ m−2

F ⃗F
⃗n

F = ⃗F . ⃗n

2. Flux
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• We now place a filter in front of the opening


• The filter only lets radiation between  and  
through


• The temperature increases slower, because less 
energy penetrates


•  As before, we do not wish that the measurement 
depends on the experimental setup


• We therefore divide the energy by 


• This gives the monochromatic flux 

ν0 ν0 + Δν

Δν

Fν

2. Flux
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• Monochromatic flux: flux per wavelength or frequency unit — also called flux density 

‣   with      —    Unit:  (cgs) //  (MKSA) 


‣   with      —    Unit:  (cgs) //  (MKSA)


‣ It is (one of) the most widely used quantity in radiative transfer


• Other units


‣ Jansky (radioastronomy) :  


‣ magnitudes: logarithmic scale in which the flux is compared to that of a standard star (Vega). 
 
Historical unit, widely used in the visible / IR, but rarely in radiative transfer

Fν F = ∫
∞

0
Fνdν erg ⋅ s−1 ⋅ cm−2 ⋅ Hz−1 W ⋅ m−2 ⋅ Hz−1

Fλ F = ∫
∞

0
Fλdλ erg ⋅ s−1 ⋅ cm−2 ⋅ cm−1 W ⋅ m−2 ⋅ m−1

1 Jy = 10−23 erg s−1 cm−2 Hz−1 = 10−26 W m−2 Hz−1

2. Flux
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3. Intensity
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3.1 Definition
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• The information carried by the flux vector is still incomplete


• Another quantity is defined: the intensity  (bolometric case) and the 
specific intensity  (monochromatic case)


• New experimental setup which includes another compartment, and 
an additional smaller opening


• The thermometer is placed in the rightmost cavity


• Part of the radiation passing through the first opening does not 
make it through the second one. We assume those photons do not 
contribute to the temperature increase in the setup


• Only photons passing through both openings contribute to the 
temperature increase


• Those are the photons that come from the direction defined by both 
openings

I
Iν



3.1 Definition
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• The flux is defined as the amount of energy per unit area per unit time 
that passes through the first opening


• The second opening selects radiation coming from a specific direction


• If the first aperture is small with respect to the second one, the energy 
flux comes from a solid angle 
 

   
 
where A is the surface of the second aperture and L the distance 
between both apertures.


• If  the measured flux is proportional to , so we can 
divide by  to have a result independent from the setup


• We obtain the intensity 

ΔΩ =
A
L2

ΔΩ ≪ 4π ΔΩ
ΔΩ

I = F/ΔΩ

A

L



3.1 Definition
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• Bolometric intensity  : amount of energy received per unit time per unit area per 
unit solid angle


• units:  (cgs)  —   (MKSA) — MJy / sr — 


• As with the flux, we can add a filter of bandwidth  and divide the amount of 
energy by 


• Specific intensity  (monochromatic): amount of energy received per unit time per 
unit area per unit solid angle per unit frequency


• units:  (cgs)  —   (MKSA)


• Similarly, one can define . Note that:  

I

erg s−1 cm−2 sr−1 W m−2 sr−1 mag pix−2

Δν
Δν

Iν

erg s−1 cm−2 sr−1 Hz−1 W m−2 sr−1 Hz−1

Iλ ν Iν = λ Iλ



3.1 Definition
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• The intensity is a scalar quantity (not a vector quantity) and depends on the direction


• If  is defined as a vector pointing from the first to the second aperture, then what is measured is  or .


• This is correct if the first aperture is much smaller than the second one and if the second aperture is much smaller 
than .


•  can theoretically be measured at every point  and contains a large amount of information. In practice, 
one is limited by the angular resolution


• In radiative transfer the intensity is considered to have infinite resolution and is defined at all  in space, i.e. the 
six-dimensional function 


‣  has 3 dimensions but only two are independent


‣ If we knew  with an infinite resolution, we would have all astrophysical information! We do have 
surveys giving us   for one  (the Earth) and a few  (e.g. 2MASS in NIR)


• In radiative transfer, one has to deal with the intensity at many frequencies and  simultaneously, which is a 
complex problem

⃗n I( ⃗n ) Iν( ⃗n )

L

Iν( ⃗n ) ⃗x

⃗x
Iν( ⃗x , ⃗n )

⃗n

Iν( ⃗x , ⃗n )
Iν( ⃗x , ⃗n ) ⃗x ν

⃗x



3.2 Solid angle and angular coordinates
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• A solid angle is the 3D equivalent of a plane angle

AΩ
r
α

r
l

Plane angle (rad) solid angle (ster or sr)

  
is the angle that subtends the arc 
α = l/r

l
  

is the solid angle that subtends the surface   
(spherical surface)

Ω = A/r2

A

• The solid angle of the whole space is the area of the unit sphere  sr


• The solid angle is a dimensionless quantity, but it does have a unit

= 4π



3.2 Solid angle and angular coordinates
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Solid angle in spherical coordinates

dΩ =
r sin θdΦ × rdθ

r2
= sin θ dθ dΦ

⃗n

⃗ex

⃗ez

⃗ey

 angle between  and  θ ⃗n ⃗ez

 angle between the projected vector  in the plane xy and  Φ ⃗n′� ⃗ex

cos θ = ⃗n ⋅ ⃗ez cos Φ =
⃗n′� ⋅ ⃗ex

| ⃗n′ � |
⃗n′� = ⃗n − ( ⃗n ⋅ ⃗ez ) ⃗ez

The components of the vector  along x, y and z are⃗n
nx = sin θ cos Φ
ny = sin θ sin Φ
nz = cos θ



3.2 Solid angle and angular coordinates
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• The intensity  is therefore a function  of


‣  : spatial coordinates


‣  : angular coordinates


‣ We write 


• In radiative transfer, it is common to define 


‣ We write 


‣

Iν

x, y, z

θ, Φ

Iν(x, y, z, θ, Φ)

μ = cos θ

Iν(x, y, z, μ, Φ)
nx = 1 − μ2 cos Φ

ny = 1 − μ2 sin Φ

nz = μ



3.3 Conservation of intensity along a beam
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• The intensity measures the energy flow along a ray


• But one infinitesimal ray does not carry energy so we have to consider a collection of rays, 
i.e. a beam


• The beam diverges, but since the intensity is given per steradian, it is not affected by this 
divergence


• To show the conservation of intensity along a beam, we consider 2 infinitesimal areas  
and  separated by , centred on the points  and 


•  is the angle between the direction  and , normal to 


•  is the angle between the direction  and , normal to 


• We consider the photons that pass through both surfaces  and 

dA
dA′� r M M′�

θ MM′� ⃗n dA

θ′ � MM′�
⃗n′� dA′�

dA dA′�



3.3 Conservation of intensity along a beam
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• The energy carried by the photons leaving  is 


‣  : projected (emitting) surface on 


‣  : solid angle subtended by  from 

M dE = Iν dt dν dA cos θ dΩ

dA cos θ MM′�

dΩ dA′� M

⃗n

dA
M

⃗n′�

M′�

dA′�

r
dΩ dΩ′�

• The energy carried by the photons arriving at  is 


‣  : projected (receiving) surface on 


‣  : solid angle subtended by  from 

M′� dE′� = Iν′� dt dν dA′� cos θ′� dΩ′�

dA′� cos θ′� MM′�

dΩ′� dA M′�

θ θ′�

dΩ =
dA′� cos θ′�

r2

dΩ′� =
dA cos θ

r2



3.3 Conservation of intensity along a beam
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• The conservation of energy yields: 


• It follows that 


• The intensity is a quantity which is conserved along the direction of propagation, in the absence of 
emission or absorption. This property of the intensity is fundamental.


‣ In vacuum the intensity is conserved.


‣ This can be written vectorially        (  is the derivative in direction )


‣ The differential form is  , where  is the coordinate along a ray of direction . The 

distance along this ray is given by 


• This does not mean that the intensity is constant in the entire space, because it can be different 
for parallel rays (it depends on ) and for different directions.

dE = dE′ �

Iν = Iν′�

⃗n ⋅ ⃗∇ Iν( ⃗x , ⃗n ) = 0 ⃗n ⋅ ⃗∇ ⃗n

dIν( ⃗n )
ds

= 0 s ⃗n
⃗x (s) = ⃗x0 + s ⃗n

⃗x



3.4 Flux and intensity
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• Flux: energy per unit time, per unit area, per unit frequency


• Intensity: energy per unit time, per unit area, per unit frequency, per unit solid 
angle


• The flux is given by integrating the intensity over the directions


‣ 


‣ A common expression is also   which is the z-component 
of the flux. This is used in plane parallel or 1D geometries.


• What is the value of the flux when the intensity is isotropic?

⃗Fν = ∮ Iν( ⃗n ) ⃗n dΩ

F = ∫ Iν cos θ dΩ



3.4 Flux and intensity
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• Contrary to the intensity, the flux is not conserved


• Calculate the flux at point P at a distance r from a star (assumed to be a uniform sphere radiating 
isotropically)

P rR*

• The flux decreases with the square of the distance


• Which quantity to use between flux and intensity


‣ In physics, we like using quantities which are conserved


‣ The flux does not contain information on the direction of the photons


‣ The intensity is hard to work with, as it has 6 dimensions in the general case: Iν(x, y, z, θ, Φ, t)

Fν(r) = π Iν
R2

*

r2
= Fν(R*)

R2
*

r2



3.4 Flux and intensity
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NASA/SOHOExtreme UV 304 Å (He II)

Do we measure the flux of the intensity?



3.4 Flux and intensity
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Sirius

Do we measure the flux of the intensity?



4. Moments of intensity
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• The intensity contains much information, which makes radiative transfer hard to solve


• It is possible to develop the intensity along tensor moments


‣ The complete method can be found in Thorne 1981, MNRAS, 194, 439


• In most cases, it is enough to consider the first three moments


• Zeroth order moment


‣ , where  is the direction of the ray


‣  is the mean intensity. It is the angular mean of the intensity.


‣ What is  for an isotropic source?

Jν =
1

4π ∮ Iν( ⃗n ) dΩ ⃗n

Jν

Jν



4. Moments of intensity
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• First order moment


‣ 


‣  is the (Eddington) flux. It is a vector quantity.


‣ Its components are   


‣ It is the flux we talked about previously, to within a factor 


‣ 


‣ Both can be used, depending on which is more convenient


‣ What is  for an isotropic source?

⃗Hν =
1

4π ∮ Iν( ⃗n ) ⃗n dΩ

⃗Hν

Hν,i =
1

4π ∮ Iν( ⃗n ) ( ⃗ei ⋅ ⃗n ) dΩ

4π

⃗Fν = ∮ Iν( ⃗n ) ⃗n dΩ = 4π ⃗Hν

⃗Hν



4. Moments of intensity
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• Second order moment


‣ 


‣  is a symmetric tensor of rank 2, of dimensions 3 x 3.


‣ The components of  are: 


‣ For homogeneous and isotropic radiation,   where  is the unit tensor of rank 2


‣  is linked to the radiation pressure:      

Kν =
1

4π ∮ Iν( ⃗n ) ⃗n ⃗n dΩ

Kν

Kν Kν,ij =
1

4π ∮ Iν( ⃗n ) ( ⃗ei ⋅ ⃗n ) ( ⃗ej ⋅ ⃗n ) dΩ

Kν =
1
3

δ Jν δ

Kν pν =
4π
c

Kν



4. Moments of intensity
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• These moments can be written explicitely in cartesian coordinates, using 


‣ 


‣ 


‣

μ = cos θ

Jν =
1

4π ∫
+1

−1
dμ∫

2π

0
Iν(μ, Φ) dΦ

Hν,i =
1

4π ∫
+1

−1
dμ∫

2π

0
Iν(μ, Φ) ni dΦ

Kν,i,j =
1

4π ∫
+1

−1
dμ∫

2π

0
Iν(μ, Φ) ni nj dΦ

nx

ny

nz
⃗n

θ

Φ

 are the projections of  on the axes x, y, zni, nj ⃗n



4. Moments of intensity
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• For a 1D or plane parallel geometry we can reduce the problem to the z axis


‣ 


‣ 


‣

Jν =
1

4π ∮ Iν dΩ

Hν =
1

4π ∮ Iν cos θ dΩ

Kν =
1

4π ∮ Iν cos2 θ dΩ



4. Moments of intensity
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• Radiation pressure is due to the momentum carried by photons


‣ For one photon of frequency , the momentum is : 


‣ Momentum of a ray of intensity  : 

ν hν/c ⃗pp =
hν
c

⃗k

Iν d ⃗pν =
Iν

c
( ⃗dA ⋅ ⃗k ) dt dΩ ⃗k

⃗n

⃗k

θ

⃗dA

 is the direction of propagation


 is the surface of normal 

⃗k

⃗dA = dA ⃗n ⃗n

• The pressure applied by one ray of intensity 
 in the direction  is: 




• For all the rays we therefore have 

Iν ⃗n

dPν =
d ⃗pν ⋅ ⃗n
dA dt

=
Iν

c
cos θ dΩ ⃗k ⃗n

Pν =
1
c ∮ Iν cos2 θ dΩ



4. Moments of intensity
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• The energy density  is the energy per unit volumeuν

⃗n

⃗k

θ

dA dA

dΩds

dV

• The energy per unit frequency crossing the area  during  in a solid angle  is: 



• This energy is contained in a volume 


• The integration yields: 


• From the definition of  , we obtain 


• unit: 

dA dt dΩ
dEν = Iν cos θ dA dΩ dt

dV = cos θ dA ds = cos θ dA c dt

Eν =
1
c ∫ΔV ∫Ω

Iν dΩ dV

uν =
Eν

ΔV
uν =

1
c ∫ Iν dΩ

erg cm−3 Hz−1



4. Moments of intensity
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• The energy density  can be linked to the mean intensity 


‣ 


• For isotropic radiation, the radiation pressure is easily expressed as function of the energy 
density


‣ 


‣ 


‣

uν Jν

uν =
4π
c

Jν

pν =
uν

3

uν =
Iν

c ∫ dΩ =
4π
c

Iν

pν =
Iν

c ∫ cos2 θdΩ =
2π
c

Iν ∫
π

o
cos2 θ sin θdθ =

2π
c

Iν[ cos3 θ
3 ]

0

π
=

4π
3c

Iν



5. Stokes parameters and Stokes vector
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• Radiation can be polarised (e.g. scattering can polarise radiation)


• To describe polarisation, we need to consider the electromagnetic waves


• The EM waves are solutions to the Maxwell equations, in particular, if the propagation direction is along 


•  the electric field vector is perpendicular to the propagation direction


•   the magnetic field is perpendicular to the propagation direction


•  and 


• At a given point P, the components of the electric field are


• 


• 


•  is the angular frequency,  and  are the phases


•  is the phase difference between both components. If , the  component is late with respects to 

⃗ez

⃗E

⃗B

⃗B ⊥ ⃗E | ⃗E | = | ⃗B |

Ex(P, t) = Ex,0 cos(ω t − ϕx)

Ey(P, t) = Ey,0 cos(ω t − ϕy)

ω = 2πν ϕx ϕy

Δ = ϕy − ϕx Δ > 0 y x



5. Stokes parameters and Stokes vector
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• At a given  the EM wave can be described by


• 


• 


•  is the wave vector, 


• The electric field vector is 


• The magnetic field 


• The mean Poynting vector (flux vector) 


• A perfectly coherent wave is entirely described by its propagation direction , its frequency , 
its amplitudes  and  and its phase difference  (coherent = constant phase difference)

⃗x

Ex( ⃗x , t) = Ex,0 cos(ω t − ⃗k ⋅ ⃗x − ϕx)

Ey( ⃗x , t) = Ey,0 cos(ω t − ⃗k ⋅ ⃗x − ϕy)

⃗k | ⃗k | = ω/c
⃗E ( ⃗x , t) = Ex( ⃗x , t) ⃗ex + Ey( ⃗x , t) ⃗ey

⃗B ( ⃗x , t) = ⃗ez ∧ ⃗E ( ⃗x , t)

⃗F = < ⃗E ∧ ⃗B >
⃗k ν

Ex,0 Ey,0 Δ



5. Stokes parameters and Stokes vector
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• For a coherent or a polarised wave, the radiation can be described with the Stokes vector // 
parameters


 
 

 



•  is the total flux (or the intensity)


•  have the same dimension as , but describe the polarisation state


• If , the radiation is not polarised


• For completely polarised radiation 


• In the general case 

I = E2
x0 + E2

y0
Q = E2

x0 − E2
y0

U = 2 Ex0 Ey0 cos Δ
V = 2 Ex0 Ey0 sin Δ

I

Q, U, V I

Q = U = V = 0

I2 = Q2 + U2 + V2

0 < Q2 + U2 + V2 < I2



5. Stokes parameters and Stokes vector
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Linearly polarised light



5. Stokes parameters and Stokes vector
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Circularly polarised light



5. Stokes parameters and Stokes vector
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Elliptically polarised light



5. Stokes parameters and Stokes vector
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• For a partially polarised wave, there is a polarised contribution and a non-polarised one


 
 

 



• For : right circular polarised wave (for an observer towards whom the wave 
is propagating, the tip of  moves clockwise along a circle). What are  and  ?


• For : linear polarisation along the  axis.


• For : linear polarisation along a direction ?


• For elliptical polarisation,  (amplitude and phase difference take any values, but 
remain constant)

I = Iunpol
ν + < E2

x0 + E2
y0 >

Q = < E2
x0 − E2

y0 >
U = < 2 Ex0 Ey0 cos Δ >
V = < 2 Ex0 Ey0 sin Δ >

I = V (Δ = π/2) ⃗E Ex0 Ey0

I = Q x

I = U

Ex0 ≠ Ey0

Sum of the non polarised 
contribution and the polarised 
contribution, averaged over time



5. Stokes parameters and Stokes vector
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• To define the Stokes vector, a coordinate system has to be specified


• The reference polarisation vector is chosen as , along the propagation direction


• A supplementary unit vector  along  is defined. Obviously 


•  gives the direction of  for a polarised wave with  and 


• To change coordinate system (e.g. rotation by an angle  to switch from  to , we 

use the rotation matrix 


• The new Stokes vector is given by the Müller matrix 

⃗k

⃗s y ⃗s ⋅ ⃗k = 0

⃗s ⃗E Q = − I U = V = 0

ψ (x, y) (x′�, y′�)

(x′�

y′�) = ( cos ψ sin ψ
−sin ψ cos ψ) (x

y)
I′�

Q′�

U′�

V′�

=

1 0 0 0
0 cos 2ψ sin 2ψ 0
0 −sin 2ψ cos 2ψ 0
0 0 0 1

I
Q
U
V


