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Radiative Transfer

3. The formal radiative transfer equation



Introduction
• Litterally speaking the expression “radiative transfer” is a little misleading


‣ it gives the impression that we are interested in photon movement, but as we 
have seen at the beginning, photons propagate in a straight line, and in the 
absence of interaction with matter, the intensity is constant in the propagation 
direction of the radiation


‣ In this case is radiative transfer completely trivial


• In fact, the main difficulty to solve is the interaction between radiation and matter


• The interaction between matter and radiation can add or remove radiation along the 
propagation direction


• In this chapter, we will look at the formalism for adding and removing radiation, 
derive the transfer equation and see how to solve it in simple cases
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1. Extinction coefficient
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1.1 Mean free path
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• We consider a medium which can absorb radiation


‣ A photon has a given probability of being absorbed


‣ Some will be absorbed very quickly, others will be able to cross a large distance in the 
medium


• The efficiency of a medium to absorb photons is described by the mean free path 


• It is the mean distance travelled by a photon before being absorbed


• Unit: cm (cgs)


•  is a function


• Of frequency: a medium which absorbs at a wavelength does not always absorb at another.


• Of position 

lfree

lfree

⃗x



1.1 Mean free path
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• If we consider a medium which only absorbs (i.e. no emission), with a length equal to the mean free 
path


‣ If  is the number of incident photons, the number of photons that cross the medium is , i.e. 
36.8% of photons cross the medium


‣ Similarly, the intensity is also  attenuated by a factor 


‣ If the medium has a length of 2 mean free paths, the intensity is attenuated by a factor  
(only 13.5% of the photons cross the medium)


• The attenuation of the radiation is exponential with the number of mean free paths


• For denser media, the mean free paths will be shorter

N0 N0/e

e

e2 = 7.4

N0 N0/e
lfree



1.2 Extinction coefficient
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• In radiative transfer, the mean free path is rarely used


• The extinction coefficient  is used instead: 


• Unit:  (cgs)


• This coefficient is sometimes called  opacity, but this term can be confusing (it 
should not be confused with optical depth)


•  is the extinction per unit length

αν αν =
1

lfree

cm−1

αν



1.2 Extinction coefficient
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• We define also 


‣ The extinction cross section  (extinction coefficient per particle), in 


If  is the number density of particles [in ], then 


‣ The mass extinction coefficient , in 


If  is the mass density of particles [in ], then 


 is sometimes called “opacity”

σν cm2

n cm3 αν = σν n

κν cm2 g−1

ρ g cm3 κν =
αν

ρ

κν



1.2 Extinction coefficient
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• When geometric optics apply (  with  the particle radius), the extinction cross section is equal 
to the geometric cross section, i.e.  


• In the case ,    


• Relation between  and  :  , with  the mass of a particle


•  can also be seem as a cross section per unit volume, in 


• Distinction extinction / absorption: 


‣ extinction is all that removes photons from the beam, and therefore includes scattering and 
absorption


‣ We will use “extinction” only for this, and “absorption” will be used only in the case of photon 
destruction (some say “true absorption”) for photon destruction


• Notation: some authors use  for the monochromatic absorption coefficient (and not extinction) per 
unit length. Watch out for the definition of the quantities!

λ ≪ a a
σν = π a2

a ≪ λ σν ≪ π a2

κν σν κν =
σν

m
m

αν cm2 cm−3 = cm−1

κν



1.2 Extinction coefficient
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• What does the index  mean in  ? 


‣ What is the conversion factor between  and ? 


‣ And between  and  ?


‣ Is it useful to define  a total extinction coefficient  ?


• For a medium that contains several types of particles, that each have their own 
extinction coefficient:


• how can we define partial extinction coefficients?


• How can we combine them to obtain a total extinction coefficient (for 
)?

ν αν

αν αλ

κν κλ

α = ∫ αν dν

αν, κν, and σν



1.3 Optical depth
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• Optical depth/thickness is the number of mean free paths in a medium in the 
direction of propagation


• It is noted . It has no unit and no dimension


• Do not mix the optical depth and the opacity, as certain people often mistakenly 
use “opacity” instead of “optical depth”. 


• If , the medium is said to be optically thin


‣ In this case, the photons have no or very few interactions with the medium


• If , the medium is said to be optically thick


‣ What we see in this case is the region where photons had their last interaction, 
ie the layer from which they escape. It is then possible to define a “surface”

τν

τν ≪ 1

τν ≫ 1



1.3 Optical depth
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• Optical depth depends on the wavelength. A medium can be optically thick at one wavelength and 
optically thin at another. 


• Is the sun optically thick at all wavelengths?


• Link between the optical depth, the extinction coefficient, and the mean free path


‣ With §1.1, we have , where  is the mean free path and  the length of the medium.


‣  is the number of mean free paths in the medium, which is the definition of , i.e. 




‣ Over an infinitesimal length , the intensity changes by . 

I = I0 e− Δs
lfree lfree Δs

Δs
lfree

τν

τν =
Δs
lfree

= αν Δs

ds dIν = − Iν
ds
lfree

= − Iν αν ds

⇒
dIν

ds
= − αν Iν



1.3 Optical depth
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• The optical thickness is defined in the direction of propagation: 


• The optical thickness between two points along the ray can be written

, where  is the extinction coefficient at  along the ray, between 

two points and  such as , with  along the direction of propagation


• This definition is relevant in the object’s viewpoint

dτν = αν ds

τν(s0, s1) = ∫
s1

s0

αν(s)ds αν(s) s

⃗x ⃗x0 ⃗x = ⃗x0 + s ⃗n ⃗n

Optical depth vs. optical thickness

0 τν

0 s •  and  increase in the 
same direction.
τν s



1.3 Optical depth
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• The optical depth is defined in the direction opposite the direction of propagation: 



• The optical depth  increases in the opposite direction to that of 


• This definition is relevant from the observer’s viewpoint


• Not all authors make the distinction

dτν = − αν ds

τν s

Optical depth vs. optical thickness

0τν

0 s



1.3 Optical depth
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• Except for very particular cases (masers),  


• What is the dimension of  and  ? Do optical depths add up ?


• We can also define  using  and  instead of 


• What is the meaning of the index  in ?


‣ How can we convert  in ?


‣ What is the meaning of ?


• What is the optical depth of a homogeneous model of length  and of mean free 
path ?

τν > 0

τν dτν

dτν σν κν αν

ν τν

τν τλ

∫
∞

0
τν dν

D
lν



2. Emissivity
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• We consider a medium that can emit electromagnetic radiation, ie that can add photons along the 
direction of propagation.


• The number of added photons, ie the added energy, is proportional to the number of emitting 
particles, to the time interval , to the bandwidth interval , and to the emission solid angle dt dν dΩ

dΩ

• The proportionality coefficient is called the emissivity and is noted  . It is defined either per unit 
volume (as in this lecture) or per unit mass.


• 


• Unit: 


• The emissivity depends on the location, time and frequency, like the intensity 

jν

dEν = jν dV dt dν dΩ

erg s−1 cm−3 Hz−1 sr−1

Iν



2. Emissivity
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• The emission volume  is equal to the product of the section  and the path 
: 

dV dA
ds dV = dA ds

• Combining the expression of the intensity seen in Chapter 2, , 
and the definition of , , we obtain:


•  for an only-emitting medium


• It is the intensity added along the optical path by the local photon emission


• Note that  is sometimes written 

dEν = Iν dA dt dν dΩ
jν dEν = jν dV dt dν dΩ

dIν = jν(s) ds

jν ϵν

dV
dA

ds



2. Emissivity
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• Why is the emission coefficient defined in terms of intensity and not in terms 
of flux?


• For two types of particules or emission processes, what is the total emission 
coefficient (at the same frequency)?



3. Formal transfer equation
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3.1 General form
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• In the previous form, we had written that the radiative energy remained constant if 

there was no interaction with the medium: 


• If there are interactions with the medium this equation is modified:


‣ By an extinction term:   (  is the coordinate along 
the ray)


This is the formal radiative transfer equation for a pure extincting medium (not 
emitting). The equation is valid along a ray, for any ray that crosses the medium


‣ By an emission term: 

dIν( ⃗n , s)
ds

= 0

dIν( ⃗n , s)
ds

= − αν(s) Iν( ⃗n , s) s

dIν( ⃗n , s)
ds

= jν(s)



3.1 General form
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• Adding these two terms we obtain     which 
is the formal radiative transfer equation


 is the coordinate along , the direction of propagation


• Vector form of the radiative transfer equation: 

dIν( ⃗n , s)
ds

= jν(s) − αν(s) Iν( ⃗n , s)

s ⃗n

⃗n ⋅ ⃗∇ Iν( ⃗x , ⃗n ) = jν( ⃗x , ⃗n ) − αν( ⃗x ) Iν( ⃗x , ⃗n )



3.1 General form
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• The radiative transfer equation can be written with the optical depth





‣ with , this yields: 


‣ And with :       

dIν( ⃗n , s)
ds

= jν(s) − αν(s) Iν( ⃗n , s)

dτν = αν ds
dIν( ⃗n , s)

dτν
=

jν(s)
αν(s)

− Iν( ⃗n , s)

dτν = − αν ds
dIν( ⃗n , s)

dτν
= Iν( ⃗n , s) −

jν(s)
αν(s)



3.2 Integral expression
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• In the absence of emission, the equation is  , 
which by integration gives





• If the medium extends from  to  along the direction of propagation, with 
 the optical depth from  to .

dIν( ⃗n , s)
ds

= − αν(s) Iν( ⃗n , s)

Iν( ⃗n , s1) = Iν( ⃗n , s0) e−τν(s0,s1)

s0 s1
τν(s0, s1) s0 s1

ss0 s1

Iν(s0) Iν(s1) The medium is not 
necessarily cylindrical, 
this is just an illustration



3.2 Integral expression
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• For emission in a medium that does not absorb, the (formal) solution  is trivial:





• For emission in an extincting medium, we have to take into account the attenuation of the 
signal between  and : 





• So that adding both contributions, the formal transfer equation is


 , where little has been solved, really

Iν( ⃗n , s1) = ∫
s1

s0

jν(s) ds

s s1

Iν( ⃗n , s1) = ∫
s1

s0

jν(s) e−τν(s,s1) ds

Iν( ⃗n , s1) = Iν( ⃗n , s0) e−τν(s0,s1) + ∫
s1

s0

jν(s) e−τν(s,s1) ds



4. Source function
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• In the expression of the radiative transfer equation with the optical depth, the term  has 
appeared. 


• For reason that will become clear in the next section, we define the source function , which is





• The transfer equation becomes then





• Interpretation: the source function acts as an “attractor” for the intensity: at each point along 
the ray, the intensity tends towards  in the course of the propagation. If  is constant along 
the ray, the intensity reaches  asymptotically after a few mean free paths.

jν/αν

Sν

Sν =
jν
αν

dIν( ⃗n , s)
ds

= αν(s) [Sν(s) − Iν( ⃗n , s)]

Sν Sν
Sν



4. Source function
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• In the constant case:





At each step,  comes closer to 


• If  is not constant,  is always “late” but will try to approach  along the 
direction of propagation

Iν(s + Δs) − Iν(s)
Δs

= αν(s) [Sν − Iν(s)] ⇒ Iν(s + Δs) = αν(s)Δs [Sν − Iν(s)] + Iν(s)

Iν(s) Sν

Sν Iν Sν

s s + Δs

Sν

Iν(s)



4. Source function
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• This integral expression can also be derived from the transfer equation with the optical depth. We will assume 
  for convenience.


, in which we multiply each term by  and integrate:











s0 = 0
dIν

dτν
= Sν(s) − Iν(s) eτ

∫
τν(s)

0
eτ dIν

dτ
dτ = ∫

τν(s)

0
eτ [Sν(s) − Iν(s)] dτ

[eτ Iν]
τν(s)

0
− ∫

τν(s)

0
eτ Iν dτ = ∫

τν(s)

0
eτ Sν dτ − ∫

τν(s)

0
eτ Iν dτ

eτν(s) Iν(s) − Iν(0) = ∫
τν(s)

0
eτ Sν dτ

⇒ Iν(s) = e−τν(s) Iν(0) + ∫
τν(s)

0
e−(τν(s)−τ) Sν dτ



4. Source function
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• We can also define the source function with  and  for the extinction coefficient


‣ 


• If different processes contribute to emission and extinction at frequency , how 
can we define the total source function in terms of the individual source functions 
attached to each process?


‣                    


‣ , where  and 

σν κν

Sν =
jν
αν

=
jν

σν n
=

jν
κν ρ

ν

jtot
ν = jA

ν + jB
ν αtot

ν = αA
ν + αB

ν

Stot
ν =

jtot
ν

αtot
ν

=
αA

ν SA
ν + αB

ν SB
ν

αA
ν + αB

ν
SA

ν =
jA
ν

αA
ν

SB
ν =

jB
ν

αB
ν



4. Source function
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• Three quantities are used, ,  and  to describe the addition and subtraction of intensity 
along the direction of propagation.


• Most often,  and  are used instead of  and . There are two reasons for this


‣ We can then have a “symmetric” transfer equation 


‣  and  tend to be much more independent of one another than  and .

jν αν Sν

αν Sν jν αν

dIν

dτν
= Sν − Iν

αν Sν jν αν

For a bound- 
bound transition

ν0 ν

αν

ν0 ν

jν

ν0 ν

Sν Emissivity and absorption are 
linked. Both peak at the line 
frequency but  is a much 

smoother function. Both 
peaks nearly cancel out

Sν

 and  look alike but   depends much more on the number of photons of the radiation fieldjν αν jν



4. Source function
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• For a bound-bound transition,   and  both vary quickly


‣ What is the total source function if there is additionally an emission  
and an absorption  at the frequency of the line?


‣ When do we have  and ?


‣ Show that  hardly varies over the linewidth if 

jline
ν αline

ν

jcont
ν

αcont
ν

Stotal
ν ≃ Sline

ν Stotal
ν ≃ Scont

ν

Stotal
ν Sline

ν ≃ Scont
ν

Application



4. Source function
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• Individual source functions:  and 


• Total source function: 


if we denote 

Sline
ν =

jline
ν

αline
ν

Scont
ν =

jcont
ν

αcont
ν

Stot
ν =

αline
ν Sline

ν + αcont
ν Scont

ν

αline
ν + αcont

ν
=

Scont
ν + ην Sline

ν

1 + ην

ην =
αline

ν

αcont
ν

ν0 ν

αtot
ν

0

αline
ν

αcont
ν

ν0 ν

Sν

0

Sline
ν

Scont
ν

If , ην ≫ 1 Stot
ν ∼ Sline

ν

If , ην ≪ 1 Stot
ν ∼ Scont

ν

If ,  
depends on frequency

Sline
ν ≠ Scont

ν Stot
ν



4. Source function
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• Far from the line,  so that 


• On the line,  and 


• If , the variations of  are very small: both straight lines at  and 
 overlap, and  “oscillates” between both lines, ie  does not depend on 

frequency


• If ,  varies with frequency even if  doesn’t, because  follows the variations 
of 

αline
ν ≪ αcont

ν Stot
ν ≃ Sline

ν

αline
ν ≫ αcont

ν Stot
ν ≃ Scont

ν

Sline
ν ∼ Scont

ν Stot
ν Sν = Sline

ν
Sν = Scont

ν Stot
ν Stot

ν

Sline
ν ≠ Scont

ν Stot
ν Sline

ν ην
αν

ν0 ν

αtot
ν

0

αline
ν

αcont
ν

ν0 ν

Sν

0

Sline
ν

Scont
ν

If , ην ≫ 1 Stot
ν ∼ Sline

ν

If , ην ≪ 1 Stot
ν ∼ Scont

ν

If ,  
depends on frequency

Sline
ν ≠ Scont

ν Stot
ν



4. Source function
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• Assuming that there is no photon creation, destruction  or conversion (ie  and  only depend 
on monochromatic scattering), what is the source function?


‣ With scattering (assumed to be isotropic and elastic), photons  only change direction


‣ Photons scattered out of the beam (losses): 


‣ Photons scattered into the beam: 


‣ If we assume  time invariability, at each location the total emission in all directions has to be 

equal to the total extinction  in all directions: 


‣ By definition, , and assuming isotropy, we obtain


   

jν αν

dIν = αν Iνds

dIν = jνds

∫ jν dΩ = ∫ αν Iν dΩ

Jν = 1/4π∫ Iν dΩ

jν = αν Jν ⇒ Ssca
ν =

jν
αν

⇒ Ssca
ν = Jν



4. Source function
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• Extinction of the radiation at visible wavelengths in the Earth atmosphere mostly 
depends on Rayleigh scattering. 


‣ What is the corresponding source function ?


‣ This is a similar situation as in the previous example: 


‣ The integration of the right term is essentially over the solid angle subtended 
by the Sun (the contribution of other directions comes from solar photons 
which have already been scattered and is therefore much weaker)


‣ The result is the same as before


• What is the meaning of ? And ? Is it possible to have  
and ?

∫ jν dΩ = ∫ αν Iν dΩ

Sν = 1 Sν/Iν = 1 Sν > Iν?
Sν < 0



5. Solution of the transfer equation in simple cases
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• We are going to derive solutions of the transfer equation in particularly simple cases


• These cases are widely used, even when it is not always justified and when they are 
just coarse approximations


• These (often trivial) “resolution methods” were the only ones at our disposal before 
the advent of powerful calculators and the development numerical methods


• These approximations concern the geometry (e.g. plane parallel), the medium (e.g. 
homogeneous), the coupling between matter and radiation (e.g. thermodynamic 
equilibrium, in the next chapter)


• One has to bear in mind that running a complex model (often time consuming) is not 
always better, and depends on how many constraints we have: if we want to 
determine a molecular abundance from a single spectrum, we will not get a better 
result by running a 3D radiative transfer model.



5.1 Homogeneous medium
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• In a homogeneous medium, neither  nor  vary in space


• As a consequence, the source function  is also spatially invariant


• We start from the integral form of radiative transfer: 

, where we use the fact 

that  are independent of .


• 


• The last term can be evaluated as follows

jν αν

Sν

Iν( ⃗n , s1) = Iν( ⃗n , s0) e−τν(s0,s1) + ∫
s1

s0

jν(s) e−τν(s,s1) ds

jν = αν Sν s

Iν( ⃗n , s1) = Iν( ⃗n , s0) e−τν(s0,s1) + αν Sν ∫
s1

s0

e−τν(s,s1) ds



5.1 Homogeneous medium
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•  (definition of )∫
s1

s0

e−τν(s,s1) ds = ∫
s1

s0

e− ∫s1
s αν ds′ � ds τν

= ∫
s1

s0

e−αν ∫s1
s ds′� ds (  independent of )αν s

= ∫
s1

s0

e−αν (s1−s) ds

= [e−αν (s1−s)

αν ]
s1

s0

=
1
αν

(1 − e−αν(s1−s0))



5.1 Homogeneous medium
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• Expression of  for a homogeneous medium: 



• This is a very widely used expression, also with the form



where  is the background intensity, and  is the optical depth of the 
medium (total optical depth)

Iν( ⃗n , s)
Iν( ⃗n , s1) = Iν( ⃗n , s0) e−τν(s0,s1) + Sν (1 − e−τν(s0,s1))

Iν(s) = Iν(0) e−τν(s) + Sν (1 − e−τν(s))
Iν(0) τν

0 D

Iν(0) Iν(D)Iν(s)

τν(s)



5.1 Homogeneous medium
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• Optically thick medium: 





• Optically thin medium: 


τν(s) ≫ 1

Iν(s) ∼ Sν

τν(s) ≪ 1

Iν(s) ∼ Iν(0) − τν(s) Iν(0) + τν(s) Sν = Iν(0) + τν(s) [Sν − Iν(0)]



5.1 Homogeneous medium
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• For a non-illuminated optically thin object: 


• If , the intensity is increased with respect to the above case


• If , the intensity decreases towards the source function


• In the optically thick case, the intensity tends towards , independent of 

Iν(D) = Sν τν(D)

Iν(0) ≠ 0

Iν(0) > Sν

Iν(D) ∼ Sν Iν(0)

Iν(D) = Sν

Iν(D)

0
0

τν(D)1

Iν(D) = Sν τν(D)

 as a function 
of the medium’s 

optical depth

Iν(D)



5.1 Homogeneous medium
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• What is the outgoing intensity for a semi-infinite homogeneous medium


‣ How does it depend on the viewing angle ?


‣ What is the intensity in an infinite homogeneous medium?


‣ Why are these intensities independent of the amount of extinction in the medium?


‣ Are they independent of its nature?

θ



5.1 Homogeneous medium

41

• We now consider a plane parallel medium, and the intensity along a beam tilted with respect to 
the medium of thickness . The inclination is .


•  is the optical thickness along the beam, and  is the optical depth perpendicular to the 
medium

D μ = cos θ

τν τν′�

0

D
z

τν

τν′�

θ The intensity along the beam was
Iν(s) = Iν(0) e−τν(s) + Sν (1 − e−τν(s))
τν(z = D) = αν ∫

D

0

dz
μ

=
αν D

μ

For the optical depth, the origin for  is for : 

A radial ( ) beam has   
The equation is: 

For a beam inclined by , the path is longer by a factor 


τν′� z = D τν′�(z = D) = 0
⊥ τν′�(z = 0) = τν(D) (μ = 1)

Iν(D) = Iν(0) e−τ′�ν(0) + Sν (1 − e−τ′�ν(0))
μ 1/μ

Iν(D, μ) = Iν(0,μ) e−τ′�ν(0)/μ + Sν (1 − e−τ′�ν(0)/μ)



5.1 Homogeneous medium
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• A homogeneous medium contains particles that produce a continuous emission  and 
extinction  at frequency  and also particles that produce a bound-bound emission  
and extinction  centred at .


• Both corresponding source functions are equal: 


• What is the outgoing intensity at the line frequency in the following cases - In each case is the 
line in emission or in absorption


(a)  


(b)   and 


(c)   and 


(d)   and 

jcont
ν

αcont
ν ν0 jline

ν
αline

ν ν0

Scont
ν = Sline

ν

τν(D) ≫ 1

τν(D) ≪ 1 Iν(0) = 0

τν(D) ≪ 1 Iν(0) < Stot
ν

τν(D) ≪ 1 Iν(0) > Stot
ν



5.1 Homogeneous medium
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• Because ,  varies very little and on the line we have 
. The variations of the intensity as function of frequency only come 

from .


(a)     (optically thick case). In this case, there is no line because of 
the homogeneity of the medium (  hardly varies with frequency)

Scont
ν = Sline

ν Stot
ν

Stot
ν ∼ Scont

ν
αν

Iν(D) = Sν
Stot

ν
Iν

Sν

νν00



5.1 Homogeneous medium
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(b)   


(c) 


(d) 

Iν(D) = (αcont
ν + αline

ν ) D Stot
ν

Iν(D) = Iν(0) + [Sν − Iν(0)] (αcont
ν + αline

ν ) D

Iν(D) = Iν(0) − [Iν(0) − Sν] (αcont
ν + αline

ν ) D

Iν Sν

νν00

Iν Sν

νν00

Iν

Sν

νν00

Iν(0)

Emission line Absorption lineEmission line(b) (c) (d)

Iν(0)



5.1 Homogeneous medium
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In the case the optical depth in  is large (ie ), the line saturates and 
cannot  exceed 

ν0 τν0
> 1

Sν

Iν Sν

νν00

Iν

Sν

νν00

Iν(0)

Absorption lineEmission line



5.2 Plane parallel medium
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• The homogeneity hypothesis is often not very realistic (which does not prevent us from 
using it)


• In certain media, we can consider an axial symmetry if we suppose that the object is made 
of parallel layers, ie the only variations are in the (vertical)  direction.


• This approximation is very important, in particular to treat stellar and planetary atmospheres


• In this case, the gas variables (like temperature, density) do not depend on  and , but only 
on  (the vertical coordinate). The problem has a translation symmetry along  and , and 
also a rotation symmetry in the plane ( ).


• This reduces the dimension of the problem from 3 spatial dimensions to one, and from a 
total of 6 dimensions to 3. The remaining dimensions are the  coordinate, the angle  such 
as  and the frequency . The angle  disappears because of the rotation 
symmetry in the plane ( )

z

x y
z x y

xy

z θ
μ = cos θ ν ϕ

xy
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• However, even though the geometry is formally 1-D, this does not mean that photons 
move along the  axis. Photons move in the 3 directions of space, and the problem is 
really a 3-D problem, we just do not have to look at the dependency in  and . The only 
dependency that counts for the direction is that on .


• Solving the radiative transfer in the plane parallel geometry gives the 3D solution

z
x y

θ

z
θ

 is along the rayds
dz = cos θ ds = μ ds

• The transfer equation becomes:  μ
dIν(z, μ)

dz
= jν(z) − αν(z) Iν(z, μ)

μ
dIν(z, μ)

dz
= αν(z)[Sν(z) − Iν(z, μ)]



5.2 Plane parallel medium
• Integrating the transfer equation along  is equivalent to integrating the equation 

with   along the direction of propagation 


• The moments of the intensity in plane parallel geometry can be written








dz
dIν

ds
⃗n

Jν =
1
2 ∫

1

−1
Iν(μ) dμ

Hν =
1
2 ∫

1

−1
Iν(μ) μ dμ

Kν =
1
2 ∫

1

−1
Iν(μ) μ2 dμ
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These quantities are all scalar, because 
we are only interested in components 
along z



5.2 Plane parallel medium
• For a stellar atmosphere, we rather use optical depth rather than optical 

thickness (we are more interested in the observer’s point of view) 
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τν

θτν = 0

Iν

Iν − dIν

τν

τν + dτν

• With these definitions, the transfer 
equation is written as follows:


       

 with  

μ
dIν

dτν
= Iν − Sν

dτν = − αν dz = − αν μ ds

• We will now integrate this equation formally: we multiply each term by 
 and integrate the left side of the equation by partexp(−τν/μ)



5.2 Plane parallel medium

Formal solution - to obtain a more explicit solution, we need boundary 
conditions

50

[Iν(τ′�ν ) exp (−
τ′�ν

μ )]
τν2

τν1

+ ∫
τν2

τν1

1
μ

exp (−
τ′�ν

μ ) Iν(τν′�) dτν′� = ∫
τν2

τν1

1
μ

exp (−
τ′�ν

μ ) Iν(τν′�) dτν′�− ∫
τν2

τν1

1
μ

exp (−
τ′�ν

μ ) Sν(τν′�) dτν′�

⇒ [Iν(τ′�ν ) exp (−
τ′�ν

μ )]
τν2

τν1

= − ∫
τν2

τν1

1
μ

exp (−
τ′�ν

μ ) Sν(τν′�) dτν′ �



5.2.1 Stellar atmosphere
• There are two boundary conditions for a stellar atmosphere


‣ There is no incoming radiation at the surface. This means that for  (incoming radiation), 
the intensity at the stellar surface, which is defined by a zero optical depth, is zero: 




The formal solution becomes 








Note that the intensity for  is often written 

μ < 0

μ < 0, μ = − |μ|, Iν(τν1
= 0) = 0

Iν(τν) exp (−
τν

μ ) − Iν(0) = − ∫
τν

0

1
μ

exp (−
τ′�ν

μ ) Sν(τν′�) dτν′�

∀ μ < 0 Iν(0) = 0

I−
ν (τν) = ∫

τν

0

Sν(τν′�)
|μ|

exp (−
τ′�ν − τν

μ )dτν′�

μ < 0 I−
ν
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5.2.1 Stellar atmosphere

‣ For , the radiation cannot be infinite, so that the first term on the left-hand side of the 

equation  tends to 0 (the intensity is finite and does not increase 

exponentially, so the product of the intensity by an exponential that tends towards 0 has to be 0)





 :   


The radiation coming out of the surface is then


τν → ∞

Iν(τν → ∞) exp (−
τν → ∞

μ )
Iν(τν → ∞) exp (−

τν → ∞
μ ) − Iν(τν) exp (−

τν

μ ) = − ∫
∞

τν

Sν(τν′�)
μ

exp (−
τ′ �ν

μ ) dτν′�

μ > 0 I+
ν (τν) = ∫

∞

τν

Sν(τν′�)
μ

exp (−
τ′�ν − τν

μ )dτν′ �

I+
ν (0) = ∫

∞

0

Sν(τν′�)
μ

exp (−
τ′�ν

μ )dτν′�
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5.2.1 Stellar atmosphere
•  For , (vertical direction), we obtain:




• The outgoing intensity is determined by the source function, with variations  towards the 
inside of the medium damped by a factor . This factor quickly decreases with 
increasing optical depth, and limits the value of the integral to the top layers of the object.

μ = 1
I+
ν (τν = 0, μ = 1) = ∫

∞

0
Sν(τν′�) exp (− τ′�ν) dτν′�

exp (− τ′�ν)
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0 1 2 3 4 τ′�ν

e−τ′�ν

Sν

From which altitude does the radiation escape?



5.2.1 Stellar atmosphere

• We can develop the source function in a Taylor series: 




Which we inject into the expression of the intensity 




Where we have used 

Sν(τν) =
∞

∑
n=0

an τn
ν = a0 + a1 τν + a2 τ2

ν + . . . + an τn
ν

I+
ν (τν = 0, μ) = ∫

∞

0

Sν(τν′�)
μ

exp (−
τ′�ν

μ )dτν′� = a0 + a1 μ + 2 a2 μ2 + . . . + n! an μn

∫
∞

0
xn exp(−x) dx = n!
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Eddington-Barbier approximation



5.2.1 Stellar atmosphere

• If we truncate after the first terms:





• This is the Eddington-Barbier approximation: the observed intensity is 
approximately equal to the source function where the optical depth is of the 
order of .


• This relation is exact if  varies linearly with with optical depth, but in the 
general case, it is an approximation

I+
ν (τν = 0, μ) = a0 + a1 μ = Sν(τν = μ)

μ

Sν
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Eddington-Barbier approximation



5.2.1 Stellar atmosphere

• For an outward vertical intensity ( )





• The emerging intensity is  close to the source function at on optical depth of 1 (one mean free 
path from the surface).


• It is often said that the photons come from an optical depth of one.

μ = 1

I+
ν (τν = 0, μ = 1) = Sν(τν = 1)
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Eddington-Barbier approximation

0 1 2 3 4 τ′�ν

e−τ′�ν
Sν

• This does not mean that all photons escaped from an optical depth of 



• Photons escape from the whole medium but are considered collectively 
by the value of the source function at 


• The integrand  extends from the surface to large   
values (even ) until the exponentiel factor “cuts” it

τν = 1

τν = 1

Sν(τν′ �) exp (− τ′�ν) τν
τν ∼ 10

Sν e−τ′�ν



5.2.1 Stellar atmosphere

• If , the ray is slanted. What 
matters is the optical depth along 
the direction of propagation of the 
ray

μ ≠ 1
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Eddington-Barbier approximation

π
3

I+
ν If θ = π/3, μ = 1/2

I+
ν (τν = 0, μ) = Sν(τν = 1/2)

• What is the flux arising from an optically thick medium for which  linearly varies 
with ?


• 


• Assuming   

Sν
τν

F+
ν = Fν(μ > 0) = 2π ∫

1

0
μ Iν dμ = 2π∫

1

0 ∫
∞

0

Sν(τν′�)
μ

exp (−
τ′ �ν

μ )μ dτν′ �

Sν(τν) = a0 + a1 τν ⇒ I+
ν (0, μ) = a0 + a1 μ



5.2.1 Stellar atmosphere
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Eddington-Barbier approximation







• This is the Eddington Barbier approximation for the flux at the surface. It is an 
exact relation is the source function varies linearly with , and an approximation 
otherwise


• The outgoing flux and intensity are approximately equal to the source fonction in 
the superficial layers (e.g. of stars), those where , and the most internal 
layers do not contribute to the outgoing radiation, the source function being 
exponentially absorbed

F+
ν (0) = 2π∫

1

0
(a0μ + a1 μ2) dμ = 2π [ a0 μ2

2
+

a1 μ3

3 ]
1

0
= π [a0 +

2
3

a1]
⇒ F+

ν (0) = π Sν(τν = 2/3)

τν

τ ≤ 1



5.2.1 Stellar atmosphere
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Eddington-Barbier approximation

• In fact, the source function decreases towards the stellar surface


• For the Sun, we can see several points on the solar disk


‣ At the edge, we see down to a depth of  the source function in the most superficial layer


‣ At the centre ( ) we see deeper layers


‣ Because  decreases towards the outer layers, the edges will appear less bright than the centre


‣ This is called limb darkening

μ = 0

μ = 1

Sν



Limb darkening

5.2.1 Stellar atmosphere



5.2.1 Stellar atmosphere
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• For an optically thin object, the intensity is


, with  the thickness of the (homogeneous) medium


• For an optically thick object, we have





• In both cases the source function  and the extinction coefficient  have 
to be specified. In the optically thick case, we must also know  to 
determine the location where 


• These quantities are different depending on the radiation process

Iν ≃ Sντν = αν Sν D D

Iν ∼ Sν(τν = μ)

Sν αν
αν

τν = μ



5.2.1 Stellar atmosphere
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• If for a narrow frequency range (ie a spectral line), the absorption coefficient is much 
larger than for the neighbouring frequencies, the outgoing intensity will come from 
superficial layers where the source function is smaller and from deeper layers where 
the source function is larger in the neighbouring frequencies


• The calculation of the integral  is one of 

the most difficult tasks in astrophysics


• Indeed, it consists in determining for each height in the stellar atmosphere both the 
optical depth (which depends on that of all above-located points) and the value of 
the source function, which depends on the temperature, itself a function of the way 
the radiation varies throughout the atmosphere


• Moreover the various frequencies are coupled and the intensities varies very rapidly 
as a function of frequencies in the spectral lines

I+
ν (τν = 0, μ) = ∫

∞

0

Sν(τν′�)
μ

exp (−
τ′ �ν

μ )dτν′�



5.2.2 Homogeneous finite plan parallel layer
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• This is approximation is often used for tenuous media like ionised nebula of interstellar 
clouds


• We have already seen this in §5.1 in the general case and in the case where μ ≠ 0

Iν(0) Iν(D)

l = 0 l = D
τν = 0 τν = τν(D)

• Boundary conditions


‣   incoming intensity in the layer at 


‣ No incoming radiation for 

Iν(τν = 0) = Iν,0 τν = 0

τν = τν(D)



5.2.2 Homogeneous finite plan parallel layer
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• The solution of the radiative transfer equation is 




                   


(  is the source function and is constant in the layer)


‣ Non emitting case: 


e.g. a cold cloud in front of a bright source. The intensity is equal to the 
incoming intensity attenuated by the absorption in the layer

Iν(τν(D), μ) = Iν,0 exp (−
τν(D)

μ ) + ∫
τν(D)

0
Sν exp (−

τ′ �ν

μ ) dτ′ �ν

μ

= Iν,0 exp (−
τν(D)

μ ) + Sν[1 − exp (−
τν(D)

μ )]
Sν

Iν(τν(D), μ) = Iν,0 exp (−
τν(D)

μ )



5.2.2 Homogeneous finite plan parallel layer
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‣ Optically thin case: 





                   


The outgoing intensity is equal to the integrated emissivity, increased by the incoming 
intensity attenuated by the layer absorption


‣ Optically thick layer: 


  :   The outgoing intensity is equal to the source function


τν ≪ 1

Iν(τν(D), μ) = Iν,0 exp (−
τν(D)

μ ) + Sν
τν(D)

μ

= Iν,0 exp (−
τν(D)

μ ) +
D jν
μ

τν ≫ 1

Iν(τν(D), μ) ≃ Sν



5.2.2 Homogeneous finite plan parallel layer
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• The resulting fluxes are


‣ Optically thin case:                 ( )


‣ Optically thick case: 


• And the luminosity 


‣ Optically thin case: 


‣ Optically thick case: 


• For an optically thin layer, we are sensitive to the whole emissivity and the power is 
proportional to the volume, whereas for an optically thick layer,  we can see the source 
function, and the power is proportional to the surface

Fν = 2π D jν = 2π∫
1

0

D jν
μ

μ dμ

Fν = π Sν

Lν = Fν × surface

Lν = 2π jν × volume

Lν = π Sν × surface



5.3 Eddington approximation
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• We consider a plane parallel medium. It is not a necessary condition, but this 
will help to introduce the method


• This approximation is very much used in the deep layers of stellar 
atmospheres where plan parallel geometry applies. In this case, we have  

, 


• In this section, we also consider there is no scattering


• The moments of the intensity can be written: 




(we could also use  and )

μ = cos θ dμ = sin θ dθ

Jν =
1
2 ∫

1

−1
Iν dμ Fν = 2π ∫

1

−1
Iν μ dμ Pν =

2π
c ∫

1

−1
Iν μ2 dμ

Hν = Fν/4π Kν = c/4π Pν



5.3 Eddington approximation
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• The transfer equation is:  


• Assuming  is isotropic and integrating the transfer equation over , we obtain:   , 

where we have defined 


• Note that assuming the medium isotropic does not imply that the intensity is isotropic, only the source 
function is isotropic


• Multiplying the transfer equation by , we obtain: 


• After integration over :  


The term  disappears because  is isotropic

μ
dIν

dτν
= Iν − Sν

Sν dΩ
dFν

dτν
= 4π (Jν − Sν)

dτν = αν ds

μ μ2 dIν

dτν
= μ (Iν − Sν)

dΩ c
dPν

dτν
= Fν

∫ μ Sν dΩ Sν
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69

• From these two “moments of the transfer equation”, we derive 




• The Eddington approximation consists in adding a closure relation: 


• This equation is exact in an isotropic medium: see Chapter 2,  

(always true) and  (valid in an isotropic medium)


• The approximation consists in using this method when the medium is nearly 
isotropic, like in the deep layers of stellar atmospheres. It is often used and gives 
good results

c
d2Pν

dτ2
ν

= 4π (Jν − Sν)

Pν =
4π
3c

Jν

uν =
4π
c

Jν

Pν =
uν

3



5.3 Eddington approximation
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• Combining these last two equations, we obtain an equation for the mean 
intensity, which only depends on the direction 





• This is the Eddington equation. It remains very hard to integrate in the general 
case where  depends on  (typically when there is scattering) and when 
frequencies are coupled.


• To solve this equation in simple cases, we can use two slightly different 
approximations for the intensity. Both these approximations lead to  

μ

1
3

d2Jν

dτ2
ν

= Jν − Sν

Sν Jν

Pν =
4π
3c

Jν
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1. Semi-isotropy approximation for the radiation: the radiation is assumed to be 
isotropic in each of both hemispheres  and :  
and  (another constant)


        


2. Two-stream approximation: the intensity is assumed to be confined to two 
directions, for which the angle cosines are  for  and  for .


        


 is slightly different for those two approximations

μ > 0 μ < 0 Iν(μ < 0) = I−
ν = cst

Iν(μ > 0) = I+
ν = cst

Jν =
I+
ν + I−

ν

2
Fν = π (I+

ν − I−
ν ) Pν =

2π
3c

(I+
ν + I−

ν ) =
4π
3c

Jν

1/ 3 I+
ν −1/ 3 I−

ν

Jν =
I+
ν + I−

ν

2
Fν =

2π

3
(I+

ν − I−
ν ) Pν =

2π
3c

(I+
ν + I−

ν ) =
4π
3c

Jν

Fν
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Solution for the Eddington equation in the case of 
a semi-infinite layer (stellar atmosphere) and

cos θ = ± 1

3

θ

We assume in addition that  varies linearly with 


The general solution of the equation   is:


Sν τν

1
3

d2Jν

dτ2
ν

= Jν − Sν

Jν − Sν = C1 exp( 3 τν) + C2 exp(− 3 τν)



5.3 Eddington approximation
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To determine the constants  and , we use the boundary conditions


- for ,  remains finite, therefore 


- for , at the surface, there is no incoming intensity, ie 


Using the two-stream approximation, we have to solve





      


C1 C2

τν → ∞ Jν − Sν C1 = 0

τν = 0 I−
ν = 0

Jν =
I+
ν + I−

ν

2
and Fν =

2π

3
(I+

ν − I−
ν ) ⇒ I+

ν and I−
ν

I+
ν = Jν +

3
4π

Fν I−
ν = Jν −

3
4π

Fν
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With   and , we obtain , which we insert in the 

previous expressions for  and  :


      


Using the boundary conditions : 


And     


c
dPν

dτν
= Fν Pν =

4π
3c

Jν
4π
3

dJν

dτν
= Fν

I+
ν I−

ν

I+
ν = Jν +

1

3

dJν

dτν
I−
ν = Jν −

1

3

dJν

dτν

Jν(0) =
1

3

dJν

dτν τν=0

Jν(0) = C2 + Sν(0) =
1

3 ( dSν

dτν
− 3 C2) ⇒ C2
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The solution is therefore





Which verifies  for .


The flux at the surface can be written





Jν(τν) = Sν(τν) +
1
2 ( 1

3

dSν

dτν
− Sν(0)) exp(− 3τν)

Jν = Sν τν → ∞

Fν(0) = (Sν(0) +
1

3

dSν

dτν ) 2π

3


