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4. Matter and radiation in equilibrium



Introduction
• In this chapter, we take a look at thermodynamic equilibrium


• The laws of thermal equilibrium are important, even when the medium is not in thermal equilibrium


• Photons (bosons) follow the Bose-Einstein statistics and can occupy the same quantum state


• Particules (fermions) follow the Fermi-Dirac statistics and obey the Pauli exclusion principle


• Thermal equilibrium is the state of a collection of interacting photons and particules in an 
enclosure. The energy distribution of photons and particles is at steady state and corresponds to 
micro-reversibility


• Macroscopically, all equipartition laws are valid and the phenomena are characterised by a single 
temperature


• Equipartition laws for radiation: Planck, Wien, Kirchhoff, Stefan-Boltzmann


• Equipartition laws for matter: Boltzmann, Maxwell, Saha
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1. Radiation at thermodynamic equilibrium
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1.1 Planck law
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1.1.1 Expression
• Energy distribution of a blackbody, of specific intensity Bν
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Iν = Bν =
2hν3

c2

1

exp ( hν
kT ) − 1

• unit:  (cgs)  //   (MKSA)


•  : Planck constant


• : Boltzmann constant


• : temperature of the medium

erg s−1 cm−2 Hz−1 sr−1 W m−2 Hz−1 sr−1

h = 6.626 10−27 erg s

k = 1.38 10−16 erg K−1

T



1.1.1 Expression
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The Planck function depends only on 
one parameter, T



1.1.1 Expression
• Planck distribution per wavelength interval
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Bλ =
2hc2

λ5

1

exp ( hc
λ k T ) − 1

• unit:  (cgs)  //   (MKSA)


• What is the relation between  and  ?

erg s−1 cm−2 cm−1 sr−1 W m−2 m−1 sr−1

Bλ Bν



1.1.2 Wien approximation
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• If  is large enough, i.e. , Planck’s law can be approximated with
ν/T hν ≫ kT

Bν ≃
2hν3

c2
exp (−

hν
kT )

• This is the Wien approximation


• It is used in the X-ray domain


• What is the Wien approximation 
expressed with ?Bλ



1.1.3 Rayleigh-Jeans approximation

9

• If  is small enough, i.e. ,   Planck’s law simplifies intoν/T hν ≪ kT exp ( hν
kT ) − 1 ≈

hν
kT

Bν ≃
2ν2

c2
k T

• This is the Rayleigh-Jeans 
approximation


• In the RJ approximation, the Planck 
function is linear with the temperature


• Widely used in radioastronomy


• What is the RJ approximation 
expressed with ?Bλ



1.1.4 Wien’s displacement law
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• Where is the maximum intensity of the Planck curve?


• Maximum intensity per frequency interval:  





• Maximum intensity per wavelength interval: 


 


• The maximum moves towards shorter wavelengths when the temperature increases


• Are the maxima of  and   at the same frequency / wavelength? Why?

dBν

dν
= 0 ⇒

νmax

T
= 5.88 1010 Hz K−1

dBλ

dλ
= 0 ⇒ λmax T = 0.29 cm K

Bν Bλ



1.1.4 Wien’s displacement law
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1.1.5 Stefan-Boltzmann law
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• Integrating Planck’s law over the entire frequency spectrum one obtains


 


•  is Stefan’s constant (not to be confused with  the extinction cross section , or 
the scattering coefficient)


• 


• Note that this expression has the dimension of an intensity. 


• What is the outwards flux for an isotropically radiating black surface?

B = ∫
∞

0
Bν dν =

σ T4

π

σ σν

σ =
2π5 k4

15 h3 c2
= 5.67 10−5 erg cm−2 K−4 s−1



1.2 Kirchhoff’s law
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• In a homogeneous, isothermal, isotropic medium (for instance a medium in an isothermal enclosure), 
thermodynamic equilibrium applies


• For each beam (in each direction), each frequency and each location in space, the intensity is  


• For the transfer equation: 


• Therefore 


•  


• This is Kirchhoff’s law for radiation in thermodynamic equilibrium: a medium in thermodynamic equilibrium can 
have any emissivity  and extinction  as long as their ratio is the Planck function.


• We also have 

Iν = Bν(T)
dIν

ds
= 0

jν(s) − αν(s) Iν( ⃗n , s) = jν(s) − αν(s) Bν(T) = 0

⇒ Bν(T) =
jν
αν

jν αν

Iν( ⃗n , s) =
jν
αν



1.2 Kirchhoff’s law
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• Full thermodynamic equilibrium is not a very interesting case in radiative 
transfer, why?


• Kirchhoff’s law also applies when the medium is in local thermodynamic 
equilibrium (LTE): the temperature can vary but in each location  we have 

, and the source function is .


• At LTE, only the source function , and not the intensity , is given by 
Planck’s law.


• LTE is far from being always valid, but Kirchhoff’s law allows us to greatly 
simplify the radiative transfer problem

Bν(Tloc) =
jν
αν

Sν = Bν(Tloc)

Sν Iν



1.2 Kirchhoff’s law
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• When LTE applies, we can write   


• Planck’s function can vary along the beam. The intensity  asymptotically tends towards 
. 


• If the temperature varies along the beam, the intensity will always tend to approach the Planck 
function, but with a delay of a few mean free paths.


• At LTE, thermodynamic equilibrium laws for both particles and radiation apply. As for full TE, 
LTE obeys also microreversibility.


• In order for LTE to apply, the distribution of particles on energy levels has to be governed by 
collisions, i.e. the density has to be high


‣ LTE is valid in the deep layers of stellar atmospheres where density is high


‣ In diluted media like most of the interstellar medium, LTE is often far from being valid

Iν( ⃗n , s)
ds

= αν [Bν(T) − Iν( ⃗n , s)]

Iν
Bν(T)



1.2 Kirchhoff’s law
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• Optically thin case


‣ Extinction can be ignored so that the RT equation becomes: 


‣ This can be integrated between two coordinates  and :   


‣ If  is large around a frequency  (spectral line), the function  will also be large around . 
If the background intensity  is much larger, the contrast will be small. Most of the time in 
optically thin sources, the background intensity is small and the spectral line has the same 
shape as the emissivity function .


‣ Bottom line: independently of the background intensity , the line is seen in emission in the 
optically thin case

dIν(s)
ds

= jν(s)

s0 s1 Iν(s1) = Iν(s0) + ∫
s1

s0

jν(s) ds

jν ν0 Iν(s1) ν0
Iν(s0)

jν

Iν(s0)

Application: spectral line formation in a stellar atmosphere



1.2 Kirchhoff’s law
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• “Optically thick” case


• We can assume additionally that LTE is valid  Kirchhoff’s law applies


• The medium is made of an optically thick background layer at  and  
a foreground layer at , to simulate a temperature gradient


• The extinction coefficient  is a Gaussian of width  centred on 


• D is the geometric thickness of the foreground layer, so that the optical depth of the foreground layer is 

 and  


• The  emission of background layer can be approximated with a blackbody function 


• What does the observed intensity look like?

⇒

Tbg
Tfg

αν γ ν0

τν = αν D τν = τ0 exp (−
(ν − ν0)2

γ2 )
Iν,bg = Bν(Tbg)

Application: spectral line formation in a stellar atmosphere

ν0

αν



1.2 Kirchhoff’s law
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• Integration of the RT equation: 


• If we consider 3 optical depths ( ), 
 and 2 temperature cases

Iν,obs = Iν,bg e−τν + (1 − e−τν) Bν(Tfg)

τ0 = 1, τ0 = 3, τ0 = 10
λ = 0.5 μm (ν0 = 6 1014 Hz)

Application: spectral line formation in a stellar atmosphere

Tbg = 5000 K, Tfg = 6000 K Tbg = 6000 K, Tfg = 5000 K

C.P. Dullemond



1.2 Kirchhoff’s law
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• Hot layer in front of cold layer  emission line


• Cold layer in front of hot layer  absorption line


• For an optically thick atmosphere with a constant temperature  no line is observed


• The shape of the line is the same as that of the extinction coefficient when .


• For  the line becomes optically thick and saturates.


• This is again the attractor effect: the intensity approaches the Planck function of the foreground 
layer. When it reaches it, it remains constant


• In the non-LTE case, instead of the Planck function , we have the source function  (the 
rest remains unchanged). It is then possible to have a line even if the temperature is constant, as 
long as 

⇒

⇒

⇒

τ0 < 1

τ0 ≫ 1

Bν(Tfg) Sν,fg

Sν,fg ≠ Iν,bg

Application: spectral line formation in a stellar atmosphere



2. Matter at thermodynamic equilibrium
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2.1 Maxwell distribution
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• Maxwell’s distribution describes the distribution of free particles on non-bound energy 
levels (equipartition of kinetic energy)


• For each velocity component, Maxwell’s distribution gives the number of particles per 
unit volume for which the projected velocity on an axis  is between  and   

 

 is the number of particules per unit volume (number density) 
 is the particle mass


• This expression is useful to determine the Doppler-broadened line shapes 
 

z υz υz + dυz

nzdυz = dnz = N ( m
2π k T )

1/2

exp (−
mυ2

z

2 k T )dυz

N
m



2.1 Maxwell distribution
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• The Maxwell distribution is a 
Gaussian for which the width 
depends on the temperature


• The figure on the right shows two 
such distributions for component 

, for two different temperatures.
υz



2.1 Maxwell distribution
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• The number of particles per unit volume for which the absolute 
value of the velocity is between   and  
(assuming isotropic velocity) is 




• Because of the term in , this distribution is no longer a 
Gaussian (but close to) and has a tail


• Distribution of particules of energy between  and 





• These distributions are normalised: 

υ = υ2
x + υ2

y + υ2
z υ + dυ

n(υ)dυ = dn(υ) = N ( m
2π k T )

3/2

4πυ2 exp (−
mυ2

2 k T )dυ

4πυ2

E E + dE

n(E)dE = dn(E) = N ( 1
π k T )

3/2

2π E exp (−
E

k T )dE

∫
∞

0
dn = N

n(υ)



2.1 Maxwell distribution
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• The most probable velocity is 


• What is the most probable value for a velocity component (e.g. )?


• What is the mean energy of a particle?


• What is the mean Doppler velocity along the line of sight?


• For relativistic particles, the distribution has a more complex expression: Maxwell-Jüttner 
distribution:


 

 is the modified Bessel function of the second kind, and 

υ = 2 kT/m

υz

< E > = < 1/2 m υ2 >

< υ2
z >1/2

n(γ) =
γ2 m c2 1 − 1/γ2

kT K2(mc2/kT)
exp (−

γ m c2

kT )
K2 γ = 1/ 1 − υ2/c2



2.2 Boltzmann distribution
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• The Boltzmann distribution the distribution of particles of one kind (atoms, molecules, ions) on 
quantified energy levels. It applies to bound levels.


• For two levels of energy  and  (measured from ground state) with  and 
, the populations of the levels (number of particles per unit volume) are given by


• 


• The index  indicates the ionisation state: the Boltzmann distribution applies to levels in the same 
ionisation state. In the following, we will omit .


• This distribution law can apply to electronic, vibrational, or rotational levels


•  and  are the statistical weights of the levels (given in spectroscopic tables)

Eu El Eu > El
Eu − El = Δ Eul

nu,i

nl,i
=

gu,i

gl,i
exp (−

ΔEul

kT )
i

i

gu,i gl,i

ΔEul = hν



2.2 Boltzmann distribution
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• In LTE, we can define the partition function:





• The Boltzmann distribution can be expressed as





• Note that the partition function is only defined at thermodynamic equilibrium

Z = ∑
j

gj exp (−
Ej

kT )
nj

N
=

1
Z

gj exp (−
Ej

kT )

Partition function



2.2 Boltzmann distribution
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• The energy levels or energy differences between levels are often given in eV (electronic levels or 
transitions),  (vibrational levels or transitions), or in K (rotational levels or transitions), and not in 
erg.


•  


• Wavenumbers (in ) are defined by 


• For low energies, the level energy is often given as a temperature such as 


• Usually, level energies are measured upwards from the ground state within each ionisation state


• The same goes for the ionisation energies


• In some cases though, energies are measured downwards from the ionisation energy


• What energy in eV is associated to a spectral line of wavelength  ?

cm−1

1 eV = 1.602 10−12 erg = 1.602 10−19 J

cm−1 σ = c ⋅ ν = c E / h

T = hν/k = E/k

λ = 500 nm



2.3 Saha equation
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• Saha’s equation describes the distribution of particles of the same species in different ionisation states.


• For the ground state: 


‣  electron density


‣  electron mass,  


‣  and  , populations (number density of ions) in the ground state of the ionisation degree  
and  (adjacent ionisation degrees)


‣  and  the statistical weights of these levels


‣  the ionisation potential of the ion  in the th ionisation degree (required energy to remove one electron 
of the ion in its ground state and ionisation degree )


‣ The factor 2 comes from the statistical weight of the freed electron (2 possible spin values)

ni+1,0 ne

ni,0
= 2

gi+1,0

gi,0 ( 2π me kT
h2 )

3
2

exp (−
Ei

kT )
ne

me me = 9.1 10−28 g

ni+1,0 ni,0 i + 1
i

gi+1,0 gi,0

Ei i
i



2.3 Saha equation
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• Using Boltzmann’s law, we obtain, for all levels of the ionisation degree


•  


‣  and   are the number density of ions in the ionisation degrees  and 


‣  and  are the partition functions of these ionisation states


• At low temperatures, the exponential factor is very small and the partition function is 
reduced to the statistical weight of the ground state


• At high temperatures, this is not the case anymore. The calculation of the partition 
function involves a sum over many levels, which is difficult, but essential for stellar 
atmospheres

ni+1

ni
ne = 2

Zi+1

Zi ( 2π me kT
h2 )

3
2

exp (−
Ei

kT )
ni+1 ni i + 1 i

Zi+1 Zi



2.3 Saha equation
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• If  is the electron pressure, Saha’s equation can be written  




• With Saha and Boltzmann’s laws, it is possible to determine the population ratios for a given element (Saha-
Boltzmann distribution)


• In order to determine the number density of particles in a  specific state for an arbitrary mix of gas in LTE, one has to 
use as well


‣ Element conservation: 


‣ Charge conservation: , with  the charge


‣ The equations can be solved numerically, by iterations


‣ Sometimes only two ionisation levels of one element are interesting (sufficiently populated)


‣ One also has to take into account trace element with low ionisation potential. These elements contribute notably 
to the electronic density 

Pe = nekT
ni+1

ni
Pe = 2

Zi+1

Zi ( 2πme

h2 )
3
2

(kT)5
2 exp (−

Ei

kT )

∑
i

ni = Nelem

∑
elem

∑
i

ci ni = ne ci

ne



3. Temperatures
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• To characterise the energy distribution of particules and photons when LTE is 
not guaranteed, several temperatures are defined


• At LTE, these temperatures are all equal to the thermodynamic temperature of 
the medium



3.1 Brightness temperature
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• It is the temperature of an equivalent blackbody which would have the same 
intensity at frequency 


‣ 


‣  is the brightness temperature


‣  obviously depends on the frequency (except at LTE)


ν

Bν(Tb) = Iobs
ν

Tb

Tb



3.1 Brightness temperature
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• This temperature is widely used in radioastronomy, where the Rayleigh-Jeans approximation applies


‣ 


‣ In the Rayleigh Jeans approximation, the brightness temperature is proportional to the observed 
intensity


‣ A temperature is easier to interpret physically


• When the RJ approximation is not quite valid, e.g. in millimeter radioastronomy, especially at low 
temperatures, we can introduce the Rayleigh-Jeans equivalent temperature 


‣ 


‣  is proportional to the intensity, and has the dimension of a temperature, like in the RJ case

Tb =
c2

2ν2k
Iobs
ν =

λ2

2k
Iobs
ν

Jν(T)

Jν(T) =
c2

2ν2 k
Iν =

hν
k

1

exp ( hν
kT ) − 1

Jν(T)



3.1 Brightness temperature
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• What would be the definition of the brightness temperature if the intensity is 
given in unit wavelength? In the general case, and in the Rayleigh-Jeans  
approximation?


• Does the brightness temperature of a radio source depend on distance?


• Is it possible to measure the brightness temperature of a point source like a 
star?


• Is it possible to measure the brightness temperature of an extended source 
(like a nebula) if it is not at thermodynamic equilibrium?



3.2 Excitation temperature
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• The excitation temperature  is defined as 


• It is the temperature of an equivalent blackbody with the intensity equal to the source function at 
frequency 


• Application for a homogeneous medium


‣ Solution of the RT equation: 


‣ In the RJ case: 


‣ With the definition of : 


‣ With the radiation temperature: 

Tex Sν = Bν(Tex)

ν

Iν = Iν(0) e− τν
μ + Sν (1 − e− τν

μ )

Tb = Tb(0) e− τν
μ +

λ2

2k
Sν (1 − e− τν

μ )

Tex Tb = Tb(0) e− τν
μ + Tex (1 − e− τν

μ )

Jν(Tb) = Jν(Tb(0)) e− τν
μ +

λ2

2k
Sν (1 − e− τν

μ ) = Jν(Tb(0)) e− τν
μ + Jν(Tex) (1 − e− τν

μ )



3.2 Excitation temperature
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• 


• Optically thick case: 


• Optically thin case: 


• LTE case: 


‣ the excitation temperature is equal to the thermodynamic temperature of the medium


• LTE and optically thick case: 


‣ the brightness temperature is equal to the thermodynamic temperature of the 
medium

Tb = Tb(0) e− τν
μ + Tex (1 − e− τν

μ )

Tb = Tex

Tb = Tb(0) + τ Tex

Sν = Bν(T) = Bν(Tex) ⇒ Tex = T

Tb = T



3.2 Excitation temperature
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• These considerations show that for LTE and in the optically thick case, we 
measure directly the kinetic temperature of the medium

13CO(1-0) spectrum in a dark cloud

13CO at LTE, optically thick  
➜ gas is at Tk ~ 13 K (RJ limit)

in fact RJ does not apply, so Jν(Tk) = 13 K  
➜ gas is at Tk ~ 15 K



3.3 Colour temperature
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• It is the temperature of the equivalent blackbody which has the same intensity 
variation with frequency as the intensity emerging from the medium 


• It is the temperature for which Planck’s law reproduces the slope of the 
intensity spectrum at the observing frequency


• The colour temperature  verifies Tc
dIν

dν ν = ν0

=
Bν(Tc)

dν ν = ν0



3.3 Colour temperature
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• Another definition is often used, in particular in the case of 2-

colour photometry:   


• The ratio between the 2 observed intensities defines a temperature


• This is also expressed in magnitudes: 


• Can we apply two-band photometry to stars, knowing that stars 
are unresolved sources?


• What conditions are necessary for two-band photometry of a star 
to give its temperature? Of which stellar region is it the 
temperature? 

Iλ1

Iλ2

=
Bλ1

(Tc)
Bλ2

(Tc)

B − V = 2.5 log
IV

IB

1 2

Iλ

λ



3.3 Colour temperature
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• In an unresolved sources, we can only measure the flux and not the intensity


• For a star of radius  at a distance , of source function , the ratio of the observed fluxes is 
 




• With  and if the Eddington-Barbier approximation is valid at both frequencies.


• The flux ratio therefore gives the intensity ratio of the star at both frequencies


• The advantage of using the flux ratio  is that it is not necessary to know the 

distance to the source. In such a case,  is a good replacement of the brightness temperature

R d S

Fobs
1

Fobs
2

=
F+

1 R2
1 /d2

F+
2 R2

2 /d2
=

π S1(τ1 = 2/3)
π S2(τ2 = 2/3)

=
I1(τ1 = 0, μ = 2/3)
I2(τ2 = 0, μ = 2/3)

R1 = R2

Fobs
1

Fobs
2

=
Bν1

(Tc)
Bν2

(Tc)
Tc



3.4 Effective temperature
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• It is the temperature of the equivalent blackbody which radiates the same flux integrated over 
the frequency


• 


•  is the effective temperature


• It can be expressed as function of the intensity emerging from a spherically symmetric source


• 


• At thermal equilibrium, 

F = ∫ Fνdν = σTeff = π Bν(Teff)

Teff

Teff = [1
σ

F]1/4 = [2π
σ ∫

∞

0 ∫
1

0
μ Iλ dμ dλ]1/4

Teff = T


