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Radiative Transfer

5. Introduction to scattering



Introduction

• We saw in Chapter 3 the general form of the transfer equation: 


• If we knew at each location and each time  and , we would already have everything at hand 
to understand radiative transfer


• We would of course  still need to discuss physical parameters like opacities and abundances of 
the medium constituents, but there is no overwhelming  difficulty


• The reason why radiative transfer is a difficult subject is that in most cases, we do not know the 
values of  and  in advance


• The radiative field that we would like to determine can affect the medium and modify  and . 
We face the problem of the chicken and the egg: to calculate , we have to know  
and  and to know   and , we have to know .

dIν( ⃗n , s)
ds

= jν(s) − αν Iν( ⃗n , s)

jν αν

jν αν

jν αν
Iν( ⃗x , ⃗n ) jν( ⃗x )

αν( ⃗x ) jν( ⃗x ) αν( ⃗x ) Iν( ⃗x , ⃗n )

2



Introduction
• Even worse, we cannot solve the problem separately for each ray because a 

change in  affects the transfer equation for all rays passing through , 
even if their directions  are different.

jν( ⃗x ) ⃗x
⃗n
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• If for example we are interested in ray A (along the 
line of sight): at location  represented by a small 
square, we have   and . Ray A goes 
through this volume element, but also rays B and 
C. The intensities along rays B and C therefore 
also affect   and 

⃗x
jν( ⃗x ) αν( ⃗x )

jν( ⃗x ) αν( ⃗x )

• This coupling between rays means that we must solve the radiative transfer 
problem for all rays simultaneously. This is a challenge of radiative transfer
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Introduction
• We can also consider that all volume elements that make up the medium are 

radiatively coupled (radiative cell coupling)
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• The emission of one volume element can affect the 
conditions in another volume element in the medium 


• There is an exchange in information between regions 
in the medium that are distant from one another. For 
example, the radiative cooling of one region can lead 
to the radiative heating of another
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Introduction
• In this chapter, we will deal with scattering, which is another difficulty in radiative transfer 

(especially multiple scattering).


• Scattering is a good example  of the non-local character of radiative transfer


• At LTE, the source function is determined locally, because of the coupling between 
particle and radiative energy. If collisional processes do not dominate but scattering does 
instead, the local character is lost: the photons that are scattered come from elsewhere


• The mean free path of a photon between two extinctions is . If extinctions 
processes are mostly elastic scattering events, the identity of the scattered photon 
remains the same. The photon changes direction each time it is scattered, but not 
energy.


• The distance between photon creation and destruction or between photon creation and 
when it escapes the medium can be much larger than 

lfree = 1/αν

lfree
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Introduction
• For example in a stellar atmosphere
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123τ′�ν 0

Stellar surface

• The photons emerge from an optical depth  (or  if  is the radial optical 
depth), but this optical depth is that of the photons’ last interaction, where they were 
scattered.


• However the depth at which they were created can be much greater. From that point they 
move according to a random walk


• The exact scattering process does not matter: Thompson, Rayleigh, Mie, elastic bound-
bound

τ′�ν = 1 τ′�ν = μ τ′�ν



Introduction
• According to the Eddington-Barbier relation, the photons that escape 

correspond to a source function at an optical depth of . Is this also 
valid in the case of scattering?


• The Eddington-Barbier approximation applies to the total optical depth, 
independently of  the nature of the extinction (absorption or scattering). What 
we see is where the radiation escapes and not where it was created.


• See the example of Chapter one with the lamp in the fog.

τ′�ν = μ

7



1. Pure isotropic scattering
• It is the simplest radiative transfer problem with ray coupling.


• We assume a medium made of particules (for example, small dust grains) that can 
scatter the radiation in arbitrary directions.


• This process is called “isotropic scattering” because the direction of the emerging 
photon does not depend on the direction of the incident photon before the 
scattering event.


• We will also assume that the particles do not absorb and do not emit radiation, and 
that we have coherent scattering, ie without frequency change.


• We consider the monochromatic case (only one frequency , which we do not write)


• Inside or outside of the medium, there is a light source

ν
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1.1 Radiative transfer equation for scattering
• The formal equation is identical to the one given previously


• 


‣  is the emissivity, ie the photon injection by scattering into the direction of propagation 
 of the radiation


‣  is the extinction linked to the scattering only


‣ The extinction coefficient for scattering is sometimes written , with the same dimension 
as  (cm-1), but it can also be defined per mass unit. Here we will use  or  as is 
usual in stellar physics. The total extinction coefficient is , or 


• All scattered photons have the same probability to be scattered in the direction , so that 
we only need to know which amount of radiation is scattered per unit volume and unit time

⃗n ⋅ ⃗∇ I( ⃗x , ⃗n ) = j( ⃗x ) − α( ⃗x ) I( ⃗x , ⃗n )

j
⃗n

α

σν
αν αν αsca

ν
κν + σν αabs

ν + αsca
ν

⃗n
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1.1 Radiative transfer equation for scattering
•  ( ) is the power scattered by unit solid angle, by unit frequency 

during the crossing of a layer of unit length perpendicular to the direction of 
propagation


• The power reemitted by scattering per unit solid angle per unit frequency in the 

direction of propagation is:  


• The last relation is just the definition of . The transfer equation is therefore:


• 


• Or in a more compact way: 

αν Iν = αsca
ν Iν

jν( ⃗x ) = αν( ⃗x )
1

4π ∮ Iν( ⃗x , ⃗n ) dΩ = αν( ⃗x ) Jν( ⃗x )

Jν( ⃗x )

⃗n ⋅ ⃗∇ Iν( ⃗x , ⃗n ) = α( ⃗x ) [ 1
4π ∮ Iν( ⃗x , ⃗n ′�) dΩ′ � − Iν( ⃗x , ⃗n )]

⃗n ⋅ ⃗∇ Iν( ⃗x , ⃗n ) = α( ⃗x ) [Jν( ⃗x ) − Iν( ⃗x , ⃗n )]
10



1.1 Radiative transfer equation for scattering
• The equation has exactly the same form as previously, with the source 

function .


• The main difference is that we now have an integro-differential equation, 
which is very difficult to solve


• The equation illustrates very well the problem of the chicken and the egg 
which makes radiative transfer so hard to solve: we need to know  in 
order to integrate the equation in one direction and obtain , but we 
need to know  for all directions to calculate .

Sν = Jν

Jν( ⃗x )
Iν( ⃗x , ⃗n )

Iν( ⃗x , ⃗n ) Jν( ⃗x )
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1.2 Multiple scattering
• Let’s take the inverse path of the light back to the source.


• The photons we observe have been scattered in the direction of the line of 
sight by one particle.


• Before that, they were moving along another ray, but they may have been 
scattered into this ray by another scattering event on another particle, and so 
on.


• Photons will be scattered several times before being scattered in the line of 
sight.


• In order to understand the problem posed by multiple scattering, we can think 
recursively: each scattering event is in fact a “chicken-egg” cycle
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1.2 Multiple scattering
• To calculate  at a location  along the line of sight, we have to integrate the 

transfer equation for all rays that pass through , ie by varying over  sr.


• But to integrate the transfer equation along all these rays, we need to know  at all 
other locations  along these rays, which implies integrating the radiative 
transfer equation for all these rays that pass through , by varying  over  sr, 
and so on.


• How can we solve this?


• Analytical solutions are very rare. One of them was given by Chandrasekhar 
(“Radiative Transfer”, 1950/1960, Dover) for a semi-infinite homogeneous plane 
parallel  atmosphere. 


• In most cases however, numerical methods are used.

J ⃗x0 ⃗x0 ⃗n 4π

J
⃗x ≠ ⃗x0 ⃗x ⃗n 4π
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1.2 Multiple scattering
• What is the distance  crossed by a photon after  scattering events?l* N

14

l*

l

For a derivation see  
Rybicki & Lightman

l* ≃ N l

• How many scattering events does it take for the photon to cross a medium of thickness ?


•  has to be equal to , ie     


• with  for pure scattering and , we obtain       if  (for the photon to 

be scattered)


• For an optically thin medium with , the photon generally escapes immediately, with a small 
interaction probability roughly equal to 

D

l* D N = ( l*
l )

2

∼
D2

l2

l =
1
αν

=
1

αsca
ν

τν = ανD N ≃ τ2
ν τν ≫ 1

τν ≪ 1
τν = ανD ≪ 1



1.3 Approximation of single scattering

• For , it is possible to make an approximation so that the problem can 
be solved analytically, or with minimum numerical effort


• In this case, we can ignore multiple scattering and assume that each photon 
that is scattered towards the line of sight had not been scattered before


• This is the approximation of single scattering. The lower the optical depth of 
the medium, the better the approximation.

τν ≪ 1
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1.3 Approximation of single scattering
• For single scattering, we have to


1. Integrate the radiative transfer equation for all 
rays joining the light source to the line of sight (ie 
determine  along all those directions)


2. Calculate  at all locations along the line of sight


3. Integrate the formal transfer equation along the 
observer’s line of sight

Iν

jν
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• Even though the integration of the transfer equation along all the rays connecting the 
source and the line of sight can be difficult or necessitates some computing time, it 
remains generally doable.




1.3 Approximation of single scattering
• Example of single scattering: a star surrounded by a spherical 

cloud


‣ star: radius , temperature , radiates like a perfect 
blackbody


‣ A spherical dust cloud surrounds the star. The cloud 
density is given by





R* T*

ρ(r) = ρ0 ( r
r0 )

−2

pour r ≥ r0

ρ(r) = 0 pour r < r0
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• We also assume that the scattering opacity does not depend on the frequency, density or 
temperature:  (mass extinction coefficient)κν = κ



1.3 Approximation of single scattering
• We assume that the optical depth between the star and a 

point  at a distance  is small enough to use the single 

scattering approximation:  


•  and the star can be considered as a point source

r
τν(r) = κν ∫

r

r0

ρ(r′�) dr′ � ≪ 1

r0 ≫ R*
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• The flux of the star is , with 


• To calculate the emissivity  along the line of sight, we need  which is  for a ray pointing 
exactly outward


• The emissivity is therefore: 

Fν(r) =
Lν

4π r2
Lν = 4π R2

* π Bν(T*)

jν Jν Jν =
Fν(r)
4π

jν(r) = αν
Fν

4π
=

1
(4π)2

κν Lν ρ0 r2
0

1
r4

r0

r



1.3 Approximation of single scattering
• We now need to integrate the emissivity along the line of 

sight: we note  the impact parameter and  the 
coordinate along the line of sight with  the closest 
point to the star.


•

b s
s = 0

r = b2 + s2
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• The integral along the line of sight is 




having defined 

Iobs
ν (b) =

1
(4π)2

κν Lν ρ0 r2
0 ∫

+∞

−∞

ds
(b2 + s2)2

=
1

(4π)2
κν Lν ρ0

r2
0

b3 ∫
+∞

−∞

dx
(1 + x2)2

x =
s
b

r0

b
r

s



1.3 Approximation of single scattering
• 


• in the case without background intensity


• The intensity is  without extinction because 

we have assumed that photons are only scattered once 
and they have already been scattered into the line of 
sight

Iobs
ν (b) =

1
32π

κν Lν ρ0
r2
0

b3

∫
+∞

−∞
jν(s) ds
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• On an image, we would see the intensity of the scattered radiation  decrease in  away 
from the star. The profile in  for the density is what is expected for a stellar wind. In 
reality, isotropic scattering is not always a good approximation for scattering on dust 
particles (see Chapter 6) but the decrease in  even for anisotropic scattering is not a 
bad approximation

1/b3

ρ ∝ 1/r2

1/b3

r0

b
r

s



2. Scattering with absorption and thermal emission

• The  previous problem, isotropic scattering, is extremely hard to solve but has 
been somewhat idealised: the hypothesis we made is that the particles do not 
absorb any radiation (they only scatter it) and do not emit any (no thermal 
radiation from dust for example)


• for water droplets in the Earth atmosphere in the visible, this is a reasonable 
approximation


• But often, in addition to scattering, there is also thermal emission and 
absorption. It is the case for atmospheric aerosols for example


• In astrophysical problems, there are many cases in which at the same time 
absorption, emission, and scattering play a role.
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2.1 Albedo and photon destruction probability
• If we consider absorption and scattering, we have for extinction two contributions at 

frequency : 


• We can define the albedo: 


• Watch out for notations: some authors denote the albedo with , which we will not use so 
as to avoid confusion with the extinction coefficient


• We can also define the photon destruction probability: 


•  is the scattering probability per extinction, and  the photon absorption probability  per 
extinction


• These quantities are widely used in non-LTE RT theory for stellar atmospheres

ν αν = αabs
ν + αsca

ν

ην =
αsca

ν

αabs
ν + αsca

ν

α

ϵν =
αabs

ν

αabs
ν + αsca

ν

ην ϵν
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2.1 Albedo and photon destruction probability
• Obviously we have 


• The emissivity is also the sum of two contributions: 


•  corresponds to photon creation


• The source function is   


• This can be rewritten: 


• For isotropic scattering, we had 


• For thermal emission at temperature , we have 

ϵν = 1 − ην

jν = jemi
ν + jsca

ν

jemi
ν

Sν =
jν
αν

=
jemi
ν + jsca

ν

αabs
ν + αsca

ν
= ϵν

jemi
ν

αabs
ν

+ ην
jsca
ν

αsca
ν

Sν = ϵν Sabs
ν + ην Ssca

ν

Ssca
ν =

jsca
ν

αsca
ν

= Jν

T Sabs
ν =

jemi
ν

αabs
ν

= Bν(T)
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2.1 Albedo and photon destruction probability
• The source function is then:  which is the standard notation in 

the stellar atmosphere community


• The transfer equation remains unchanged: 


• Which can also be written, inserting what precedes:  


• If , assuming we know the temperature everywhere, there is no longer a chicken-egg problem. The 
source function is the Planck function.


• The problem is moderately complex for . In the case , the photon can only be scattered a 
few times before being destroyed by absorption. The radiative information is on average carried across a few 
mean free paths before disappearing


• The problem is greatest when 0: the source function is then equal to the intensity averaged over the directions, 
ie . The photon is scattered  until it escapes the medium, crossing macroscopic distances in the medium


• Generally, the closer  is to 0, the more difficult it is to solve the transfer problem.

Sν = ϵν Bν(T) + ην Jν = ϵν Bν(T) + (1 − ϵν) Jν

dIν

ds
= αν [Sν − Iν]

dIν

ds
= αν [ϵν Bν(T) + (1 − ϵν) Jν − Iν]

ϵ = 1

0 < ϵ < 1 ϵ = 0.5

Jν

ϵν
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2.1 Albedo and photon destruction probability
• In stellar physics,  is the reservoir term, ie the amount of available photons. 


• The term   is the photon sink. It specifies the energy/amount of photons 
that disappear from the reservoir per extinction.


• The term  is the source term: it specifies the energy/amount of 
photons newly created per extinction. This source term cannot be neglected 
because otherwise no photon would be created (and be scattered). 


• As a consequence, even if  is very small,  must always be precisely 
evaluated: this term contributes to the radiative term  with which the source 
function is determined for the most part.

Jν

ϵνJν

ϵνBν(T)

ϵν ϵνBν(T)
Jν
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2.2 Effective optical depth
• The mean free path between two successive extinction events for a photon that follows a 

random walk is





but in the presence of scattering, it is more interesting to know over which distance the 
identity of the photon is conserved, ie what is the path length between its creation and its 
destruction.


• The absorption probability per step is , ie the number of steps (of scattering events) that 

the photon can have is: 


• From the previously determined relation , we obtain: 

lν =
1
αν

=
1

αabs
ν + αsca

ν

ϵν

N =
1
ϵν

l*ν ≃ N lν l*ν ≃
lν
ϵν
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2.2 Effective optical depth
•  is the characteristic distance between photon creation and destruction, ie the 

distance of conservation of photon identity


• It is also called the diffusion length, or the thermalisation length, or the effective 
mean free path


‣ For  ( , no scattering), we have 


‣ For   ( , a lot of scattering), we have 


‣ For   ( , pure scattering), we have 


• From  and    

l*ν

ϵν = 1 αsca
ν = 0 l*ν = lν

ϵν ≪ 1 αsca
ν ≫ αabs

ν l*ν ≫ lν

ϵν = 0 αabs
ν = 0 l*ν = ∞

lν =
1

αabs
ν + αsca

ν
ϵν =

αabs
ν

αabs
ν + αsca

ν
⇒ l*ν ≃

1

αabs
ν (αabs

ν + αsca
ν )
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2.2 Effective optical depth
• Four optical depths can be defined


‣ The total optical depth  such as 


‣ The optical depth due to absorption  such as 


‣ The optical depth due to scattering  such as 


‣ The effective optical depth  such as 


• For a homogeneous medium of thickness , the effective optical depth  is


 and  because 

τν dτν = (αabs
ν + αsca

ν ) ds

τabs
ν dτabs

ν = αabs
ν ds

τsca
ν dτsca

ν = αsca
ν ds

τeff
ν dτeff

ν = αabs
ν (αabs

ν + αsca
ν ) ds

D τeff
ν

τeff
ν =

D
l*ν

≃ τabs
ν (τabs

ν + τsca
ν ) τeff

ν < τν
τeff

ν

τν
=

τabs
ν

τabs
ν + τsca

ν
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2.2 Effective optical depth
• The medium is said to be


‣ Effectively thin if 


‣ Effectively thick if 


• If , the photons are absorbed and remitted many times before coming out of the medium, 
and have the time to be in thermal equilibrium with the matter, hence the name “thermalisation 
length” for .


The specific intensity emitted by such a layer can be estimated: it is close to that of a non-
scattering layer of thickness  because all photons emitted by this part of the layer effectively 
come out (  is the distance between creation and destruction)





The emerging intensity is attenuated by  with respect to a purely absorbing optically thick layer

τeff
ν ≪ 1

τeff
ν ≫ 1

τeff
ν ≫ 1

l*ν

l*ν
l*ν

Iν = jemi
ν l*ν = Sabs

ν αabs
ν l*ν = Sabs

ν ϵν

ϵν
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2.2 Effective optical depth
• If , the medium is effectively thin or translucent. 


All photons emitted in the layer end up coming out.


The emerging intensity is the same as in the case without scattering


•  


‣ if  , , ie scattering does not play any role


‣ If , , the optical depth is higher than in the 
absence of scattering


τeff
ν ≪ 1

τeff
ν = ϵν τν = τabs

ν (τabs
ν + τsca

ν )
αabs

ν ≫ αsca
ν τeff

ν ∼ τabs
ν

αabs
ν ≪ αsca

ν τeff
ν ∼ τabs

ν × τsca
ν
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2.3 Radiation from a thin medium

• We assume a homogeneous medium, in the sense that temperature, density and 
extinction coefficient do not depend on the position, but the source function can 
vary because of scattering. We also assume LTE.


• For an effectively thin medium (ie a medium for which  is large so that the photon 
can cross a very large distance before being absorbed, even if it is scattered), the 
total monochromatic luminosity is


• , with  the volume of the object


• The term  encompasses all thermally created photons that contribute to a 
beam. By multiplying by , we obtain the total number of photons that escape 
the medium, assuming that all photons created anywhere in the medium can leave, 
independently of the number of scattering events. The information on the direction 
is lost, therefore we have to use the luminosity

l*ν

Lν = 4π αabs
ν Bν V V

αabs
ν Bν

4πV
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2.3 Radiation from a thin medium

• What is the luminosity of a homogeneous effectively thin sphere with an 
absorption coefficient  and scattering coefficient  ?


• We first calculate the luminosity of the sphere assuming there is no scattering, ie 
for .


• For a point P on the sphere surface, we have
, where  is the sphere radius and  is the 

angle between the ray and the normal to the surface

αabs
ν αsca

ν

αsca
ν = 0

Iν(θ) = αabs
ν Bν s = αabs

ν Bν 2R cos θ R θ

32
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2.3 Radiation from a thin medium

• The flux in P is :  


• And the total luminosity : 


• This expression of the luminosity is also valid if   because the only 
difference is the redistribution of the radiation in all directions


• Can a medium be effectively thin and optically thick ?

F+
ν = 2π∫

π
2

0
Iν(θ) cos θ sin θ dθ =

4
3

π R αabs
ν Bν

Lν = F+
ν 4π R2 = 4π V αabs

ν Bν

αsca
ν ≠ 0
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2.4 Radiation from an optically thick medium

34



2.4.1 Eddington approximation

35

• This is also called the diffusion approximation


• In this section, we will treat the monochromatic case (frequency redistribution 
happens for photon conversion or dust emission, as we will see in the next 
chapter)


• We use the same method as in Chapter 3, but this time we will use the vector 
notation.


• The moments of the intensity are written




• And the transfer equation: 

Jν =
1

4π ∮ Iν( ⃗n ) dΩ ⃗Hν =
1

4π ∮ Iν( ⃗n ) ⃗n dΩ Kν =
1

4π ∮ Iν( ⃗n ) ⃗n ⃗n dΩ

⃗n ⋅ ⃗∇ Iν( ⃗x , ⃗n ) = jν( ⃗x ) − αν( ⃗x ) Iν( ⃗x , ⃗n )



2.4.1 Eddington approximation
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• Integrating the equation over the solid angle and dividing by 

 
 
 which can be written 


To write these equations, we have used the fact that  and  do not depend 
on direction (isotropy)


• Multiplying the equation by , integrating the equation over the solid angle and 
dividing by 

 

4π
1

4π
⃗∇ ∮ Iν( ⃗x , ⃗n ) ⃗n dΩ =

1
4π ∮ jν( ⃗x ) dΩ − αν( ⃗x )

1
4π ∮ Iν( ⃗x , ⃗n ) dΩ

⃗∇ ⃗Hν( ⃗x , ⃗n ) = jν( ⃗x ) − αν( ⃗x ) Jν( ⃗x )

αν jν

⃗n
4π

1
4π

⃗∇ ∮ Iν( ⃗x , ⃗n ) ⃗n ⃗n dΩ =
1

4π ∮ jν( ⃗x ) ⃗n dΩ − αν( ⃗x )
1

4π ∮ Iν( ⃗x , ⃗n ) ⃗n dΩ



2.4.1 Eddington approximation
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Using  we obtain 


This is a vector equation, ie it represents 3 equations


• Eddington approximation: 


• This is valid for an isotropic radiation field, but we assume it is valid for a quasi-

isotropic field (formerly we had  and )


• Using the Eddington approximation, the previous relation becomes

∮ ⃗n dΩ = 0 ⃗∇ Kν = − αν( ⃗x ) ⃗Hν ( ⃗x )

Kijν =
1
3

δij Jν

Pν =
4π
3c

Jν Pν =
4π
c

Kν

1
3

⃗∇ Jν( ⃗x ) = − αν( ⃗x ) ⃗Hν ( ⃗x )



2.4.1 Eddington approximation
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• Combining both equations, we obtain the Eddington equation 




This is a 2nd order differential equation. 


• It is the diffusion approximation for radiative transfer. The diffusion coefficient is   




• From the second moment of the transfer equation, written slightly differently 

, we can see that the radiative flux is proportional to 

the gradient of the mean intensity, which is exactly what we expect for diffusion.

1
3

⃗∇ ( 1
αν( ⃗x )

⃗∇ Jν( ⃗x )) = αν( ⃗x ) Jν( ⃗x ) − jν( ⃗x )

1
αν( ⃗x )

⃗Fν ( ⃗x ) = −
4π

3 αν( ⃗x )
⃗∇ Jν( ⃗x )



2.4.1 Eddington approximation
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• For thermal emission, we had 


• The diffusion equation is written: 


Sν = ϵν Bν(T) + (1 − ϵν) Jν

1
3

⃗∇ ( 1
αν

⃗∇ Jν( ⃗x )) = αν [Jν − Sν]
= ανϵν[Jν − Bν(T)]
= αabs

ν [Jν − Bν(T)]

The scattering term has 
disappeared from the 
right-hand side of the 
equation. It remains on 
the left-hand side, 
because αν = αabs

ν + αsca
ν

• This equation is only valid in the monochromatic case, ie elastic scattering 
(the photon is scattered at the same frequency as the incident photon, and 
thermal emission is also at the same frequency)



2.4.1 Eddington approximation
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• We can also derive the relation in the same way as in the case without scattering


• Assuming  isotropic and integrating  the transfer equation over , we obtain the 

same relation as before:    


• With  and , the relation 

becomes 


Sν dΩ
dFν

dτν
= 4π (Jν − Sν)

dτν = αν dz = (αabs
ν + αsca

ν ) dz Sν =
αabs

ν Sabs
ν + αsca

ν Ssca
ν

αabs
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• The second moment of the transfer equation is  or 


• With the Eddington approximation: 


• The Eddington equation is therefore 


where we have used:   
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• The Eddington equation in a scattering medium is identical to the one in a 
non-scattering medium, but the optical depth is replaced by the effective 
optical depth.


• The solutions in the non-scattering case can be easily transposed to the 
scattering case


• The Eddington equation can also be written:  

1
3

d2Jν

dτabs 2
ν

= Jν − Stot
ν
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• In this approximation, we had 


• The formal equations for  and  are
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• The half sum and half difference of these equations yield


                    


• Combining both equations we obtain. 


• We recognise the diffusion equation: the two-beam approximation is therefore mathematically equivalent to 
the Eddington approximation


• This justifies the choice made  for the angles of both beams: it is motivated by the necessity to 

get to the Eddington equation


• We can then use boundary conditions, for example a semi-infinite atmosphere with  for 


• With these conditions,  becomes 
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• To determine the variation of the source function with the atmospheric depth within a 
source (e.g. a star), we need to determine the mean optical depth, which we can link to 
the geometric depth


• This is also necesary for calculations of inner stellar structures, where we need to know 
the frequency integrated radiative flux as a function of geometrical depth


• In the deep layers of stars (or similar media), the intensity becomes isotropic and the 
mean intensity is then equal to the source function, ie  because LTE is valid.


• With the Eddington approximation 





With  the radial coordinate (same as )
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with , or 


•  is the Rosseland mean opacity or Rosseland mean absorption coefficient 
(harmonic mean of the absorption coefficient). It allows for the calculation of the 
integrated flux in the deep layers of the atmosphere, as in the “grey” case (ie 
independent of the frequency)


• It is determined by the parts of the spectrum where the optical depth is small, 
which is normal because the flux escapes the deep layers essentially at these 
wavelengths.
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   with 








• This is also called “diffusion approximation”, as an analogy with diffusion 
equations. It is not valid in superficial layers of stars or in optically thin media 
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• It can also be written: 


• The radiative flux depends on the temperature gradient. The radiative energy transport in deep 

layers of stars is of the same nature as heat conduction, with an effective conductivity 


• The energy flux only depends on one property of the absorption coefficient, its Rosseland 
mean.


• Because of the  dependency, the frequencies at which the extinction coefficient is small 
tend to dominate the mean.


•  is close to the Planck function, but it peaks for  instead of 2.8.


• The assumption for this derivation is that all quantities vary slowly with respect to the mean free 
path
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• The emerging intensity due to the emission of an optically thin layer is


• 


• If there is no background intensity:    


• So: 

Iν(τν, μ) = Iν(0) e−τν/μ + D jν/μ

Iν(τν, μ) = D
αν

μ
Sν

∫ Iν dν =
D
μ ∫ αν Sν dν
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• Assuming LTE  additionally, 


 ,  


• with   the Planck mean opacity     


• The Planck mean opacity is much less used than the Rosseland mean opacity.


• Contrary to the Rosseland mean opacity, it is weighted by the optically thick 
parts of the spectrum


• It is a good approximation for outer stellar layers, if they are in radiative 
equilibrium

Sν = Bν

⇒ ∫ Iν dν =
D
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αP αP =
∫ αν Bν dν
∫ Bν dν


