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6. Radiative transfer in dusty media



Introduction
• Now that we have presented the basics of radiative transfer, we will look into a few 

important radiative processes, highlighting their characteristics and typical difficulties 
in solving RT


• In this chapter, we will look at thermal continuum emission, typical of media 
containing interstellar dust


• Interstellar dust is an important constituent of astrophysical environments


• Despite its low abundance (in the molecular ISM, it represents only 1% of the mass), 
it plays a major role in the regions’ thermal equilibrium, by reprocessing the incoming 
radiation


• Dust is found in a very wide range of environnements: in the ISM, star forming 
regions and protostars, protoplanetary disks, disks around AGNs, AGB stars, brown 
dwarf and planetary atmospheres… 
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Introduction
• The reason why dust is important in radiative transfer is due to their high continuum opacities


‣ For atomic and molecular gas, the opacities are mostly due to spectral lines, which cover only a small 
part of the electromagnetic spectrum


‣ Dust opacities affect a large portion of the electromagnetic spectrum and can therefore play a major 
role in energy (heat) transfer. 


‣ The extinction due to dust also protects the interstellar medium against UV radiation which allows for 
molecular formation


‣ On the other hand, the optical depths arising from dust extinction can be high and prevent us from 
peering into embedded objects, unless long wavelengths are used


• In the infrared and millimeter domains, the emission is mostly dominated by dust thermal emission


• At shorter wavelengths, dense molecular cores and protoplanetary disks appear as dark silhouettes 
because of dust extinction


• In the solar system, “zodiacal light” arises from scattering of solar radiation on interplanetary dust grains
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1. Dust opacities
• Dust grains are small solids mostly made of silicates (species containing a Si-

O bond) or carbonaceous material (nanocarbons, PAH, organic matter), 
sometimes coated in ices (water ice, CO ice, etc.).


• These minerals can be mixed or can coagulate to form agregates of different 
compositions


• Many uncertainties remain on dust properties: their size distribution, their 
form, their exact composition


• These characteristics influence their optical properties, which we will discuss 
in the following
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1. Dust opacities
• When dealing with dust, we generally use the (mass) opacity  

 (linked to the absorption coefficent )


• A photon interacting with a dust grain can be absorbed or scattered.


‣ For a drop of water (i.e. transparent sphere) of a given refractive index, hardly any light is 
absorbed, but because of the refraction at its surface, the light is deflected in another direction. 
In this case, the opacity  is almost entirely a scattering opacity


‣ On the other hand, for a graphite grain, only a small part of the incident light is scattered, and 
most of it is absorbed


• It is usual to define the albedo 


‣ 


‣ With obviously 

κν
αν = κν ρ

κν

ην

κsca
ν = ην κν κabs

ν = (1 − ην) κν

κν = κabs
ν + κsca

ν
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1.1 Opacities and related quantities
• Let us consider a spherical dust particle of radius , with a (mass) density  in . The 

mass of one particle is 


• If the wavelength at which we observe is much smaller than the grain size , the 
approximation of geometric optics can be used. In this case, diffraction effects can be 
neglected.


‣ The particle interaction cross section is equal to the geometric cross section 



‣ The mass opacity is   


• In the approximation of geometric optics, the opacity is therefore constant with 
wavelength

a ξ g cm−3

m =
4π
3

ξ a3

(λ ≪ 2π a)

σgeo = π a2

κν =
σgeo

m
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1.1 Opacities and related quantities
• If the wavelength at which we observe is comparable or greater than the grain size, the 

approximation of geometric optics is no longer valid. In this case, the opacity  depends on .


‣ The extinction factor is defined as the ratio between the interaction cross section and the 

geometric section:       


‣ For ,  taking the geometric optics approach. 


‣ If diffraction effects are taken into account, we have . These diffraction effects affect 
only the far field and slightly deflect the radiation. The cross section of this diffraction is also 

, in addition to the geometric section. So in fact, the interaction cross section for a particle 
is , twice the geometric cross section in case . For an explanation, see Berg et 
al. (2011, JQSRT, 112, 1170). This effect can be included and treated as highly anisotropic 
scattering (strongly forward peaked), or ignored, in which case only the geometric cross 
section is considered.

κν ν

Qext
ν =

σext
ν

σgeo
Qabs

ν =
σabs

ν

σgeo
Qsca

ν =
σsca

ν

σgeo

λ ≪ 2π a Qν = 1

Qν = 2

πa2

2π a2 λ ≪ 2π a
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1.1 Opacities and related quantities

•     (or 2)


•

λ ≪ 2π a ⇒ Qν = 1

λ ≫ 2π a ⇒ Qν ≪ 1
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Summary
Extinction coefficient as a function of , for grains of radius λ a

 is maximum when Qext λ ∼ a



1.1 Opacities and related quantities

• At a given wavelength, the value 
of the extinction coefficient 
depends on the particle size
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Extinction coefficient for several particle sizes:

(a)    (b)    (c)  0.01 μm 0.1 μm 1 μm



1.1 Opacities and related quantities

• Simplified model for general opacity of dust grains  
(Ivezic et al. 1997, MNRAS, 291, 121)





 
 

Qabs
ν = 1 pour λ ≤ 2π a

Qabs
ν =

2π a
λ

pour λ > 2π a
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Qsca
ν = 1 pour λ ≤ 2π a

Qsca
ν = ( 2π a

λ )
4

pour λ > 2π a

• These opacities should not be used in radiative transfer calculation. They 
just give orders of magnitude for  dependencies 
 

λ



Extinction as a function of wavelength



Consequence: reddening



Nielbock et al. (2014)



Coreshine

Scattering by large (~ 1 μm) dust grains in dense cloud cores (Steinacker et al. 2010)



1.1 Opacities and related quantities
• Physical origin of dust opacity: 

The opacity arises from the reaction of the dielectric material to the oscillating 
electric field of the radiation: the dielectric material emits its own 
electromagnetic radiation that interacts with the incident radiation field. This 
interference triggers absorption and scattering


‣ If the particles are sufficiently small with respect to the wavelength, the front 
of the particle cannot shield the interior of the particle from the incident 
radiation. The entire particle reacts dielectrically to the incident field. For 

, the opacity is a volume effect. This is the Rayleigh limit.


‣ On the other hand, if , the wave is mostly sensitive to the surface 
of the particle

λ ≫ 2π a

λ ≪ 2π a
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1.2 Opacities of silicates and carbonaceous grains
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1.2.1 Opacities of silicates
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• Silicates are rocky substances characterised by Si-O bonds (e.g. the crust of the Earth). They build 
up a whole family of materials. 


• The simplest one is silica SiO2 (quartz). 


• Other silicates contain in addition to Si and O other metals like Al, Fe, Mg, etc. 


• Si-O is negatively charged, and this charge is compensated by the positive metallic ions Al, Fe, Mg.


• In space, the most common silicates are


‣ Olivines: (Mg, Fe)2SiO4


• Forsterite: Mg2SiO4


• Fayalite: Fe2SiO4


• Any combination of Fe and Mg verifying 
 the charge balance

‣ Pyroxenes: (Mg,Fe)SiO3


• Enstatite: MgSiO3


• Ferrosilite: FeSiO3


• Any combination verifying the charge 
balance



1.2.1 Opacities of silicates
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• An important characteristics of silicate opacities is the presence of two strong absorption 
features towards  10 μm and 20 μm.


• These features are due to the Si-O bond (vibrational transitions)


• They are large peaks, unlike the narrow lines seen in gases, arise because each bond can 
exchange energy with the rest of the solid. Photons can therefore be absorbed over a wide 
range of energies (wavelengths)

C
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1.2.1 Opacities of silicates
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• Silicates on Earth are usually crystalline, even if the cristals are not always macroscopic


• In space, silicates are generally amorphous.


• This difference is very important because  the opacities are very different depending on whether 
they are amorphous or crystalline


• For crystalline silicates, the exchange of energy with the rest of the solid is more limited
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1.2.1 Opacities of silicates
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• Silicates in space are believed to be amorphous because they are regularly hit 
by cosmic rays that destroy possible crystalline structures


• Sometimes crystalline silicates are found in some sources. This is interpreted 
as evidence for recent heating which annealed the particles and made them 
crystalline.


• This remains however debated because crystalline silicates have been 
spectroscopically detected in the outer cold regions of protoplanetary disks


• Or this could be an indication of radial mixing?



1.2.1 Opacities of silicates
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• Iron plays an important role in absorption observed in the visible and NIR


• Without iron, the absorption is low in this spectral regions (though the 
scattering is less affected)

With ironWithout iron
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1.2.1 Opacities of silicates
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• The overall shape of the absorption and albedo are reminiscent of the Ivezic 
model at large wavelengths

Dependence on grain sizes of absorption and albedo of silicates
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1.2.1 Opacities of silicates
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Dependence on grain sizes of absorption and albedo of silicates

• For small grains (0.1 and 1 μm), the opacities beyond 10 μm do not depend on grain size


• In this case, we have 


• 


• Because  and , the dependance on the grain size  disappears.


• For large grains, the opacity depends on grain size but does not vary with wavelength


• The albedo is flat up to  and then decreases very fast with 

λ > 2πa : Qν ∼
2πa

λ

σν = σgeo Qν ⇒ σν =
2πa

λ
⋅ π a2

κν =
σν

m
m ∝ a3 a

∼ λ = 2π a λ



1.2.2 Opacities of carbonaceous grains
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• Solid carbon is another major component 
of interstellar dust.


• Carbonaceous grains are found in several 
different structures: PAH (Polycyclic 
aromatic hydrocarbons), graphite, 
nanodiamonds, small amorphous grains, 
or complex organic compounds

Examples of PAH



1.2.2 Opacities of carbonaceous grains
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• The opacities of amrophous carbon are much more “simple” than those of silicates: there is no spectral 
band. The opacity curves follow the Ivezic model.


• The albedo peaks around  and decreases very fast with 


• Carbon opacities do not show a dip in the NIR, contrary to the case of silicates. This may indicate that 
the opacity observed in the NIR is dominated by carbon


• This has important consequences on thermal equilibrium of dust particles

λ = 2π a λ

C
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1.3 Models of astrophysical dust mixtures
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• Up to now we have only considered particles of one type at a time


• In astrophysical environments, this is not the case


• Grains can have a mixed composition, either because they were formed so, or 
because they have coagulated to form a small agregate.


• Moreover in dense regions of molecular clouds, molecules can condensate on 
grain surfaces to form ice mantles. The most abundant species are H2O, CO, 
CO2, NH3, CH4 and organic matter.


• Several types of grain populations can be found, with different compositions or 
sizes


• The lack of knowledge of the properties of grain mixtures is a major difficulty in 
the analysis of thermal dust continuum emission



1.3 Models of astrophysical dust mixtures
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• After assuming properties for a grain mixture, the calculation of the opacities 
for such grains is a difficult task


• Several studies discuss models of more realistic grains, the most widely used 
are


• Draine & Lee 1984, ApJ, 285, 89 


• Ossenkopf & Henning 1994, A&A, 291, 943


• Jones et al. 2017, A&A, 602, A46: THEMIS model



1.3 Models of astrophysical dust mixtures
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• The model of Ossenkopf & Henning 
calculates the optical properties of fractal 
agregates for dense star forming regions


• The silicate absorption bands are much less 
apparent than for pure silicates


• Many models of dense cores have 
confirmed this characteristics of the 
Ossenkopf & Henning model, which agrees 
better with observations than models of 
pure silicates



1.4 Scattering phase function
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• The previous chapter considered isotropic scattering


• For dust grains, scattering is generally anisotropic


• To describe the scattering in such a case, a scattering phase function is defined: 


• The scattering phase function gives the probability for a photon originally propagating in direction 
 to be scattered at position  in the direction 


• This function is normalised: 


• In the isotropic case, 


• It is also possible to define  per steradian, in which case we have  
 in the isotropic case

ϕ( ⃗n , ⃗n ′�, ⃗x , λ)

⃗n ′� ⃗x ⃗n

∫4π
ϕ( ⃗n , ⃗n ′�, ⃗x , λ) dΩ = 1

ϕ( ⃗n , ⃗n ′�, ⃗x , λ) =
1

4π
ϕ( ⃗n , ⃗n ′�, ⃗x , λ)

ϕ( ⃗n , ⃗n ′�, ⃗x , λ) = 1



1.4 Scattering phase function

41

• We can also define  the scattering probability in the direction , where  
is the deflection angle with respects to the direction of the incident photon.

p(μ) μ = cos θ θ

⃗n

⃗n ′� θ

• If a photon moves in a direction  and is scattered in a direction , 


• The normalisation is written 


• In the isotropic case, 

⃗n ′� ⃗n μ = cos θ = ⃗n ′� ⋅ ⃗n

∫
+1

−1
p(μ) dμ = 1

p(μ) =
1
2



1.4 Scattering phase function
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• The scattering phase function for 
realistic particles can have a 
complex form


• In the visible wavelength range, the 
scattering is peaked in the forward 
direction, but approaches the 
Rayleigh scattering limit where the 
ratio between forward and 
perpendicular scattered intensities 
becomes 2, for longer wavelengths.


• Generally when , the 
scattering is peaked forwards

λ < 2π a
: mean complex refractive index for all 3 wavelengths


: size parameter
mλ
x = 2π a/λ

Steinacker et al. 2002



1.4 Scattering phase function

43

• The parameter  is used to characterise the shape of the phase function: 




• To solve the transfer with anisotropic scattering, we would have to calculate the function  at 
each frequency.


• To make this easier, an approximation is sometimes used with the phase function of Henyey-
Greenstein 




• This means that when we calculate the opacity tables, we need at each frequency , , and . 


•  is calculated with the exact phase function from . In the RT calculation,  is used.


• This is still an approximation, but it is better than the isotropic approximation. 

g

g = < μ > = ∫
+1

−1
p(μ)μ dμ

p(μ)

pg(μ) =
1
2

1 − g2

(1 + g2 − 2gμ)3/2

κabs
ν κsca

ν gν

gν g = < μ > pg(μ)



2. Dust thermal emission in the RT equation
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We are now going to see the specificities of radiative transfer in the presence 
of interstellar dust, how to write the transfer equation, how to solve it (and 
where the main difficulties are)



2.1 Transfer equation
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• We have already seen the transfer equation in the presence of scattering. We 
had made some assumptions: 


‣ monochromatic case (no frequency redistribution)


‣ Isotropic scattering


• For radiative transfer with dust, these two hypotheses are no longer valid (but 
the overall treatment of scattering remains correct)


• We are going to describe in detail each term of the radiative transfer equation, 
first in the case of one single type of dust particles, then in the case of a 
mixture



2.1.1 For one type of dust
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• In what follows, we are going to use , as is often the case for radiative 
transfer in dusty media. Switching to  is trivial.


• The general transfer equation is





where we have not given more details about the different terms. This is what 
we are going to do now

κν
αν = ρ κν

dIν

ds
= − κν(s) ρ Iν(s) + jν(s)



2.1.1 For one type of dust
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• Primary absorption and emission: these are two important and obvious processes that have to be 
taken into account for dusty media. 


‣ Primary emission takes into account the radiative energy added to the  radiation field, often 
stellar emission, but also the radiation from an AGN, spectral lines from ionised gas, 
Bremsstrahlung, i.e. everything that can inject radiation in the medium


‣ It can be described by the function 


‣ Absorption is the process we talked about previously, for which radiation is turned into internal 
energy by the dust grains, and is characterised by the (mass) absorption coefficient  (or )


‣ Taking into account both processes (primary emission and absorption), the transfer equation 
becomes:





Simple first order differential equation

j*ν ( ⃗x , ⃗n )

κabs
ν αabs

ν

dIν( ⃗x , ⃗n )
ds

= − κabs
ν ( ⃗x ) ρ( ⃗x ) Iν( ⃗x , ⃗n ) + j*ν ( ⃗x , ⃗n )



2.1.1 For one type of dust
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• Scattering: 


‣ scattering, just like absorption, removes photons from the beam and is considered as an additional 
sink term in the transfer equation, with an efficiency given by the scattering coefficient  (ou ). 


‣ In this case, radiation is not converted into internal energy but is reemitted in another direction


‣ Scattering is therefore not only described by a second sink term, but also by a second source term


‣ The scattering phase function  gives the probability for photons  initially propagating 
in direction  and scattered at position  to propagate in a new direction  after scattering. 

Normalisation yields: 





Simple first order differential equation

κsca
ν αsca

ν

ϕ( ⃗n , ⃗n ′�, ⃗x , λ)
⃗n ′� ⃗x ⃗n

∫4π
ϕ( ⃗n ′�, ⃗n , ⃗x , ν)dΩ = 1

dIν( ⃗x , ⃗n )
ds

= − κabs
ν ( ⃗x ) ρ( ⃗x ) Iν( ⃗x , ⃗n ) + j*ν ( ⃗x , ⃗n )



2.1.1 For one type of dust
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‣ With those two additional terms, the radiative transfer equation becomes





with 


‣ The transfer equation has now become an equation where the radiation fields at all 
positions and in all directions are coupled. This equation is even more complex 
than that seen in the previous chapter because scattering by dust is anisotropic


‣ For wavelengths from the UV to the NIR, the albedo is at least 50% and scattering 
by dust is highly anisotropic


‣ In general, even in the MIR for which scattering by “classical” interstellar grains is 
small, it is important to take scattering into account to calculate correctly the 
heating by dust grains

dIν( ⃗x , ⃗n )
ds

= − κext
ν ( ⃗x ) ρ( ⃗x ) Iν( ⃗x , ⃗n ) + j*ν ( ⃗x , ⃗n ) + κsca

ν ( ⃗x ) ρ( ⃗x ) ∫4π
ϕ( ⃗n , ⃗n ′�, ⃗x , λ) Iν( ⃗x , ⃗n ′�) dΩ′ �

κext
ν = κabs

ν + κsca
ν



2.1.1 For one type of dust
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• Dust emission: 


‣ In addition to primary emission, absorption and scattering, a 4th process has to be taken into 
account, the thermal emission of the dust 


‣ Dust grains that absorb the radiation can reemit the stored radiative energy at wavelengths 
usually larger than 1 μm. It is therefore necessary to take this term  into account in 
the radiative transfer equation

jdust
ν ( ⃗x )

dIν( ⃗x , ⃗n )
ds

= − κext
ν ( ⃗x ) ρ( ⃗x ) Iν( ⃗x , ⃗n ) + j*ν ( ⃗x , ⃗n ) + jdust

ν ( ⃗x , ⃗n ) + κsca
ν ( ⃗x ) ρ( ⃗x ) ∫4π

ϕ( ⃗n , ⃗n ′�, ⃗x , λ) Iν( ⃗x , ⃗n ′�) dΩ′�

‣ Dust emission can simply be considered as an additional source term with respects to primary 
emission


‣ Its exact form depends on the emission process and this term often depends on the intensity 
of the radiation field, in a non linear and non trivial way



2.1.1 For one type of dust
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‣ One common hypothesis is that dust grains are in thermal equilibrium with 
the local radiation field


‣ The grain emissivity can then be described by a modified blackbody 
emission at temperature 


‣ 


‣ The name “modified black body” comes from the presence of the absorption 
coefficient (often dependent on ) in front of the Planck function


‣ The equilibrium temperature is determined by the condition that the 
absorbed energy is equal to the emitted energy

T( ⃗x )

jdust
ν ( ⃗x ) = κabs

ν ρ( ⃗x ) Bν(T( ⃗x ))

ν



2.1.1 For one type of dust
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    with  the mean intensity


‣ The above equation highlights a difficulty of radiative transfer: the coupling in 
frequency.


‣ It is the total energy (i.e. integrated over frequencies) that is conserved, and 
the problem can no longer be considered monochromatic

∫
∞

0
κabs

ν Jν( ⃗x ) dν = ∫
∞

0
κabs

ν Bν(T( ⃗x )) dν Jν

Absorbed energy reemitted energy



2.1.1 For one type of dust
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‣ The thermal equilibrium hypothesis for grains works well for “big” grains, but 
not in the case grains are small (nanograins) or for PAHs.


‣ Big grains can reach thermal equilibrium and emit like modified blackbodies 
at the temperature of equilibrium


‣ Small grains have a small heat capacity and the absorption of only one UV 
or visible photon can lead to a high temperature increase


‣ Small grains do not reach an equilibrium temperature but instead undergo 
temperature fluctuations that lead to emission at temperatures much higher 
than the equilibrium temperature


‣ The out of equilibrium emission of small grains is necessary to explain the 
MIR emission observed in many objects



2.1.1 For one type of dust
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Temperature of stochastically heated grains

A day in the life of four 
carbonaceous grains, heated by 
the local interstellar radiation field. 
τabs is the mean time between 
photon absorptions (Draine 2003)



2.1.1 For one type of dust
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‣ To take into account the emission of transiently heated grains, we can write 
the dust emissivity as follows:


‣     

where  is the grain temperature distribution at position 


‣ The temperature distribution depends on the chemical composition and sizes 
of the grains, but also on the intensity and the spectrum of the radiation field.


‣ This term is a complex, non-linear function of the specific intensity, which 
adds up to the difficulty of radiative transfer


‣ Method to calculate the temperature distribution can be found in, e.g., Dwek 
(1986), Draine & Li (2001), Compiègne et al. (2011)

jdust
ν ( ⃗x ) = κabs

ν ρ( ⃗x ) ∫
∞

0
P(T, ⃗x ) Bν(T) dT

P(T, ⃗x ) ⃗x



2.1.2 For a dust mixture
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• In the inter/circumstellar medium different types of grains can be found, with different 
chemical compositions, sizes, shapes and densities


• Each type of grain  is characterised by its own absorption coefficient , its scattering 
coefficient  and its scattering phase function 


• Let us denote  the relative contribution of each type of grain  at location  to the 
total density.


• The transfer equation is then:

i κabs
ν,i

κsca
ν,i ϕi( ⃗n , ⃗n ′�, ⃗x , λ)

wi( ⃗x ) i ⃗x

dIν( ⃗x , ⃗n )
ds

= − ∑
i

wi( ⃗x )κext
ν,i ( ⃗x ) ρ( ⃗x ) Iν( ⃗x , ⃗n ) + j*ν ( ⃗x , ⃗n ) + jdust

ν ( ⃗x , ⃗n )

+∑
i

wi( ⃗x ) κsca
ν,i ( ⃗x ) ρ( ⃗x ) ∫4π

ϕi( ⃗n , ⃗n ′�, ⃗x , λ) Iν( ⃗x , ⃗n ′�) dΩ′�



2.1.2 For a dust mixture

57

• This equation is identical to the previous one when the following quantities are defined

κabs
ν ( ⃗x ) = ∑

i

wi( ⃗x ) κabs
ν,i

κsca
ν ( ⃗x ) = ∑

i

wi( ⃗x ) κsca
ν,i

κext
ν ( ⃗x ) = ∑

i

wi( ⃗x ) κext
ν,i

And for the phase function

ϕ( ⃗n , ⃗n ′�, ⃗x , ν) =
∑i wi( ⃗x ) κsca

ν,i ϕi( ⃗n , ⃗n ′�, ⃗x , ν)

∑i wi( ⃗x ) κsca
ν,i

• As far as primary emission, absorption and scattering are concerned, RT for dust 
mixtures is identical to transfer in a medium with one type of average particles


• No approximation is necessary


• What dimension for ? Do we have ?wi ∑
i

wi = 1



2.1.2 For a dust mixture
• For a dust mixture the expression of dust emissivity is





• The emissivity of a grain population  is a modified blackbody at temperature . 


• The temperature  is determined as before with





• At location , grains of different sizes or compositions will have different 
temperatures

jdust
ν ( ⃗x ) = ∑

i

wi( ⃗x ) κabs
ν,i ρ( ⃗x ) Bν(Ti( ⃗x ))

i Ti( ⃗x )

Ti( ⃗x )

∫
∞

0
κabs

ν,i Jν( ⃗x ) dν = ∫
∞

0
κabs

ν,i Bν(Ti( ⃗x )) dν

⃗x

58



2.1.2 For a dust mixture
• In what precedes, it is easy to combine absorption, scattering and extinction 

coefficients of the various types of grains in the RT equation without 
approximation


• This is no longer the case for the thermal reemission term


• Even though it is possible to calculate an average temperature for the different 
grains, this would result in a reduction of the complexity due to the grain 
mixture to only one average grain type


• This would be a physically incorrect simplification of the transfer problem (note 
that it could still be sufficient, useful or necessary depending on the 
application)

59



2.1.2 For a dust mixture
• For stochastically heated grains, the emissivity of the dust becomes


   


•  is the temperature distribution of the grains  at location  

jdust
ν ( ⃗x ) = ∑

i

wi( ⃗x ) κabs
ν,i ρ( ⃗x ) ∫

∞

0
Pi(T, ⃗x ) Bν(T) dT

Pi(T, ⃗x ) i ⃗x

60



2.2 Radiative transfer for dust of known temperature

• We are first going to focus on a very simple case, which is that when the dust 
temperature is known


• This is a very useful application when we need to determine physical quantities (column 
density, mass) of an object from its dust emission


• Indeed, given a gas-to-dust ratio, dust emission can be used as a proxy for the amount 
of gas, in particular when H2 does not emit.


• In fact, the dust temperature is rarely known, but it can be estimated if we have an idea 
of the object’s environment (protostellar envelope, protoplanetary disk, prestellar core, 
etc.)


• We will also assume that we can neglect scattering


• Under which circumstances can we neglect scattering?

61



2.2 Radiative transfer for dust of known temperature

• To simplify the problem further, we will assume a homogeneous medium with no 
background radiation at the wavelength of interest.


• In reality there has to be a radiation field, which is responsible for the dust 
temperature. We will ignore it in this application.


• The transfer equation is  with 





• We have already solved this equation: , with 

dIν

ds
= − κabs

ν ρ Iν + jdust
ν jdust

ν = κabs
ν ρ Bν(Tdust)

⇒
dIν

ds
= − κabs

ν ρ [Iν − Bν(Tdust)]

dIν

dτν
= Iν − Bν(Tdust) dτν = − κabs

ν ρ ds
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2.2 Radiative transfer for dust of known temperature

• The solution is: 


• Having measured , we can derive  in the optically thin case


• The optically thick case is generally not interesting because it underestimates the column 
density)


• In the (sub)millimetre regime (emission of cold dust), the dust emission is rarely optically 
thick, except maybe at high resolution or towards high-mass star forming regions


• Therefore, 


• From the optical depth, we can derive the column density: 


where  is the medium’s thickness and  the dust density (in )

Iν(τν) = Bν(Tdust)(1 − e−τν)

Iν τν

Iobs
ν = Iν(τν) ≃ τν Bν(Tdust)

τν = κabs
ν ρ D

D ρ g cm−3
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2.2 Radiative transfer for dust of known temperature

• We want to determine the H2 column density 


• , where  is the number density of hydrogen molecules


• We define  the mean molecular weight per hydrogen molecule


• , where  is the total mass of a volume containing  molecular 
hydrogen molecules.


•  is the mass of a hydrogen atom 


•  takes into account the fact that the gas contains H2, He and other heavy atoms


•     (Kauffmann et al. 2008)

NH2

NH2
= ∫ nH2

ds nH2

μ

μ mH 𝒩(H2) = ℳ ℳ 𝒩(H2)

mH

μ

μ ∼ 2.8
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2.2 Radiative transfer for dust of known temperature

• We can write again the H2 column density


• 


‣  is the gas (mass) density in  (ie taking H2, He , etc. into account)


‣  is the dust (mass) density in 


‣  is the mass gas-to-dust ratio, ie . Its value is around 100 in the ISM.


‣ Note that sometimes,  is included in the definition of , and in this case,  in the 
RT equation is 

NH2
= ∫

ρgas

μ mH
ds =

1
μ mH κabs

ν
ℛ∫ ρ κabs

ν ds

ρgas g cm−3

ρ g cm−3

ℛ ℛ =
ρgas

ρ

ℛ κabs
ν ρ

ρgas
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2.2 Radiative transfer for dust of known temperature

• In this case, 


‣ 


‣ Units: sometimes  can be given in units like mJy/beam. The size of the beam (in sr) has 
then to be taken into account


‣  is not the mass of a hydrogen molecule but the gas mass per hydrogen molecule


‣ This equation can be used in practical cases: an intensity of 13 mJy/beam has been 
measured at . The telescope beam is . The mass absorption coefficient  
at this wavelength is . What is the H2 column density, if we assume a 
temperature of 10 K?

NH2
=

1
μ mH κabs

ν ∫ ρgas κabs
ν ds

NH2
=

τν

μ mH κabs
ν

=
Iobs
ν

μ mH κabs
ν Bν(Tdust)

Iobs
ν

μ mH

λ = 1.3 mm 13′�′� κabs
λ

0.005 cm2 g−1
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2.2 Radiative transfer for dust of known temperature

• The mass is obtained by integrating the column density over the source

67

Estimating the gas mass

=
1

κabs
ν Bν(Tdust) ∫ Iobs

ν dA

M = μmH ∫ NH2
dA : surface elementdA

• If  is the distance to the source, we have , with  the solid angle elementd dA = d2 dΩ dΩ

M =
d2

κabs
ν Bν(Tdust) ∫ Iobs

ν dΩ =
d2 Fν

κabs
ν Bν(Tdust)

•  is the flux in the solid angle subtended by the sourceFν



2.3 Determining the temperature with radiative transfer
• In the previous section, we assumed that we already knew the temperature. In fact, this is 

rarely the case


• If we make a small error in the determination of the temperature, we risk obtaining a 
spectrum that violates energy conservation


• For example if we overestimate the temperature by a factor of 2, we make an error of a 
factor of  in the energy


• In many cases, dust emission comes from the absorption by the dust of radiation emitted 
by neighbouring stars. Such an overestimate would mean that the dust radiates 16 times 
more energy than it receives! Spectral energy distributions would be completely wrong


• Even an error of 20% on the dust temperature leads to a factor of 2 on the energy emitted 
by dust


• Obeying the energy conservation law is fundamental. It is important to calculate dust 
temperature self consistently with radiative transfer

24 = 16
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2.3.1 Dust grain at radiative equilibrium
• Already seen in section §2.1. We consider big grains at equilibrium with the 

radiation field


• The heating and cooling rates per dust mass have to be equal


• Heating: 


• Cooling: 


• In the general case,  contains  that can depend on the dust temperature


• We will start with a simple case in which the dust ist optically thin and illuminated 
by a star

Q+ = ∫
∞

0
κabs

ν Jν dν

Q− = ∫
∞

0
κabs

ν Bν(Td) dν

Jν Iν
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2.3.1 Dust grain at radiative equilibrium
• Assume  is the stellar flux at frequency .


• The heating rate is: 


Watch out, it is not the same dimension as before


• The cooling rate is: 


The factor  comes from the fact that the energy is emitted in all directions (integration over 
the solid angle to have the same dimension as the stellar flux)


• At radiative equilibrium: 


F*ν ν

Q+ = ∫
∞

0
κabs

ν F*ν dν

Q− = 4π ∫
∞

0
κabs

ν Bν(Td) dν

4π

Q+ = Q−

4π ∫
∞

0
κabs

ν Bν(Td) dν = ∫
∞

0
κabs

ν F*ν dν
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2.3.1 Dust grain at radiative equilibrium
• This equation can be solved numerically in an iterative fashion: for each iteration 

on  a complete integral over  has to be calculated, which makes solving the 
radiative transfer very cumbersome


• It is also possible to tabulate  and then while solving the RT calculate , 
and look for the zero of the expression   using the table (possibly 
interpolating the value for more precision)


• Another method uses the mean Planck opacity:


‣ 


‣ It is the mean opacity weighted by the Planck function at temperature 

Td ν

Q−(Td) Q+
Q−(Td) − Q+

κabs
P (T) =

∫ ∞
0

κabs
ν Bν(T) dν

∫ ∞
0

Bν(T) dν
= ( σ

π
T4)

−1

∫
∞

0
κabs

ν Bν(T) dν

Td
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2.3.1 Dust grain at radiative equilibrium
• We can now rewrite the thermal equilibrium equation:





• This quantity enables us to calculate the transfer equation rapidly: first, the   values are 
tabulated in advance. Then after a first estimate of ,  is calculated and the following 
equation is solved for, yielding a new estimate of :


                                                


• With the new  value, we calculate a new estimate of , and solve for  using the 
equation above, etc., until convergence.


• Convergence is usually obtained within a few iterations

4κP(Td) σ T4
d = ∫

∞

0
κabs

ν F*ν dν

κP(Td)
Td κP(Td)

Td

Td = ( 1
4κP(Td) σ ∫

∞

0
κabs

ν F*ν dν)
1
4

Td κP(Td) Td
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2.3.1 Dust grain at radiative equilibrium
• We now suppose that the star has a radius  and emits like a perfect blackbody 

at .


The flux received at a distance  is:    


• The equilibrium equation yields








• This is also iteratively solved, with a fast convergence

R* ≪ r
T*

r F*ν =
4π R2

* π Bν(T)
4π r2

4κP(Td) σ T4
d =

π R2
*

r2 ∫
∞

0
κabs

ν Bν(T*) dν =
π R2

*

r2
κP(T*)

σ
π

T4
*

⇒ Td =
R*

2r ( κP(Td)
κP(T*) )

1
4

T*
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2.3.1 Dust grain at radiative equilibrium
• We define the thermal cooling efficiency factor: 





• If  the cooling is less efficient than stellar radiation absorption


• Typically for small grains  and for big grains ( ) , so large grains are cooler than 
small grains


• Small silicates in a radiation field are usually cooler than small carbonaceous grains, because 
carbonaceous grains have a higher opacity in the visible and NIR (and therefore absorb stellar radiation 
better)


• We can also imagine that carbon monomers coagulating on silicate monomers can help heating the 
silicates


•  is the “grey” case, which is like having  independent of . In this case  is independent of 

ϵ =
κP(Td)
κP(T*)

⇒ Td =
R*

2r
1

ϵ1/4
T*

ϵ < 1

ϵ < 1 > 100μm ϵ ≃ 1

ϵ = 1 κabs
ν ν κP T
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2.3.3 Thermal radiative transfer and optical depth effects
• If the dusty medium is very optically thin, the temperature of the dust is given by the equations in the 

previous sections


• Optical depth can nevertheless play a role in many cases, with two main consequences


‣ If the optical depth at the wavelength of the stellar radiation (typically in the visible, NIR, or even UV) is 
not negligible, the stellar radiation will be attenuated. As a consequence, the dust that is shielded by 
the direct stellar radiation will be cooler than given by the previous equations in the optically thin case


‣ If the optical depth at the wavelength of the dust thermal emission is not negligible, the radiation 
emitted by a grain can be reabsorbed by another grain elsewhere in the medium. 


- The radiative energy cannot immediately escape and can be absorbed and reemitted several times 
before leaving the medium. 


- The cooling of one regions leads to the heating of another one, and vice-versa.


- Thermal radiative transfer has therefore a non-local character. Because we do not know in advance 
the temperature of the other regions of the medium, we do not know which heating to expect
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2.3.3 Thermal radiative transfer and optical depth effects

• The extinction of the stellar flux by dust is easy to take into account: 


: optical depth towards the star


: mnochromatic luminosity of the star


We have assumed that the star is a point source. The above term corresponds to  when integrating 

the transfer equation 


• The second effect is more difficult. Another term has to be added to the radiative equilibrium equation


 


with  , which is the mean intensity of the thermal radiation  emitted by the other 
grains

F*ν =
L*ν

4π r2
e−τ*ν

τ*ν

L*ν

Iν(0) e−τν

dIν

ds
= − κabs

ν ρ Iν + j*ν

4π∫
∞

0
κabs

ν Bν(Td)dν = ∫
∞

0
κabs

ν (F*ν + 4π Jd
ν ) dν

Jd
ν =

1
4π ∮ Id

ν ( ⃗x , ⃗n ) dΩ Id
ν
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2.3.3 Thermal radiative transfer and optical depth effects

• The intensity  obeys the following equation


• 


• It is possible to separate the stellar and the dust terms, because of the linearity of the equation. We then 
have 


• To solve this problem, we have to use an iterative scheme ( -iteration) because we do not know a priori .


‣ The above RT equation is integrated along many rays


‣ The mean intensity  is then derived at every location


‣ The thermal equilibrium equation is solved to determine  at each location.


‣ Then the RT equation is again solved with the new temperature, and so on.


• This method works well with moderately optically thick media. If the optical depth is very high, convergence 
will be very slow.

Id
ν

dId
ν ( ⃗x , ⃗n )

ds
= κν ρ [ϵν Bν(Td) + (1 − ϵν) Ssca

ν ( ⃗x ) − Id
ν ( ⃗x , ⃗n )]

Iν = I*ν + Id
ν

Λ Jd
ν

Jd
ν

Td
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4. Spectral energy distributions
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• It is the (wide band) spectrum of an astrophysical object


• For a star, it is (close to) a blackbody


• Spectral energy distributions (SED) are a powerful way of studying 
astrophysical objects


• Dust emission covers a wide bandpass, because of the large band dust 
opacities and the wide range of dust temperatures: dust grains close to a star 
are hotter than those that are far away.


• This can be seen on the SED


• Often, it is the presence of an IR excess emission with respect to a stellar 
blackbody that reveals the presence of dust
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4. Spectral energy distributions
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• The emission close to the peak of the Planck function (or the peak of , 
or  ) contains most of the energy, whereas the Rayleigh-Jeans part 
often contains only a small amount of energy


• The typical SED of an object containing dust can be considered as a discrete 
or continuous sum of contributions of the type  at different 
temperatures 


• With a look at one SED, we can try to decompose it into several components.


‣ The peak wavelength of each component gives their temperature


‣ The intensity of each component indicates how much dust is present

ν Bν(T)
κν ν Bν(T)

κν ν Bν(T)
T



4. Spectral energy distributions
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• Another important notion is the “covering fraction”. Let us consider several cases


‣ A star entirely surrounded by a geometrically thin dust shell, but with an optical depth at 
the peak wavelength of stellar emission (typically in the visible) is . In this case, nearly 
all the radiation emitted by the star will be absorbed by the dust and reemitted in the IR. If 
the dust shell is optically thin in the IR, the reemitted radiation will escape immediately. 
Because we assume radiative equilibrium, all stellar luminosity will be reemitted in IR 
radiation, and we have 


‣ Same configuration as before but the shell has holes and covers only 50% of the sky as 
seen by the star. We then have 


‣ If the shell entirely covers the star but is optically thin at stellar wavelengths ( ), the 
shell absorbs only a small part of the stellar radiation


• This conversion of stellar luminosity in IR luminosity is called reprocessing of stellar radiation

≫ 1

LIR ≃ L*

LIR ≃ 0.5L*

τ* ≪ 1



4. Spectral energy distributions
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• The covering fraction  can be defined as the probability for each stellar photon 
to be absorbed and reemitted by the dust


• If the dust is optically thick at stellar wavelengths, , where  is 
the geometric covering fraction, ie the fraction of the sky as seen from the star  
which is covered by the dust


‣ 


‣ This is only an estimation because the result is modified by the presence of 
scattering, geometric effects, etc.


‣ “Shadowing” has to be taken into account: if a cloud already covers part of the 
sky as seen from the star, then another cloud located at a greater distance will 
only receive part of the radiation which has been reprocessed

Ω

Ω = Ωgeom Ωgeom

LIR ≃ Ω L*
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What is the SED of such an object (flared disk)?



4. Spectral energy distributions
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• SEDs are useful but they retain information only on the energy and not on  its 
spatial distribution


• If we consider, for example in the case of a disk, that the overall SED is the sum of 
the contributions of dust at different distances (and therefore at different 
temperatures), we make an approximation because the dust close to the star will 
contribute (in addition to the stellar radiation itself) to the heating of more distant 
dust. The problem itself is rather complex


• Moreover the geometry of  circumstellar disks (with, e.g., flaring) is often complex 
and modifies the temperature distribution


• The interpretation of an SED without radiative transfer remains to the first order


• Of course, it is always possible to use a full radiative transfer calculation to model 
an SED.



5. Perspectives - massive star forming regions
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• Generally, for radiative transfer in dusty media, it is possible to separate a stellar 
component (in the UV/visible) and a thermal component (in the MIR)


• The UV/visible component does not usually contain a thermal component (the dust 
temperature is not high enough for this), but scattering on dust has to be taken into 
account, because it is not negligible at these wavelengths


• The second component is the thermal reemission by the grains after reprocessing, 
which usually takes place in the MIR or even longer wavelengths. At these wavelengths, 
scattering can be neglected, but thermal radiative transfer has to be treated


• To sum up

UV/visible  scattering

MIR/submm/mm  thermal transfer

→
→



5. Perspectives - massive star forming regions
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• The situation is different in massive star forming regions. 


• The flux emitted by these stars is very high, in particular in UV/visible, and dust 
temperatures can reach 1500 K (beyond this temperature, silicates sublimate)


• Dust grains at 1500 K have their peak emission around 1 μm (NIR)


• At these temperatures, scattering  can take place


• Massive star forming regions combine both difficulties: scattering and thermal transfer in 
the same wavelength domain, which have to be treated simultaneously in the transfer 
equation


• In addition, we should take radiation pressure on grains into account, the complex 
geometries (multiple systems), the drastic opacity change where dust sublimates, and 
high optical depths (even in the FIR, the emission is not always optically thin)


• All the ingredients are there to make it a particularly difficult problem to solve


