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7. Line radiative transfer



Introduction
• Contrary to the case of dust, the opacities in the gas are generally dominated by spectral lines (and 

not by a continuous emission)


• These lines can be in absorption or in emission, in the whole wavelength spectra, coming from a large 
variety of objects: stellar spectra or ionised nebulae spectra in the UV/visible, in the (sub)mm and 
radio domain for cold interstellar clouds, or in the X-ray domain for very hot regions like the solar 
corona or galaxy clusters


• These lines correspond to transitions between quantified energy levels in atoms or molecules (bound-
bound transitions) and are described by quantum mechanics


• Continuous radiation on which lines can superpose can be thermal (eg dust emission) or non thermal 
(eg synchrotron emission)


• Transitions between bound levels can be due to collisions (collisional transitions), or to absorbing or 
emitting a photon (radiative transitions)


• In this chapter we will describe the basics of line radiative transfer, discuss systems which we 
frequently encounter  and their energy diagrams, and solve the radiative transfer
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1. Emission and absorption
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1.1 Levels, statistical weights, partition function
• We will first mention again the essential information to describe quantum states in atoms and 

molecules


• Let us consider an atom or a molecule with  energy levels


‣  is the energy of level  (convention )


‣  is the level degeneracy (statistical weight)


‣  is the number of atoms per unit volume in the state of energy  (level occupation number)


‣  is the total number of atoms or molecules per unit volume:  


‣ We can also define the occupation fraction  with 
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1.1 Levels, statistical weights, partition function
• When we  solve radiative transfer, we try to determine 


• The equation that describes the level occupation at LTE is the Boltzmann distribution:


, with  the temperature and  the Boltzmann constant


• At LTE, we can define the partition function:       (sum over all states)


• It allows us to calculate the occupation fraction    directly instead of 
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1.2 Einstein coefficients
• This is probably not new, but just in case…


• The Einstein coefficients / probabilities are defined


‣  :  Einstein coefficient for spontaneous emission. The number of spontaneous 
radiative transitions per unit volume and per unit time  between state  and state  
and that correspond to the emission of a photon of frequency   such as 

   is   


 is in 


 is the time, in s, that the atom can spend in state  before its de-excitation 

towards state , assuming no collisional de-excitation. It is the level lifetime.
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1.2 Einstein coefficients
‣  :  Absorption coefficient. The number of radiative transitions per unit volume 

and per unit time induced by a photon of energy  corresponding to 
the absorption of this photon is  with   the intensity of the radiation 
field at frequency 


‣  : stimulated emission coefficient. The number of radiative transitions per unit 
volume and per unit time between level  and level  induced by a photon of 
energy  corresponding to the emission of a second photon with the 
same energy is . It is Einstein who discovered the existence of this 
process. It is also called “induced emission”.


‣ Unit of  and  ?
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1.2 Einstein coefficients
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1.2 Einstein coefficients
•  Using  microreversibility of these processes, which is verified at TE, we obtain the 

relation:   


• The number of radiative transitions leading to a change from level  to level  in the atom 
(or molecule) per second is equal to the number of radiative transitions  leading to a 
change from level  to level .


• Using Boltzmann’s law: 


• And Planck’s law:     (at LTE, we have )
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1.2 Einstein coefficients

• We obtain   


• This relation is verified for all temperatures, so we can identify the terms using 
Planck’s law:


•    and   


• Knowing , we can calculate the others.
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1.3 Relation with the absorption coefficient and emissivity

• Spectral lines are not infinitely narrow but are broadened by different processes 
which give them an absorption profile  and an emission profile 


• These profiles describe the transition probability for photons of frequency 


• The profile functions are normalised:  and 


• Their maximum occurs for  (such as ) and they decrease 
rapidly for  and 


• We should replace  by  and  by 
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1.3 Relation with the absorption coefficient and emissivity

• The emissivity is linked to the radiative decay rate  by


‣ 


‣ unit: 


• The extinction coefficient is written


‣ 


‣ unit: 


• The absorption and emission profiles are identical if between both processes, no change in 
frequency occurs, or if on the contrary there is a complete frequency redistribution
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1.3 Relation with the absorption coefficient and emissivity

• If we assume that the emission profile  and absorption profile  are 
identical, the source function  for the line can be written:





•
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1.3 Relation with the absorption coefficient and emissivity

• In Chapter 4, we had defined the excitation temperature such as :





• The excitation temperature is the temperature that gives the relative populations of two 
levels (whether or not there is a transition between them)


• In the general case, the excitation temperature is different for each pair of levels.


• At LTE, the populations are given by Boltzmann’s law and  for all 

levels, with  the gas kinetic temperature. In this case, all excitation temperatures are equal 
to the gas kinetic temperature: 
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1.3 Relation with the absorption coefficient and emissivity

• The absorption coefficent can be written





• It therefore contains a negative term of induced emission, which we must take into 

account in the radio domain, especially when  is close to unity. 


• On the other hand, in the visible/UV domain, if  (eg in stellar 
atmospheres), the exponential term is  and induced emission can be 
neglected

αij,ν =
hνij

4π
Ni Bij ϕ(ν)[1 − exp (−

hνij

kTex )]

exp (−
hνij

kTex )
Tex ∼ 104 K

≪ 1

15

Excitation temperature



1.3 Relation with the absorption coefficient and emissivity

• If the induced emission term is , the absorption coefficient becomes 
negative and the medium behaves like a possible amplifier. In the radio 
domain, this is the maser effect (“Microwave amplification”) analogous to 
lasers in the optical .


• In order to have a maser, we need , which is frequent, in particular for 

non linear molecules.


• The population inversion is possible if processes (radiative or not) can 
populate the upper level of the transition

≫ 1
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1.4 Oscillator strength

• In classical radiation theory, the absorption coefficient of a harmonic oscillator is equal to  

where  is the electron mass, and  its charge.


• This quantity is equal to 0.0265 cm2


• In quantum theory, this quantity has to be multiplied by a parameter called the oscillator 
strength , smaller than unity, and that represents the number of classical oscillators equivalent 
to the transition.


• The absorption coefficient can be written 


• And the Einstein coefficients:  and  
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1.5 Example of atomic and molecular species
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1.5.1 Atomic species

• The energy of the ground state for H is 




•  is the Rydberg constant


•  is the fine structure constant: 


•  is the electron mass. Rigorously speaking, we should use the reduced mass 

E1 = − Ry = −
me e4

2ℏ2
= −

me c2 α2

2
= − 13.6 eV
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α α =
e2

ℏ c
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1
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me + mp
∼ me
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1.5.1 Atomic species

• For a hydrogenoid atom of charge , we have: 


• The energies of other electronic levels are expressed with , principal quantum number: 

, 


•   is the orbital angular momentum of the electron: 


•  is the projection of the angular momentum:      in steps of 1


•  is the electronic spin


• The excited electronic states of the H atom have energies much higher than that of the 
ground state, which means they are hardly populated at low temperatures

Z E1 = − Z2 me e4

2ℏ2
= − Z2 Ry

n
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n2
= Enlms

l l = 0, 1, 2,..., n − 1

m −l ≤ m ≤ + l

s = ± 1/2
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1.5.1 Atomic species

• The transitions between levels have an energy 




• The oscillator strength is  


•  is the Gaunt factor


• Oscillator strengths decrease when the upper level quantum level increases

Eji = Ej − Ei = − E1 ( 1
j2

−
1
i2 )

fji =
26

3 3π

1
gj

1

( 1
j2 − 1

i2 )
3

1
j3

1
i3

g

g

21
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1.5.1 Atomic species
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Electronic transitions for the hydrogen atom
Increasing energy

Lyα

Ηα

Brγ

• Transitions “series” correspond to transitions between 2 
levels of same lower level


• Lyman series corresponds to transitions between the 
ground state and other levels


• For Ly , , and other lines in the series 
have shorter wavelengths: series in the UV


• The transitions between the second and higher levels 
make up the Balmer series. The line   is 
called H  with  (visible, red). It is often 
the most intense line in the visible spectrum (A and B 
stars, ionised nebulae)


• Other series (Paschen, Brackett, Pfund, etc) are in the IR

α λ = 121.5 nm

n = 3 → n = 2
α λ = 656.3 nm



1.5.1 Atomic species
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Electronic transitions for the hydrogen atom

• It is also possible to represent transitions on 
a Grotrian diagram.


• Because of the selection rules 
( ), only certain 
transitions are allowed.


• The transition  is forbidden. It 
corresponds to the emission of two photons 
with the sum of their energies equal to that 
of  Ly 


• Levels with the same  are degenerate

Δl = ± 1 Δl ≠ 0

2s → 1s

α

n

Grotrian diagram (term diagram)

takes selection rules into account



1.5.1 Atomic species
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Fine and hyperfine structure

• If relativistic effects are included (close to the nucleus, the electron velocity is close 
to light speed) as well as spin-orbit coupling, the level energies are slightly shifted:   





 is the quantum number associated to the total angular momentum . 
Each state is  times degenerate


• This additional level splitting gives rise to fine structure. It is maximal for small  
(because the electron is close to the nucleus) or for large 
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1.5.1 Atomic species
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Fine and hyperfine structure
• The coupling between the electron and the nuclear spin 

induces another splitting: hyperfine structure


• For hydrogen, there is a very important transition between 
two hyperfine levels of term  for . It is the 21 cm line 
in the radio domain, with which one can trace neutral H 
emission  in the Universe.


• This is a forbidden transition with Einstein A coefficient of 
 (excited level lifetime: ~ 10 Myears). Its natural 

linewidth is very small


• Because of the great number of H atoms, this line is very 
strong


• This transition was detected for the first time in 1951


• For most other astrophysical applications, this splitting can 
be ignored

S1/2 n = 1

2.9 10−15 s−1

21 cm line



1.5.1 Atomic species
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Multi-electron atoms

• As for H, eletrons will occupy levels of main quantum number , of orbital 
angular momentum  and projection , and of spin .


• There are however differences with respect to the case with only one electron


• Because of Pauli’s principle, two electrons cannot occupy the same 
quantum state


• The presence of other electrons modifies the charge distribution and 
changes the energy levels of electronic states


• The state of an atom is given by the occupation of the orbitals and the term 
symbol

n
l m s



1.5.1 Atomic species
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Multi-electron atoms

• Examples of occupations of the orbitals


• Lithium, , ground state 1s2 2s1


• Oxygen, , ground state 1s2 2s2 2p4


• For a given occupation of the orbitals, there can be several electronic 
configurations leading to different values for the total spin , the total orbital 
angular momentum , and for  the total angular momentum. These 
configurations are called “term symbols”.


• For fully occupied shells, we have  terms that do not contribute to electronic 
excitation. We then focus on external shells.

Z = 3

Z = 8

S
L J

1S0



1.5.1 Atomic species

28

Multi-electron atoms

• Example of doubly ionised oxygen


• 6 electrons: 1s2 2s2 2p2


• Spectral terms : 


• Hund’s rules are used to find the lowest energy levels


• Transition  is the transition [OIII] 
. This is a forbidden line often observed in 

ionised nebulae like planetary nebulae. The word 
“forbidden” here means that there is no authorised 
dipole transition, but quadrupole transitions are 
allowed, for which  is very weak (compared with the 

 of dipolar transitions)

1D2, 3P0, 3P1, 3P2, 1S0

1D2 → 3P2
λ = 0.5 μm

Aji
Aji

C
.P. D

ullem
ond

Term diagram for O2+



1.5.2 Molecular species
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• Observed molecular lines or generally not due to electronic transitions but 
rather to vibrations or rotation of the molecule


• Excited vibrational and rotational energy levels have much lower energies than 
electronic levels and therefore molecular transitions occur at much longer 
wavelengths than electronic transitions



1.5.2.1 Rotational transitions

30

• For linear molecules like CO, the expression of the rotational energy levels is particularly simple


• There is only one quantum number,  which is the rotational quantum number


• The energy levels are given by: 


‣  is the moment of inertia of the molecule along the rotation axis. For CO, 


‣ The statistical weights of the rotational levels are 


‣ The rotation constant is 


• Because of centrifugal distorsion, there are correction terms in the expression of  (modification of 
the moment of inertia at high )

J

E =
ℏ2

2I
J (J + 1) = B J (J + 1)

I I = 1.46 10−39g cm2

2J + 1

B =
h

8π2 c I
E

J

Linear molecules



1.5.2.1 Rotational transitions
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• Selection rules: allowed transitions are such as 


• The transition frequencies  therefore verify: 




The transitions frequencies linearly increase with  


• The rotational spectrum of linear molecules is very simple: we have a  
“rotational ladder”.

ΔJ = ± 1

ν

hν =
ℏ2

2I [J (J + 1) − (J − 1) J] =
ℏ2

I
J

J



1.5.2.1 Rotational transitions
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• For CO, rotational transitions  and 
 occur in the millimeter domain.


• These are typically the most intense lines 
coming from cold interstellar and circumstellar 
matter in this wavelength domain.


• In the ISM, CO largely dominates the spectral 
emission in the (sub)mm because it is the most 
abundant molecule after H2: CO abundance is 
about  times that of H2

J : 1 → 0
J : 2 → 1

10−4

CO rotational 
transitions

C
.P. 

D
ullem
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d



1.5.2.1 Rotational transitions
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• Why are H2 rotational lines not much stronger than those of CO (considering the fact that there 
is 10000 times mode H2 than CO?)


• H2 is a symmetric molecule abd as a consequence, it does not have a permanent electric 
dipole. Such a molecule does not produce dipolar radiation when spinning. Although H2 
does not have dipolar transitions, it does have quadrupolar transitions which have much 
smaller . Molecular hydrogen lines are therefore very weak.


• Another point is that H2 has a much smaller mass (than CO) with a much smaller moment 
of intertia ( ). The excitated quantum levels are  at much higher 
energies, ie high temperatures are needed to populate these levels. Selection rules for 
quadrupole transitions are . 


• The H2 rotational transition with the longest wavelength (the least energetic) is at 
, ie in the MIR


• Other linear di- or tri-atomic molecules like CS, OH, HCO+, HCN, etc. are commonly observed

Aij

I = 4.7 10−41 g cm2

ΔJ = ± 2

λ = 28.2 μm



1.5.2.1 Rotational transitions
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• For non linear molecules, we need to define rotational constants for 3 axes (3 moments of inertia)


• Symmetric top molecules have two equal rotational constant


• Molecules must have at least a 3-fold axis of symmetry


• for example: NH3


• To describe the rotational levels of such molecules, we need a supplementary quantum number, K, in 
addition to J.


• Allowed electric dipole transitions  are such that 


• If  (non zero), the molecule can be radiatively de-excited down to the lowest level with   and 
can only go back to the ground state ( ) with collisions (rarely nu quadrupolar transitions)


• Molecules like NH3 can therefore be used as “thermometers” is those levels are depopulated by collisions

Δ K = 0

K > 0 J = K
J = 0

non-linear molecules: symmetric tops



1.5.2.1 Rotational transitions
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non-linear molecules: symmetric tops

NH3 rotational energy levels

C.P. Dullemond



1.5.2.1 Rotational transitions
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• For these molecules, all 3 rotational constants are different.


• Three quantum numbers are used: , also written 


•  is the total angular momentum and  and  are the projections of the 
angular momentum on the axes of highest and lowest moments of inertia, 
respectively.

J, K+, K− J, Ka, Kc

J K+ K−

non-linear molecules: asymmetric tops



1.5.2.1 Rotational transitions
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• Because of the presence of two H atoms, there are 2 forms of the molecule, depending on the total spin


• , para-H2O, statistical weight of 1


• , ortho-H2O, statistical weight of 3 (triplet state)


• Generally if the temperature is not too low, the ratio ortho/para is 3. There are no radiative transitions between both 
species, and the conversion has an extremely low efficiency with collisions (more efficient are proton exchanges)

S = 0

S = 1

H2O rotational energy levels

C
.P. D
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1.5.2.2 Rovibrational transitions
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• Molecules can also vibrate: the vibration energy is given in first approximation by 

, where  is the vibrational quantum number (harmonic oscillator)


• The line frequencies  are 


• In principle,  we do not exactly have a perfect harmonic oscillator, and there are some higher 
order terms (Morse potential)


• All transitions from  to  have the same energy and are called “fundamental 
transition” (for CO, this corresponds to )


• The transitions  (around ) are called overtone transitions. These 
transitions are possible for an anharmonic oscillator (otherwise, only  are allowed.


• Vibrational transitions are in the IR in general.

Eυ = hν0 ( 1
2

+ υ) υ

hνij = hν0 (υi − υj)

υ = i + 1 υ = i
λ = 4.7μm

υ = i + 2 → υ = i λ = 2.3μm
Δυ = ± 1



1.5.2.2 Rovibrational transitions
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• When molecules can rotate in addition to vibrating, we have rovibrational transitions.


• In this case, all  are possible. The selection rules for the rotation are .


• If CO is in a vibrationally excited state, for example  , the molecule can radiatively de-
excite towards ,  and .


• Transitions with  are P-branch transitions, those with  are Q-branch transitions, 
and those with  are R-branch transitions.


• The energy levels are:  


• The second term is small with respect to the first one, so that rovibrational transition frequencies are 
close to .


• The transitions     are forbidden for linear molecules

Δυ ΔJ = 0, ± 1

υ = 1, J = 4
υ = 0 J = 4 υ = 0 J = 5 υ = 0 J = 3

ΔJ = + 1 ΔJ = 0
ΔJ = − 1

Eυ J = hν0 (υ +
1
2

) +
ℏ2

2I
J (J + 1)

ν0 (υi − υj)

Δυ = ± 1 ΔJ = 0



1.5.2.2 Rovibrational transitions

40

• Because of the rotational structure, we obtain 
a series of lines for the R-branch and another 
for the P-branch (and one fundamental line for 
the Q-band if it exists)


• For the R-band ( ) the photon is 
slightly more energetic whereas for the P-
branch, part of the vibrational energy is used 
to rotate the molecule faster, so the photon is 
less energetic

ΔJ = − 1

CO rovibrational spectrum



1.5.2.2 Rovibrational transitions
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• In fact, the rotational constant is slightly 
smaller for  than for  because of 
the distorsion of the molecule. Because of 
this for the R-band, transitions get closer and 
closer (whereas the spacing increases for the 
P-branch)


• At some point the spacing in the R-branch 
goes down to zero  many lines are in close 
proximity: this is called a band head

υ = 1 υ = 0

→



1.6 Necessary data
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• To solve radiative transfer, we need the following data


‣ Frequencies of the transitions (and selection rules)


‣ Einstein coefficients


‣ Level energies and degeneracies


‣ Partition function in the LTE case (or recalculate it)


‣ For non-LTE calculation, the collisional coefficients are needed


• Where to find these data?


‣ Most of them are available in databases



1.6 Necessary data
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Atomic data

Molecular data

Collisional data

The Opacity Project              
The Iron Project                    

The Chianti database                     

The Cologne Database for molecular spectroscopy (CDMS)    
The JPL molecular spectroscopy database                                
The HITRAN database                                                               

The Lamda database                     
The Basecol database                    

http://www.cfa.harvard.edu/hitran
http://spec.jpl.nasa.gov

https://cdms.astro.uni-koeln.de/classic/

 http://cdsweb.u-strasbg.fr/tipbase/home.html
 http://cdsweb.u-strasbg.fr/topbase/topbase.html

http://www.chiantidatabase.org
http://www.strw.leidenuniv.nl/~moldata

http://basecol.vamdc.eu



2. Line profiles
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2.1 Doppler broadening
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2.1.1 Thermal Doppler broadening
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• When a collection of atoms/molecules with velocities due to thermal motions absorbs or 
emits photons corresponding to a transition of energy , the frequency of the photons is 
shifted by an amount , where  is the velocity component of atoms or 

molecules along the line of sight (positive towards the observer) and  the speed of light


• If the distribution of particles is a Maxwellian, the number of particles able to absorb or to 
emit at frequency  per frequency interval is 




• NB in astrophysics, objects evolve over timescales much longer than the time to reach 
Maxwell equilibrium, so the above relation is valid in most cases. In jets or in the solar 
corona however, other particle distributions  will apply.
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2.1.1 Thermal Doppler broadening
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• The absorption coefficient at  can be written:

 with  

the Doppler linewidth, also called the thermal linewidth


• The line profile is therefore 


, which is evidently a Gaussian and the absorption 

coefficient at line centre is    


•  depends on  (which can be of the order of  in the visible for lines at )

ν
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4π
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ν
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ΔνD 1010 s−1 104 K



2.1.1 Thermal Doppler broadening
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• The optical depth at the centre of a line is a parametre which can rather easily 
be deduced from observations, and which is used to derive the number of 
atoms/molecules along the line of sight, as we will see later


• It is important to note that the thermal Doppler broadening depends on the 
mass of the particle that emits the line. For heavy molecules, the broadening is 
less than for lighter ones.


• The line profile can also be written    

with  is the linewidth in m/s or in km/s

ϕ(ν) =
c

a ν0 π
exp (−

c2 (ν − ν0)2

a2 ν2
0 )

a =
2kT
M



2.1.2 Turbulent Doppler broadening
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• Particles in astrophysical media are also subject to turbulence


• Turbulence is still poorly constrained: it encompasses pseudo-random motions 
of gas cells


• Turbulence is usually treated as an additional velocity dispersion


• It is generally assumed that the probability distribution for velocity is a 
Gaussian with a width that is independent of the particule mass and of the 
temperature


• We would need a good model of microturbulence to be able to evaluate  the 
velocity dispersion precisely



2.1.2 Turbulent Doppler broadening
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• The total broadening is thus written as: 


• or also: , with  the total linewidth,   the thermal 

component and  the turbulent component.


• In principle, if we can measure the linewidths for two species of very different 
mass, it is possible to derive ar the same time  and  (but we have to 
make sure that the emission  of both species comes from the same region).

ΔνD =
ν0

c ( 2kT
M

+ υ2
turb)

1
2

a = a2
th + a2

turb a ath =
2kT
M

aturb

T υturb



2.1.3 Full width at half maximum
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• For Gaussian lines, the full width at half maximum (FWHM) is given

Imax

Imax

2

ν0 ν

exp −( Δν
Δν0 )

2

= 0.5 ⇒ FWHM = 2 ln 2 ΔνD



2.2 Collisional broadening
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• Collisional broadening is also called pressure broadening


• The expression can be derived using atomic physics


• Here we just give an outline to understand where it comes from


• We take as example an atom that can emit at frequency 


• If the molecule is disturbed by a collision, this shortens the lifetime of the 
level, ie the decay rate is increased.


• This will increase the uncertainty in the emitted/absorbed energy, so that 
photons at a frequency  can also be absorbed or emitted

ν0

ν0 ± Δν



2.2 Collisional broadening
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• The corresponding line has a Lorentzian profile   


•  is the damping constant, in units of frequency


• This parameter is not easy to calculate, contrary to Doppler broadening


• The reason is that the way the collision disturbs the emission of a molecule 
very much depends on the details of the collisional process and the nature of 
the collision partner.


•  is typically tabulated, for example in the HITRAN database, for each line, 
with a pressure of 1 atm and a temperature of 296 K.

ϕ(ν) =
1
π

γcoll

(ν − ν0)2 + γ2
coll

γcoll

γcoll



2.2 Collisional broadening
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• For another temperature and another pressure,   can be calculated using the following 

formula: , with  and .


• The linear dependence in  comes from the fact that for infinitely short collisions and at 
constant temperature, the number of collisions that each atom/molecule undergoes per 
second increases with density


•  is given in HITRAN. It is typically between 0.5 and 1. If it is 0.5 and we have a perfect 
gas ( ) and if the density  is constant, we have  . This can be 
understood because the velocity of the particles varies in , ie  varies like a 
collisional rate (number of collisions per second). In fact, the velocity at which collisions 
take place affect , and    deviates from 0.5 in general

γcoll

γcoll(p, T) = γcoll(p0, T0)
p
p0 ( T0

T )
n

p0 = 1 atm T0 = 296 K

p

n
p = ρkT ρ γcoll ∝ T

T γcoll

γcoll n



2.2 Collisional broadening
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• HITRAN gives 2 values for the damping constant,  and 


‣   is used for collisions between identical atoms/molecules (of the same 
type)


‣   is used for collisions in a standard molecular mix corresponding to the 
Earth atmosphere


•  The general formula for the collisional broadening by a mix of air and of the 

molecule is:     

where  is the partial pressure of the molecule.

γself γair

γself

γair

γcoll(p, T) = [γair(p0, T0)
p − ps

p0
+ γself(p0, T0)

ps

p0 ] ( T0

T )
n

ps



2.2 Collisional broadening
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• Pressure broadening mainly takes place in dense environments like stellar  and 
planetary atmospheres


• In planetary atmospheres, it usually dominates over Doppler broadening


• In interstellar and circumstellar gas like molecular clouds or protoplanetary 
disks, pressure broadening rarely plays a role



2.3 Natural width
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• Because of the uncertainty principle, energy levels have a finite width  
given by , with  the level lifetime


• Short-lived states have large uncertainties in the energy


• This means that  photons that have a frequency  slightly different than  can 
also be emitted by the atom/molecule


• Typically, photons emitted in a transition from this level to the ground state will 

have a range of possible frequencies: 

ΔE
ΔEΔt ≳ ℏ Δt

ν0

Δν ∼
ΔE
h

∼
1

2πΔt



2.3 Natural width
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•  is linked to the Einstein coefficients 


• If  is very large, as for allowed  transitions, the upper energy level of the 
transitions have a very short lifetime and a broad natural linewidth


‣ This is the case for resonance lines (line for which the lower level is the 
ground state)


• For metastable states, which are the upper levels of forbidden transitions, the 
lifetime is large, and also for the ground state, which can only be depopulated 
by absorption. These leads to narrow linewidths.

Δt Aij

Aij



2.3 Natural width
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• The line profile is given by , with  the damping 

constant


• Like for collisional broadening, the line profile is a Lorentzian


• Natural linewidth is rarely observed except in some cases in the line wings.


• Other broadening processes usually dominate

ϕ(ν) =
1
π

δ
δ2 + (ν − ν0)2

δ



2.4 Voigt profile
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• When more than one broadening processes are present, the combined effect is the 
convolution of the different profiles


• Combining two Gaussian profiles or two Lorentzian profiles is easy


‣ The combination of Doppler and microturbulent broadenings gives a Gaussian 

profile of width  :    


‣ The combination of natural and pressure broadenings gives a Lorentzian 

profile  with   the total linewidth

a = a2
th + a2

turb ϕG(ν) =
c

aν0 π
exp (−

c2(ν − ν0)2

a2ν2
0 )

ϕL(ν) =
1
π

δ
δ2 + (ν − ν0)2

δ = δcoll + δnat



2.4 Voigt profile
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• Combining a Lorentz and a Gauss profile implies convolving both profiles, which is 

not trivial:  


• This is called a Voigt profile


• In numerical radiative transfer, calculating this integral each time a line profile has to 
be evaluated is costly. Humlicek (1982, JQSRT, 27, 437) has developed a  fast 
numerical procedure to approximate the Voigt profile. The code is publically 

available. It calculates a function  with  and 


• The Voigt profile is then given by 

ϕ(ν) = ∫
∞

0
ϕG(ν′�) ϕL(ν0 + ν − ν′�) dν′�

h(x, y) x =
ν − ν0

a
y =

δ
a

ϕ(ν) =
h(x, y)

π a



2.4 Voigt profile
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• The following figures show the profile in 2 limiting cases

C
.P. D

ullem
ond

• If thermal/microturbulent Doppler broadening is small with respect to pressure/natural broadening ( ) 
the profile is similar to a Lorentzian (right panel)


• If thermal/microturbulent Doppler broadening is large with respect to pressure/natural broadening ( ) 
the Gaussian profile dominates near the line centre, but wings of the Lorentzian profile can reappear far from 
the line centre (left panel)

a
δ

≪ 1

a
δ

≫ 1



2.4 Voigt profile
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• In diffuse media like the interstellar medium or circumstellar disks, the distance at 
which the Lorentzian profile reappears can be so large that we can ignore this effect


• However, this has to be evaluated on a case by case basis


• For dense media like stellar or planetary atmospheres, the Gaussian component is 
generally too small to play a role 


• Typically, for forbidden lines, the natural linewidths is very small. Moreover these 
lines are only found in very diffuse media so that the collisional damping constant is 
also very small. In this case, the Doppler profile dominates


• For allowed transitions, the Doppler profile dominates in the line centre (up to 
roughly 3 Doppler widths) but the line wings have a damping profile (for stellar 
atmosphere lines, typically)



2.5 Line profiles integrated along the line of sight
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• In many cases, all atoms or molecules do not have the same velocity along the 
line of sight


• This effect is amplified when the resolution of the telescope is limited, ie  the 
telescope PSF/beam encompasses different regions that have different velocities

⇒
ν

I

• Several velocity components can be seen in this case


• This can give rise to rather complex profiles, which give nevertheless precious 
information on gas kinematics, the nature of an astrophysical object and its 
dynamical evolution



2.5.1 Integrated spectrum for an accretion disk
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• Disks undergo differential rotation following a 
keplerian profile: the gas close to the star 
rotates with a higher velocity and temperature 
than the gas on external orbits


• If the disk  is seen  face-on, its orbital 
velocities cannot be measured by Doppler 
effect


• If the disk is inclined with respect to the line 
of sight, the lines have a characteristic profile 
with two peaks

HD163296 / ESO



2.5.1 Integrated spectrum for an accretion disk
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C.P. Dullemond

• The emission of the external disk produces 
the line centre, whereas the emission from 
the internal disk regions produces the line 
wings


• Inclining the disk towards more edge-on  
views, the line becomes broader, until the 
inclination is so large that external disk 
regions start obscuring the star and disk 
internal regions



2.5.2 P-Cygni profile of a stellar wind
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C.P. Dullemond

• Let us consider a star with a stellar wind  of spherical 
symmetry


• We also assume that the wind accelerates with 
increasing distance from the star and that the 
temperature decreases with radius


• The gas close to the star is hot and subsonic: it 
produces an intense and broad emission


• Other regions of the stellar wind are cold and move at 
blue-shifted velocities: external regions cause an 
absorption line superimposed on the large emission line

• This leads to an asymmetric line  profile with two peaks, with a blue peak less intense 
than the red peak


• Such a profile is called a P-Cygni profile



2.5.4 Real spectra
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• Real profiles can be 
extremely complex

Carlhoff, P. et al. A&A. 560 (2013) A24

http://inspirehep.net/author/profile/Carlhoff%2C%20P.?recid=1251385&ln=fr
http://inspirehep.net/author/profile/Carlhoff%2C%20P.?recid=1251385&ln=fr


3. Solving line radiative transfer
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• In order to solve line radiative transfer, the emissivity and the absorption 
coefficients (or the source function) have to be determined


• In the expression of the emissivity and absorption coefficient, there are the 
level populations  and  


• It is therefore necessary to calculate these populations to solve radiative 
transfer


• This means determining the excitation state of the atoms/molecules

Ni Nj



3.1 Excitation
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• Atoms and molecules can change energy level either by photon absorption/emission (raditive 
excitation) or by energy exchange during a collision with a particle from the ambient medium 
(collisional excitation).


• Radiative excitation is described by the Einstein coefficients ( , , ) that we saw at the beginning 
of the chapter


• Collision excitation is described by collision rates 


• In general, we use the collisional coefficients , which describe how many times per second a 
particle  goes from level  to level . They are the equivalent of the Einstein coefficients, but for 
collisions


‣ , with  the density of collisioners


‣ Units:  is in , and  is in 

Aji Bij Bji

Kij(T)

Cij
i j

Cij = N Kij(T) N

Cij s−1 Kij cm3 s−1



3.1 Excitation
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• The number of excitations per second and per unit volume is 


• The number of deexcitations per second and per unit volume is 


• Collisioners are abundant species in the medium: H, e, H2, depending on the nature of the 
medium


• Collisional rates are calculated from collisional cross sections , which depend on energy, i.e. 
on the particle relative velocity : 


• The mean is taken over the velocity distribution function, which is generally a Maxwellian, 
limited by an energy threshold  for collisional  excitation (the particle velocity has to be 
greater than , because the transition can only take place if the energy of the incident 
particle is greater than the energy of the upper level).

Ni Cij = Ni N Kij(T)

Nj Cji = Nj N Kji(T)

σij
υ Kij = < σij υ >

Eij

2 Eij /m



3.1 Excitation
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• For collisional excitation: 


• For collisional deexcitation: 




•  is the mass of the collisioning particles


• Note that there are cases where the velocity distribution is not a Maxwellian (e.g. solar 
flares)


• Generally, we find  tabulated for a Maxwellian velocity distribution

Kij(T) = ∫
∞

Eij
( m

2π k T )
3/2

σij(υ) exp (−
mυ2

2 k T ) 4π υ3 dυ

Kji(T) = ∫
∞

0 ( m
2π k T )

3/2

σji(υ) exp (−
mυ2

2 k T ) 4π υ3 dυ

m

Kij



3.1 Excitation

73

• Colisional cross section can be determined experimentally for certain transitions, but experiments 
are difficult (Bergeat et al., Nature Chemistry, 2015)


• Usually,  (and ) can be calculated, but these atomic and molecular calculations are complex, 
all the more that molecules are complex as well (the difficulty increases with geometry and 
number of degrees of freedom). Typically, an interaction potential surface between the atom/
molecule and collisioner has to be first calculated.


• If one collisioner dominates, it is possible to consider that there is just one collisioner, but in many 
cases, several have to be taken into account, as for example in molecular media (H2 and He, or 
ortho- and para-H2)


• Since calculations are considerably more complex for H2 than for He, sometimes the collisional 
rates with Helium are used, corrected of the mass difference between H2 and He. It is only an 
approximation, but is used for lack of better rates


• For each collisional partner pair, there is a set of collisional rates, e.g. CH3OH-pH2, CH3OH-oH2, 
CH3OH-e

σij Kij



3.1 Excitation
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• Relation between  and : we use microreversibility at LTE, together with the Boltzmann relation  


‣  


‣    


‣ 


• We can therefore calculate the collisional excitation rate from the collisional de-excitation rate


• Note that the temperature in the relation is the temperature due to the thermal motion of the gas. 
Turbulent velocity does not contribute, as it is a global motion that plays no role in particle collisions


• The temperature and density dependence is included in the  

Kij Kji

Ni Cij = Nj Cji ⇒ Ni Kij = Nj Kji

Nj

Ni
=

gj

gi
exp (−

Eij

kT )
⇒ Kij =

gj

gi
exp (−

Eij

k T ) Kji

Cij = N Kij(T)

Due to microreversibility, this 
relation remains valid 
outside LTE



3.2 Radiative transfer equations in the non-LTE case
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• The transfer equation remains unchanged with respect to what was seen in 
former chapters:  , with  
and  as previously given.


• The term  now depends on direction because the line profile in frequency is 
ubject to a Doppler shift which depends on the direction (ie on the projection 
of the velocity along the direction), according to 




• In general, radiative transfer codes work in the referential of the laboratory.

⃗n ⋅ ⃗∇ Iν( ⃗x , ⃗n ) = jν( ⃗x , ⃗n ) − αν( ⃗x , ⃗n ) Iν( ⃗x , ⃗n ) jν
αν

αν

ϕij(ν, ⃗υ ) = ϕij (ν[1 −
1
c

⃗n ⋅ ⃗υ ])



3.2 Radiative transfer equations in the non-LTE case
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• The velocity  depends on position . This means that for a given ray in a direction , the 
Doppler shift (and this the value of ) can change along the ray


• As a consequence, the radiation at a given frequency  can remain unattenuated along a large 
distance and then suddenly (where the frequency of the line centre   moves closer to ) 
because of the Doppler shift, the optical depth increases but can decrease again when the 
frequency of the line centre moves away from : the region in which the ray is optically thick 
can be limited


• Similarly, a photon emitted at a central frequency   corresponding to the frequency  of the 
line in the referential of the laboratory can suddenly become “free” (if it has not been absorbed 
in the meantime) because the velocity gradient of the gas shifted the line profile away from 


• Because of the relation between velocity and frequency, spectra are often traced as a function 
of velocity

⃗υ ⃗x ⃗n
ϕij

ν
νij ν

ν

νij ν

ν



3.2 Radiative transfer equations in the non-LTE case
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• The radiative transfer equation  has a contribution from  and  which 
depend on the level populations


• In addition, we need an equation that gives the level populations: this is the 
equation of statistical equilibrium


• At steady-state, for each level , the rate at which atoms or molecules are 
(de)excited away from level  is equal to the rate at which level  is populated 
again by (de)excitations from other levels

jν αν,

i
i i



3.2.1 Optically thin case
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• We will start with the most simple case, that were the 
medium is optically thin at all wavelengths, ie the 
photons emitted by a gas parcel at a given location are 
not reabsorbed  elsewhere in the medium.


• This eliminates the radiative coupling between different 
regions, so that level populations can be calculated 
independently at each point of the medium, i.e. locally.


• The equation of statistical equilibrium in this case can 
therefore be written


∑
j>i

nj Aji − ∑
j<i

ni Aij + ∑
i≠j

[nj Cji − ni Cij] = 0

Aji

Aij

j

j

i

populates i

depopulates i



3.2.1 Optically thin case
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• This equation is verified for all levels , which makes a system of  linear 
equations, where  is the number of considered levels of the atom or 
molecule


• The equation we have to solve is therefore a matrix equation (which can be 
easily done using, eg, “Numerical Recipes”)

i Nlev
Nlev



3.2.2 Critical density
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• When radiative deexcitation dominate over collisional transitions that repopulate 
the level, the level populations can be smaller than their value at LTE


• For a given temperature, we can define a critical density, which is defined as the 
density above which collisions maintain populations close to their LTE values


• The critical density depends on the transition: certain low energy transitions can be 
at LTE when higher energy transitions can have populations that largely deviate 
from LTE


• The critical density is a rather vague concept, but it is useful to determine if at a 
given density and temperature, non-LTE effects are to be expected and if LTE is a 
good approximation


• Line intensity ratios can also trace density, by checking whether their are consistent 
with populations at LTE



3.2.2 Critical density
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• For a 2-level system, the critical density can be expressed as follows





• The critical density is given by 


• The excitation temperature is then given by 


• If ,   and   


• For complex molecules (in particular non linear molecules) it is more difficult to formulate an expression 
of the critical density because many transitions can populate or depopulate the levels

N2

N1
=

C12

C21 + A21
= exp (−

Δ E
kT ) 1

1 + A21

C21

g2

g1

Ncr

N
=

A21
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Tex =
T

1 + kT
ΔE ln (1 + Ncr

N )
N ≫ Ncr Tex ≃ T (1 +

kT
ΔE

Ncr

N )
−1
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3.2.2 Critical density
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Elitzur, Astronomical Masers



3.2.3 General case, non optically thin
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• In addition to photon emission (by radiative deexcitation), photons can also be absorbed, 
when the medium is not optically thin


• For a radiation field , the number of photons absorbed by a transition  is
Iν( ⃗x , ⃗n ) j → i

∮ αij,ν( ⃗n )
Iν( ⃗n )

hν
dν d ⃗n ≃

1
hνij ∮ αij,ν( ⃗n ) Iν( ⃗n ) dν d ⃗n

≃
1

hνij ∮
hνij

4π
(Nj Bji − Ni Bij) ϕij(ν, ⃗x , ⃗n ) Iν( ⃗n ) dν d ⃗n

≃ (Nj Bji − Ni Bij)
1

4π ∮ ϕij(ν, ⃗x , ⃗n ) Iν( ⃗n ) dν d ⃗n

≃ (Nj Bji − Ni Bij) Jij

•  is the mean intensity integrated over the line profileJij



3.2.3 General case, non optically thin
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• 


with 


• We now include the absorption term in the statistical equilibrium equation:





• This is the full equation of statistical equilibrium for non-LTE line radiative transfer


• This equation is a local equation, which must be solved separately at each location, but it 
also has aglobal character because of the dependency in  which can only be calculated 
by solving the whole radiative transfer

Jij =
1

4π ∮ ϕij(ν, ⃗x , ⃗n ) Iν( ⃗n ) dν d ⃗n

ϕij(ν, ⃗x , ⃗n ) = ϕij(ν, ⃗υ ( ⃗x )) = ϕij (ν[1 −
1
c

⃗n ⋅ ⃗υ ])

∑
j>i

[nj Aji + (nj Bji − ni Bij) Jji] − ∑
j<i

[ni Aij + (ni Bij − nj Bji) Jij] + ∑
i≠j

[nj Cji − ni Cij] = 0

Jij



3.2.3 General case, non optically thin
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• We therefore have, as in the case of continuum, a chicken-egg problem


• In order to have the populations, we need the mean intensity, and in order to 
have the mean intensity, we need the populations (to solve the radiative 
transfer, we need to know  and  which depend on the populations)


• The source function for the    is   


• For the total source function, we have to use   

jν αν

j → i Sij =
jν( ⃗n )
αν( ⃗n )

=
nj Aji

ni Bij − nj Bji

Sν =
∑ jν
∑ αν



3.2.3 General case, non optically thin
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• Hypothesis of complete redistribution: the velocity of atoms and molecules is assumed to be 
completely randomised between absorptions and emissions, ie the hypothesis of complete 
redistribution consists in supposing that before or after each atom or molecule absorbs or 
emits a photon, collisions have already changed its direction. 


• This hypothesis is important to solve line RT. Otherwise, we would have to solve the statistical 
equilibrium equations not only at each grid point, but also for each velocity vector. 


• Instead of a 3D problem in ,  we would have to solve a 6D problem in 


• Unfortunately the complete redistribution is not always garanteed. In particular in the turbulent 
ISM, the typical time it takes for an eddy to randomised its velocity is much greater than the 

 of the transitions.


• Even in this case, we use the hypothesis of total redistribution, because the full treatment of 
non-LTE  line RT with partial redistribution is not numerically treatable in 3D

⃗x ⃗x , ⃗υ

1/Aji

Hypotheses made in order to solve these equations



3.2.4 Comparison with dust continuum RT
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• Line radiative transfer, even without anisotropic scattering, has many traps


• in particular, unless we build a complete model of the object (cf structure of a 
protoplanetary disk, with chemistry, heating and cooling of gas, RT) we have 
to assume the gas temperature


• For certain applications and in particular depending on the nature of data to 
be modelled, it can be worth using approximations like those we have seen 
(homogeneous medium, LTE) or specific (escape probability).


• In some cases, it is the presence or not of atomic/molecular data that will 
dictate the methods that we can use. For example, collisional rates are only 
available for a restricted number of systems. It is illusory to try a non-LTE 
calculation when collisional rates are not available 



3.2.5 Analogy with scattering
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• As mentioned before, we talk sometimes about scattering in line RT


• This involves two successive processes, first an excitation (absorption), 
followed by a deexcitation (reemission) for a pair of levels


• The net effect is to redirect the photon in a new direction


• The process is mathematically equivalent to true isotropic scattering and this 
is why the word “scattering" is used, although this can lead to confusion


• In fact, the mathematical equivalence is only true for a two-level system. With 
a system that has multiple levels, the excitation towards the upper level can 
be followed by a 2-step de-excitation, ie an energetic photon is absorbed but 
two low-energy photons are emitted. This process is no longer similar to 
scattering



3.2.5 Analogy with scattering
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• combining these 3 equations, we can write: 


• This is equivalent to the isotropic scattering expression previously seen


• The main difference is that  is the mean intensity integrated over the frequency 
(integrated over the line profile): the photons can change frequency within a 
spectral line for each scattering event


• This is reminiscent of the analogy with scattering  for emission/absorption for 
thermal dust radiative transfer, except that this time, it takes place in a very narrow 
frequency domain around the line


• The random walk steps due to scattering can have different  lengths depending on 
the frequency (and therefore the optical depth) seen by the photon at a given time

jul,ν = αul,ν Jul

Jul

Example for a two-level system



3.2.5 Analogy with scattering
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• Another difference with isotropic scattering is that for the two-level system, the 
opacity  depends on the mean intensity . 


• If  is large, most atoms will be in the upper  level, so that there will be fewer 
atoms to excite from the lower level. This decreases  


• If  is sufficiently small that ,  can be considered constant


• In certain cases, systems can behave like a two-level systems. This is the case for 
Ly  recombination lines: an H+ ion which recombines with an electron usually 
forms an atom in an excited state. Following radiative decay the atom goes back to 
lower and lower states until it reaches 1s


• If it reaches the 2p state, the only radiative transition downward is Ly 

αul,ν Jul

Jul
αul,ν

Jul nu ≪ 1 αul,ν

α

α

Example for a two-level system



3.3 Local thermal equilibrium
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• A simple case in line radiative transfer is that of LTE. Even if it is not valid,  these 
approximations are very much used


• One of the characteristics of local thermodynamic equilibrium for lines is that level 

populations are described by a Boltzmann distribution, ie  , 

where  is the thermodynamic temperature in the medium.


• This means that the populations are governed by collisions


• We then obviously have  for all pairs of levels (all transitions have levels 
populated according the same excitation temperature  and this temperature is 
equal to the kinetic temperature of the gas)

nj

ni
=

gj

gi
exp (−

Eij

kT )
T

Tex = T
Tex



3.3 Local thermal equilibrium
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• This temperature is often not precisely known


• Sometimes, the assumption is made that  is the same for all transitions, 
but that but that it is different from . In general, it is smaller (except for 
masers), which means that the levels are sub-thermally populated


• In what follows, we will keep the notation .


• We also assume a homogeneous source model

Tex
T

Tex



3.3 Local thermal equilibrium
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• We have already seen the solution of the radiative transfer equation in this 
simple case:  , with 


• Optically thick case: 


• Optically thin case: 


• Optically thin case without background: 


• In the Rayleigh-Jeans domain: 


• Outside the RJ regime: 

Iν = Iν(0) e−τν + Sν (1 − e−τν) Sν = Bν(Tex)

Iν ∼ Sν

Iν ∼ τν Sν + Iν(0) (1 − τν)

Iν ∼ τν Sν

Tb = Tbg e−τν + Tex (1 − e−τν)

Jν(Tb) = Jν(Tbg) e−τν + Jν(Tex) (1 − e−τν)



3.3.1 Expression of the optical depth
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• It is the optical depth term that contains information on the amount of matter


• The interesting case is the optically thin case, otherwise it is rare to be able to determine 
the optical depth (unless there is a hyperfine structure)


• The optically thick case gives the temperature of the medium (although in non-LTE 
conditions, this is not the kinetic temperature of the gas)


• We start from  and 


• The populations are given by  and we use the relations between 

the  Einstein coefficients:  and  

τν = ∫ αν ds αν =
hν
4π

nj Bji (
ni Bij

nj Bji
− 1) ϕ(ν)

nj

ni
=

gj

gi
exp (−

hν
kTex )

Aji

Bji
=

2hν3

c2
gi Bij = gj Bji
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⇒ αν =
hν
4π

nj
Aji

2hν3
c2[exp ( hν

kTex ) − 1] ϕ(ν)

=
Aji

8πν2
c2 [exp ( hν

kTex ) − 1] ϕ(ν) nj

• Where  is the upper level population


• The optical depth at frequency  is therefore:


•

nj

ν

τν = ∫ αν ds

= ∫
Aji

8πν2
c2 [exp ( hν

kTex ) − 1] ϕ(ν) nj ds =
Aji

8πν2
c2 [exp ( hν

kTex ) − 1] ϕ(ν) Nj

with  the column density of particules in the upper levelNj
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• In general,  is not perfectly characterised, which hinders the determination of  
from 


• On the other hand, we can often more easily determine the  frequency integrated 
optical depth.


• The function  is non zero over a very small domain around the central frequency 
of the line (with the linewidth which is negligible with respect to the frequency of the 
transition, i.e. ) and the other functions of  in the expression of  vary 
slowly over this domain. We can therefore write




where  is the frequency of the transition

ϕ(ν) Nj
τν

ϕ(ν)

Δν ≪ ν0 ν τν

∫ τν dν =
Aji

8πν2
0

c2 [exp ( hν0

kTex ) − 1] Nj ∫ ϕ(ν) dν

ν0
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• Because  is normalised, this yields




• When spectra are expressed as a function of velocity and not frequency, it is 
interesting to substitute  by , using  





This gives the column density of particles in the upper level, given the velocity 
integrated optical depth

∫ ϕ(ν) dν

∫ τν dν =
Aji

8πν2
0

c2 [exp ( hν0

kTex ) − 1] Nj

ν υ dν = ν/c dυ

∫ τυ dυ =
Aji

8πν3
0

c3 [exp ( hν0

kTex ) − 1] Nj
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• In order to have the species total column density (and not only that of particles 

in level ), we can use the partition function  





• It is therefore possible to determine the total column density from the velocity 
(or frequency)-integrated optical depth, knowing the temperature (for exemple 
with )


• Several further simplifying assumptions can then be made: if the line is 
Gaussian, or optically thin

j Nj =
N
Z

gj exp (−
Ej

kTex )
∫ τυ dυ =

Aji

8πν3
0

c3 [exp ( hν0

kTex ) − 1] N
Z

gj exp (−
Ej

kTex )
Tex = Tkin



3.3.1 Expression of the optical depth

99

• For a Gaussian line (eg Doppler broadening dominates, with a low optical 

depth, a simple velocity field), we have: 


 is the optical depth at the centre of the line


 is the linewidth (FWHM)


• This expression is valid as long as lines are Gaussian. They can be slightly 
optically thick, but generally, the more optically thick the lines are and the 
less they are Gaussian.

∫ τvdυ =
π

4 ln 2
τ0 Δυ

τ0

Δυ
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• Either we can determine the line optical depth directly. An example of this is when the atom/
molecule has a hyperfine structure. The relative ratios of the different hyperfine components 
can give the optical depth: the hyperfine components are in a ratio  if the transition is 
optically thin, but if not, the ratio is different, which allows us to derive the optical depth


• In the general case, the observations give a spectrum which is the difference between an “on 
source position”, and an “off source” position

gj Aji

Application

On source Off source

TON = Tbg e−τν + Tex (1 − e−τν) TOFF = Tbg
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• The observed spectrum is  


Or 


• In the optically thin case: , ie  and  are proportional


• This leads to 

Tb = TON − TOFF = (Tex − Tbg) (1 − e−τν)

Tb = (Jν(Tex) − Jν(Tbg)) (1 − e−τν)

Tb = τυ (Tex − Tbg) Tb τυ

∫ T dυ = (Tex − Tbg)∫ τυ dυ

Application

= (Tex − Tbg)
Aji

8πν3
0

c3 [exp ( hν0

kTex ) − 1] N
Z

gj exp (−
Ej

kTex )
•  is the line intensity integrated over velocity, ie the area under the observed line. It is 

measured on the spectrum. If RJ does not apply, we have to replace  by 
∫ T dυ

Tex − Tbg Jν(Tex) − Jν(Tbg)
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• If the line is Gaussian, we have directly  with 

 and  is the expression previously derived. 


 is the intensity at line centre.

T0 = (Tex − Tbg) (1 − e−τ0)

τ0 =
∫ τυ dυ

π
4 ln 2 Δυ ∫ τυ dυ

T0

Application
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• Rotational diagrams are a graphic LTE method to determine the column density


• It is still widely used, even though it might not  have a large added value with respect to classical 
LTE methods


• This method is more restrictive because it requires additional assumptions with respect to 
LTE


• So we have to be careful not to use the method when these assumptions are not verified


• Goldsmith & Langer 1999, ApJ describe the method in a clear way


• The supplementary assumptions are


• The transitions are optically thin (formerly, we could assume that they are Gaussian, and not 
completely optically thick)


• warm/hot medium for which the background temperature/intensity is negligible,  ie 
Tex ≫ Tbg
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• With both assumptions, we can write: 


• The intensity integrated under the line is written 


• If we now substitute each of  these factors with their expression 

Tb = [Jν(Tex) − Jν(Tbg)] (1 − e−τ) ≃ τ Jν(Tex)

∫ T dυ ≃ ∫ τ dυ Jν(Tex)

∫ T dυ =
Aji

8πν3
0

c3 [exp ( hν0

kTex ) − 1] Nj
hν
k

1

exp ( hν
kTex ) − 1

=
Aji

8πν2
c3 h

k
Nj
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• The column density in the upper level is expressed in a very simple way as a function of the area 

under the line 





• What is remarkable in this expression is that it is independent of 


• In the LTE hypothesis, the column density in the upper level can be expressed with the partition 

function 


• Taking the logarithm of this relation, we have:  

∫ T dυ

Nj =
8π k ν2

hc3 Aji ∫ T dυ

Tex

Nj =
N
Z

gj exp (−
Ej

kTex )
ln (

Nj

gj ) = ln(N) − ln(Z) −
Ej

kTex
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• The quantity   is a straight line as function of , the slope of which 

gives the excitation temperature, and the intercept gives the total column 
density 


•  is calculated from the expression of  as a function of  (see 

previous slide)


• This method no longer works if we cannot neglect  in front of . In this 
case,  is no longer independent of 

ln (
Nj

gj ) Ej

N

ln (
Nj

gj ) Nj ∫ T dυ

Tbg Tex
Nj Tex
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Parise et al. (2002)
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• There are many cases where the LTE approximation is too coarse.


• Without resorting to solving the whole transfer problem (and its complexity), which implies costly 
numerical treatment, one can use other simple techniques


• One of the difficulties of line radiative transfer is the coupling between the statistical equilibrium 
equation at one location (local equation) to the mean intensity, i.e. the radiation field averaged over 
all directions.


• One approach consists in decoupling these equations by introducing the probability that a photon 
escapes from the medium after having been emitted.


• This method was proposed by Sobolev (1958)


• It is only an approximation, because in reality the photon might be absorbed and reemitted many 
times and therefore move everywhere within the source


• This approach gives nevertheless results in good agreement with a more precise and elaborated 
treatment of radiative transfer
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• For simplicity, we will assume a two-level system. The equations of statistical equilibrium can be 
written:


• 


• 


• At steady-state we obviously have 


• If the source is completely optically thick to its own radiation, the mean intensity tends towards 
the local value of the source function  ( )


• The difference between   and the local source function  must then represent the photons 
escape from the source, and therefore  represents the proportion of photons trapped locally

dn1

dt
= (−n1 B12 + n2 B21) J + n2 C21 − n1 C12 + n2 A21

dn2

dt
= (n1 B12 − n2 B21) J − n2 C21 + n1 C12 − n2 A21

dn1

dt
=

dn2

dt
= 0

S I → S

J
J/S
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• If the escape probability is , the proportion of trapped photons is simply .


• The approximation of the escape probability assumes that  can be written 



•  depends on the geometry of the source and of the optical depth


• The important point is that  does not depend on the intensity


• Another point is that the above equation involves the photon absorption  
probability, instead of the escape probability. The sum of both probabilities is 1 
in a simple case of only one line. If there is in addition a continuum or another 
line that overlaps with the first one, the photon can be lost for the line without 
escaping the source. The previous equation has then to be modified

β 1 − β

J
J = S (1 − β)

β

β
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• Introducing the expression of  in the statistical equilibrium equation, we 

obtain: 


• This decouples the mean intensity from the statistical equilibrium equations.


• For a system with more than 2 levels,  depends on the considered transition


• If we have a continuum background intensity, its probability to penetrate in 
the source is 

J
dn2

dt
= n1 C12 − n2 C21 − β n2 A21

β

1 − β



3.4 Escape probability

112

• Interpretation


‣ A deexcitation from level 2 does not always decrease the level 
population, because the emitted photon can be absorbed elsewhere in 
the source and excite again the system towards level 2. Only photons 
escaping the source lead to a change in the populations. The variation 
rate of the population is the spontaneous decay rate ( ) multiplied  by 
the escape probability .


‣ We can also consider that photon trapping due to absorption and 
reemission  slows down the deexcitation by  a kind of “scattering” of the 
photon. The number of scattering events is simply the opposite of the 
escape probability for the photon, ie we change  into 

A21
β

A21 β A21
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• We now have to estimate the escape probability


• In reality,  depends on the solution of the problem at each location, because 
 depends on the radiation field


• In order to have an expression of   as a function of the geometry only and 
the optical depth, but which is independent of the radiation field, 
approximations have to be made


• Expressions for  as a function of  for exemple in Elitzur (Astronomical 
Masers) for different geometries

β
S

β

β τ
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‣ Sobolev approximation, or large velocity gradient (LVG): 


‣ Homogeneous, plan parallel medium: 


‣ Turbulent medium: 


‣ Uniform sphere:    (Osterbrock)


• We roughly expect that in the limit of low optical depths,   (the medium is transparent and the 
photon escapes without interactions)


• If the medium is optically thick ( ) it can be divided in  zones of optical depth 1. On average, a 
photon escapes only if it is produced in the most external region, and the probability it escapes is 1/

β =
1 − e−τ

τ

β =
1 − e−3 τ

3 τ

β =
1

π π ln( τ
2 )

β =
1.5
τ [1 −

2
τ2

+ (2
τ

+
2
τ2 ) e−τ]

β → 1

τ ≫ 1 τ
τ
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• Large velocity gradient: the interpretation of this case is that when there is a 
large velocity gradient in the source the photons emitted by an atom or a 
molecule at a velocity  cannot be reabsorbed by a molecule at a velocity 

 located elsewhere in the source, if , where  is the 
linewidth. 


• The photon can then escape and the problem becomes entirely local. The 
Doppler shift is  


• In practice this method gives good results, even when there are few velocity 
gradients

⃗υ
⃗υ ′� | ⃗υ − ⃗υ ′�| > Δυ Δυ

Δνij = νij/c ⃗n ( ⃗υ − ⃗υ ′�)


