Particle-in-cell simulations

Part I: Numerical methods

Benoît Cerutti

CNRS & Université Grenoble Alpes, Grenoble, France.

Plan of the lectures

• Wednesday:

- *Morning*: The PIC method, numerical schemes and main algorithms.
- Afternoon: Coding practice of the Boris push and the Yee algorithm.

Thursday:

- *Morning*: Implementation of Zeltron, structure and methods.
- Afternoon: Zeltron hands on relativistic reconnection simulations
- *Evening*: Seminar applications of PIC to relativistic magnetospheres.

• Friday:

- *Morning:* Boundary conditions and parallelization in Zeltron.
- Afternoon: Zeltron Hands on relativistic collisionless shocks simulations

The Holy book for PIC simulations!

Astrophysical context

Solar corona & wind, heliosphere

Pulsar Wind Nebulae

Supernova Remnants

Gamma-ray bursts

B. Cerutti

Broad non-thermal distributions

Blazars

Pulsars & Pulsar Wind Nebulae

Cosmic Ray Spectra of Various Experiments

 $[http://www.physics.utah.edu/\sim whanlon/spectrum.html]$

Particle acceleration processes

Magnetic reconnection

Magnetic energy => Particles

Accretion disk coronae, magnatars, pulsars, jets, GRBs

Hands on session II on Tuesday afternoon

Shocks

Flow kinetic energy => Particles

GRBs, SNRs, PWNe, jets...

Hands on session III on Wednesday afternoon

Collisionless plasmas

Collisions thermalizes efficiently the particle distribution, **not good for non- thermal** distributions. In most astrophysical environments, plasmas are **very dilute** so that they are effectively "**collisionless**".

Coulomb collisions **mean free path**: $l_C = \frac{1}{n \sigma_C}$

Frequency of collisions $v = \frac{V}{l_C}$

Collisionless plasma if the plasma frequency $\omega_{pe} \gg v$

It also implies that there is a large number of particles per **Debye sphere**:

$$N_D = n\lambda_D^3 \gg 1$$

Particles sensitive to **collective plasma phenomena** over binary collisions, particularly important on the **sub-Debye length** and **plasma frequency scales** (plasma frequency and gyroradius).

These microscopic scales are involved in particle acceleration process. Need to resolve kinetic scales (\neq MHD approach), and system size $L\gg\lambda_D$

The particle distribution function

Let's start by defining the particle distribution function:

$$f(\mathbf{r}, \mathbf{p}, t) = \frac{dN}{d\mathbf{r} d\mathbf{p}}$$
 6D in phase space +1D in time

The **total number** of particles is given by: $N = \iint_{r,p} f(r,p,t) dr dp$

The plasma **charge density** by: $\rho = q \int_{\mathbf{p}} f(\mathbf{r}, \mathbf{p}, t) d\mathbf{p}$

The plasma current density by: $J = q \int_{\mathbf{n}} \mathbf{v} f(\mathbf{r}, \mathbf{p}, t) d\mathbf{p}$

The Vlasov equation

The evolution of distribution function is given by the **Boltzmann equation**:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial f}{\partial \mathbf{r}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = \left(\frac{\partial f}{\partial t}\right)_{Collisions}$$

For a **collisionless** plasma: $\left(\frac{\partial f}{\partial t}\right)_{Collisions} = 0$ And if the fluid feels only the **electromagnetic force**: $F = q\left(E + \frac{v \times B}{c}\right)$

$$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right)$$

We obtain the **Vlasov equation**:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial f}{\partial \mathbf{r}} + q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$

Along with **Maxwell equations**, we have all equations to model collisionless plasmas.

Two numerical approaches to solve Vlasov

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial f}{\partial \mathbf{r}} + q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$

Ab-initio model, no approximations

Directly with a Vlasov-code

Indirectlty with a PIC code

Treat phase space as a continuum fluid | Sample phase space with particles

Advantages:

- **No noise**, good if tail of f is important dynamically (steep power-law).
- No issue if plasma very inhomogeneous.
- Weak phenomena can be captured

Limitations:

- Problem (6+1)D, hard to fit in the memory, limited resolution.
- Filamentation of the phase space
 But becoming more competitive, new development to come, stay tuned!

Advantages:

- Conceptually simple
- Robust and easy to implement.
- Easily **scalable** to large number of cores

Limitations:

- **Shot noise**, difficult to sample uniformly f,
- Artificial collisions, requires many particles
- Hard to capture weak/subtle phenomenas
- Load-balancing issues

Not covered here

Main focus of this lecture

The particle approach

The Vlasov equation can be written in the form of an advection equation:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial f}{\partial \mathbf{r}} + q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f}{\partial \mathbf{p}} = 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial t} + \nabla (f \mathbf{U}) = 0$$

Vlasov equation can be solved along **characteristics curves** along which it has the form of a set of ordinary differential equations (the method of characteristics):

$$\frac{d\mathbf{p}}{dt} = q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right)$$
 Lorentz-Newton equation
$$\frac{d\mathbf{r}}{dt} = \mathbf{v}$$

The characteristics curves corresponds to the trajectory of individual particles!

Hence, we can **probe Vlasov equation by solving for the motion of particles**, the larger number, the better!

B. Cerutti

The particle approach

The particle approach consists in approximating the distribution function by an ensemble of discrete particles in phase space

Dirac delta function
$$f(\mathbf{r}, \mathbf{p}, t) \approx \sum_{k=1}^{N_p} w_k \delta(\mathbf{r} - \mathbf{r}_k(t)) \delta(\mathbf{p} - \mathbf{p}_k(t))$$

Weight particle k Position and momentum particle k at time t

It is impossible to have as many particles as real plasmas

=> Simulation particles are not physical particles.

Instead, **they represent a large number of physical particles** which would all follow the same trajectory in phase space, with the same (q/m) ratio.

Simulation particles => "Macroparticles"

Then we have:

$$N \approx \sum_{k=1}^{N_p} w_k \qquad \rho \approx \sum_{k=1}^{N_p} q_k w_k \delta(\mathbf{r} - \mathbf{r}_k(t)) \quad \mathbf{J} = \sum_{k=1}^{N_p} q_k w_k \mathbf{v}_k \delta(\mathbf{r} - \mathbf{r}_k(t))$$

The Particle-In-Cell (PIC) approach

The Particle-In-Cell (PIC) approach

In the PIC approach, the particles do not feel the fields of all the other particles directly. **The particles feel each other through the grid**, via their contribution to the current and charge densities that is deposited on the grid.

Caveats: **Very expansive**, long-range Instantaneous interaction?!

Much cheaper! Propagation of light naturally present via CFL condition

14

Computation procedure per timestep in PIC

Computation procedure per timestep in PIC

Step 1: Particle push

$$\frac{d\mathbf{p}}{dt} = q\left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c}\right) \longrightarrow \frac{d\mathbf{u}}{dt} = \frac{q}{mc}\left(\mathbf{E} + \frac{\mathbf{u} \times \mathbf{B}}{\gamma}\right) \quad \text{Where } \begin{cases} \gamma = \frac{1}{\sqrt{1 - (\mathbf{v}/c)^2}} \\ \mathbf{u} = \frac{\gamma \mathbf{v}}{c} \end{cases} \quad \text{(4-velocity)}$$

Explicit **time-centered**, finite-difference scheme (leapfrog integration method):

- u and r are staggered in time by half a time step
- **Second order** accurate but requires only to evaluate function at one time step only (fast and no extra memory needed)
- **Stable** for oscillatory motion (gyromotion) as long as $\Delta t < \Delta t_{CFL}$ (see later)
- Time-reversal and **conserves well energy**
- Implicit methods also exist

The Boris push (Boris 1970)

Let's define (Half acceleration):
$$\begin{cases} \mathbf{u}^{n+1/2} = \mathbf{u}^{+} + \frac{q \mathbf{E}^{n} \Delta t}{2 m c} \\ \mathbf{u}^{n-1/2} = \mathbf{u}^{-} - \frac{q \mathbf{E}^{n} \Delta t}{2 m c} \end{cases}$$

Replacing \mathbf{u}^+ and \mathbf{u}^- in Newton's equation gives: $|\mathbf{u}^+ = \mathbf{u}^- + \mathbf{u}^- \times \mathbf{s} + |\mathbf{u}^- \times \mathbf{w}| \times \mathbf{s}$

$$u^+ = u^- + u^- \times s + (u^- \times w) \times s$$

Where
$$w = \frac{q \mathbf{B}^n \Delta t}{2 m c v^n}$$
 and $s = \frac{2 w}{1 + w^2}$ Hands-on I: Code your own Boris push!

More readings: Qin+2013: Why is Boris algorithm so good?

18

Interpolation of the fields

The fields are known on the mesh only

=> So we need to **interpolate** the fields to the **particle position**

<u>2D Example:</u> Bilinear interpolation ("area weighting", first order)

Consider field F known on the grid nodes F(i,j), and a particle located in P(x,y)

Then, the contribution to the field felt by the particle is:

$$\mathbf{S}_{3}$$

$$\mathbf{S}_{3}$$

$$\mathbf{S}_{4}$$

$$\mathbf{S}_{1}$$

$$\mathbf{S}_{2}$$

$$\mathbf{X}$$

$$(i,j)$$

$$\mathbf{X}$$

$$(i+1,j)$$

$$F$$

$$W_{1} = \frac{S_{4}}{S_{tot}} F_{i,j} = (1-p)(1-q)F_{i,j}$$

$$W_{2} = \frac{S_{3}}{S_{tot}} F_{i+1,j} = p(1-q)F_{i+1,j}$$

$$p = (x-x_{i})/dx$$

$$q = (y-y_{i})/dy$$

$$W_{3} = \frac{S_{2}}{S_{tot}} F_{i,j+1} = (1-p)qF_{i,j+1}$$

$$W_{4} = \frac{S_{1}}{S_{tot}} F_{i+1,j} = pqF_{i+1,j+1}$$

$$F(x,y) = W_{1} + W_{2} + W_{3} + W_{4}$$

... But we can also imagine higher-order scheme.

Computation procedure per timestep in PIC

Step 2: Charge and current deposition

In continuous space:
$$\rho \approx \sum_{k=1}^{N_p} q_k w_k \delta(\mathbf{r} - \mathbf{r}_k(t))$$
 $\mathbf{J} = \sum_{k=1}^{N_p} q_k w_k \mathbf{v}_k \delta(\mathbf{r} - \mathbf{r}_k(t))$

On the grid: $\rho_{i,j} \approx \sum_{k=1}^{N_{cell}} q_k w_k S(\mathbf{r} - \mathbf{r}_k(t))$, where S is a "shape" function

2D Example: Bilinear interpolation ("area weighting", first order)

Even though the particles are point-like, they have an **effective size** that is felt through the deposition of currents on the grid. In this case, their effective shape is triangular.

B. Cerutti

Computation procedure per timestep in PIC

Step 3: Maxwell equations

In Gaussian cgs units:

$$\nabla \cdot \mathbf{E} = 4 \,\pi \,\rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\frac{\partial \mathbf{E}}{\partial t} = c \, \nabla \times \mathbf{B} - 4 \, \pi \, \mathbf{J}$$

$$\frac{\partial \mathbf{B}}{\partial t} = -c \, \nabla \times \mathbf{E}$$

In principle, need to solve for the **time-dependent equations only**, then the other two should be **automatically satisfied**, but this is not necessarily true due to **truncation errors**.

The total particle charge is conserved, but not necessarily the charge deposited on the grid! $\nabla \cdot \mathbf{E} \neq 4\pi\rho$

Option 1: Correct the E field and solve Poisson equation

Option 2: Parabolic/Hyperbolic divergence cleaning [Marder 1987, Munz+2000]

Option 3: Charge conserving deposition scheme [Esirkepov 2001, Villasenor &

Buneman 1992]

$$\nabla \cdot \mathbf{B} = 0$$

Automatically satisfied to machine roundoff precision with the Yee Algorithm! [Yee 1966]

Yee algorithm

$$\frac{\partial \mathbf{E}}{\partial t} = c \, \nabla \times \mathbf{B} - 4 \, \pi \, \mathbf{J}$$

$$\frac{\partial \mathbf{B}}{\partial t} = -c \, \nabla \times \mathbf{E}$$

The fields are staggered in both space and in time!

Space: staggered mesh ("Yee mesh")

B. Cerutti

Yee algorithm

Finite-Difference Time-Domain (FDTD) scheme: 2nd in space and time

 $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$ $\mathbf{E}_{\mathbf{z}}$

Hands-on I: Code your own Yee solver!

Explicit components in 2D + vacuum

$$\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E} \qquad \frac{\partial \mathbf{E}}{\partial t} = c \nabla \times \mathbf{B}$$

$$\frac{(E_x)_{i+1/2,j}^{n+1} - (E_x)_{i+1/2,j}^n}{\Delta t} = c \frac{(B_z)_{i+1/2,j+1/2}^{n+1/2} - (B_z)_{i+1/2,j-1/2}^{n+1/2}}{\Delta y}$$

$$\mathbf{x} \qquad \frac{(E_y)_{i,j+1/2}^{n+1} - (E_y)_{i,j+1/2}^n}{\Delta t} = -c \frac{(B_z)_{i+1/2,j+1/2}^{n+1/2} - (B_z)_{i-1/2,j+1/2}^{n+1/2}}{\Delta y}$$

$$\frac{(B_z)_{i+1/2, j+1/2}^{n+1/2} - (B_z)_{i+1/2, j+1/2}^{n-1/2}}{\frac{\Lambda_t}{\Lambda_t} + \frac{(E_y)_{i+1/2, j+1/2}^{n} - (E_y)_{i+1/2, j+1/2}^{n}}{\frac{\Lambda_t}{\Lambda_t}} + \frac{(E_x)_{i+1/2, j+1}^{n} - (E_x)_{i+1/2, j}^{n}}{\frac{\Lambda_t}{\Lambda_t}}$$

Very **robust** and **stable** if the **Courant-Friedrichs-Lewy** (CFL) condition is fulfilled:

1D:
$$\left(\frac{c \Delta t}{\Delta x}\right)^2 < 1$$
 2D: $(c \Delta t)^2 \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}\right) < 1$ **3D:** $(c \Delta t)^2 \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}\right) < 1$

Physics: The Debye length and the plasma frequency must be resolved in PIC

$$\frac{\Delta x}{\Delta_p} < 1$$
 $\omega_{pe} \Delta t < 1$

Numerical dispersion of the Yee solver

We are looking for plane waves solutions

$$(F)_{i,j}^{n} = F_{0} \exp I (n \omega t - ik_{x} \Delta x - jk_{y} \Delta y)$$

$$(\partial_t E_x)_{i+1/2,j}^{n+1/2} = \frac{2I(E_x)_{i+1/2,j}^{n+1/2}}{\Delta t} \sin \frac{\omega \Delta t}{2}$$

$$(\partial_y E_x)_{i+1/2, j+1/2}^n = \frac{2I(E_x)_{i+1/2, j+1/2}^n}{\Delta y} \sin \frac{\omega \Delta y}{2}$$

Dispersion relation

$$\left[\frac{1}{c\Delta t}\sin\left(\frac{\omega\Delta t}{2}\right)\right]^2 = \left[\frac{1}{\Delta x}\sin\left(\frac{k_x\Delta x}{2}\right)\right]^2 + \left[\frac{1}{\Delta y}\sin\left(\frac{k_y\Delta y}{2}\right)\right]^2$$

Instead of:

$$\frac{\omega^2}{c^2} = k_x^2 + k_y^2$$

Non-Cartesian grid

Sometimes, it can be more interesting to use **non-cartesian** grid to take advantage of the symmetries of the system.

=> Simplifies the initial setup load balancing and boundary conditions

Cartesian Yee-mesh

$\mathbf{E}_{\mathbf{z}}$ $\mathbf{B}_{\mathbf{y}}$ $\mathbf{E}_{\mathbf{y}}$ \mathbf{y} $\mathbf{E}_{\mathbf{x}}$ $\mathbf{B}_{\mathbf{z}}$

Spherical Yee-mesh

Applications to plasmas around a central object.

Emission of non-thermal radiation

The frequency of the energetic radiation is often not resolved by the grid!

Example: Synchrotron radiation critical frequency: $\omega_{syn} \propto \gamma^2 (qB/mc) = \gamma^3 \omega_c \gg 1/\Delta t$

Hence, photons must be added as a separate species.

Also, the radiation reaction force must be added in the equation of motion explicitly:

$$\frac{d \mathbf{p}}{d t} = q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) + \mathbf{g}$$
Particle
$$\mathbf{g}$$

$$\mathbf{photons}$$
Particle
$$\mathbf{g}$$

$$\mathbf{photons}$$
Trajectory

The radiation reaction force is then given by the **Landau-Lifshitz formula** (classical electrodynamics):

$$\boldsymbol{g} \approx \frac{2}{3} r_e^2 \left[\left(\boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B} \right) \times \boldsymbol{B} + \left(\boldsymbol{\beta} \cdot \boldsymbol{E} \right) \boldsymbol{E} \right] - \frac{2}{3} r_e^2 \gamma^2 \left[\left(\boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B} \right)^2 - \left(\boldsymbol{\beta} \cdot \boldsymbol{E} \right)^2 \right] \boldsymbol{\beta}$$

For **inverse Compton** scattering (isotropic external source in the Thomson regime):

$$\mathbf{g} = -\frac{4}{3} \sigma_T \gamma^2 U_{rad} \mathbf{\beta}$$

Applications to e.g., PWN, AGN jets

[See Cerutti+2013, 2016]

Pair creation, QED effects

The laser-plasma community is adding extra physics for the next generation of **high-**

intensity laser that will reach a fraction of the critical field

=> **QED** effects and **pair creation** important

Regime relevant to **pulsars**, **magnetars** ($B>B_{QED}$), and **black hole** magnetospheres.

PIC with pair creation start being used in astrophysics: *Timokhin 2010, Chen &*

 $Beloborodov\ 2014,\ Philippov\ +\ 2015a,b.$

Non-Euclidian metric

Application to e.g., **black hole** magnetospheres and **pulsars**.

"3+1" space-time foliation: Equations are solved on local inertial frames ("FIDO" observers)

Maxwell:

Metric term

$$\frac{1}{\sqrt{Y}} \frac{\partial (\sqrt{Y} \mathbf{B})}{\partial t} = -c \nabla \times \mathbf{E}$$

$$\frac{1}{\sqrt{Y}} \frac{\partial (\sqrt{Y} \mathbf{P})}{\partial t} = c \nabla \times \mathbf{H} - 4\pi \mathbf{J}$$

Equation of motion:

$$\frac{\mathrm{d}x^{i}}{\mathrm{d}t} = v^{i} = \frac{\alpha}{\Gamma} \gamma^{ij} u_{j} - \beta^{i},$$

$$\frac{\mathrm{d}u_{i}}{\mathrm{d}t} = -\Gamma \partial_{i} \alpha + u_{j} \partial_{i} \beta^{j} - \frac{\alpha}{2\Gamma} \partial_{i} (\gamma^{lm}) u_{l} u_{m} + \frac{\alpha}{m} \mathcal{L}_{i}$$

Metric induced terms

30

B. Cerutti Parfrey, Philippov & Cerutti (2019)

-1.0

A few words about hybrid PIC codes

An important limitation of full PIC methods is the **limited separation of scales.** Only microscopic systems can be modelled.

In particular, it's hard to model electron/ions plasmas with realistic mass ratio Plasma frequency $\omega_p \propto 1/\sqrt{m} \rightarrow \omega_{pe}/\omega_{pi} = \sqrt{m_i/m_e} \approx 43$

Hence, ion acceleration is hard to capture with PIC (except in the ultrarelativistic limit).

Hybrid code: [e.g., see Winske+2003]

Ions are **PIC** particles:
$$m_i \frac{d \mathbf{v_i}}{dt} = q \left(\mathbf{E} + \frac{\mathbf{v_i} \times \mathbf{B}}{c} \right)$$

Electrons are treated as a massless neutralizing **fluid** (method works for

non-relativistic plasmas):
$$n_e m_e \frac{d \mathbf{V}_e}{d t} = 0 = -e n_e q \left(\mathbf{E} + \frac{\mathbf{V}_e \times \mathbf{B}}{c} \right) - \nabla \cdot P_e$$

Example: Application to non-relativistic shock acceleration. [Gargaté &

Summary Part I

- PIC methods appropriate to model particle acceleration in **relativistic collisionless** outflows.
- Main algorithms for explicit PIC codes:
 - Evolving particles: **Boris push**
 - Evolving the fields: **FDTD Yee method**
- PIC is very robust, scalable, and versatile to various setup.

A few useful references:

- C.K. Birdsall, A.B Langdon, "Plasma Physics via Computer Simulation", Series in Plasma Physics
- R.W. Hockney, J.W. Eastwood, "Computer Simulation Using Particles"
- Philip L. Pritchett, "Particle-in-Cell Simulation of Plasmas A Tutorial", J. Büchner, C.T. Dum, M. Scholer (Eds.): LNP 615, pp. 1–24, 2003.
- J. Büchner, "Vlasov-code simulation", Advanced Methods for Space Simulations, edited by H. Usui and Y. Omura, pp. 23–46, 2007.

 B. Cerutti