Particle-in-cell simulations

Part III: Boundary conditions and parallelization

Benoît Cerutti

CNRS & Université Grenoble Alpes, Grenoble, France.

Astrosim 2019, Montpellier, January 27 - February 7, 2020.

Plan of the lectures

• <u>Wednesday:</u>

- *Morning*: The PIC method, numerical schemes and main algorithms.
- *Afternoon:* Coding practice of the Boris push and the Yee algorithm.

• <u>Thursday:</u>

- *Morning*: Implementation of Zeltron, structure and methods.
- Afternoon: Zeltron hands on relativistic reconnection simulations
- *Evening*: Seminar applications of PIC to relativistic magnetospheres.

• <u>Friday:</u>

- *Morning*: Boundary conditions and parallelization in Zeltron.
- Afternoon: Zeltron Hands on relativistic collisionless shocks simulations

Field boundary conditions: a few examples

Example of a 1D absorbing layer

Absorption without reflection => **Gradially increasing** conductivity *For example :*

4

Perfectly Matched Layer (PML) $\frac{\partial E}{\partial t} + \sigma E = c \nabla \times B - 4\pi J \qquad \frac{\partial B}{\partial t} + \sigma^* B = -c \nabla \times E$

Multi-D generalization : Perfectly Matched Layer (see *Bérenger 1994-1996*)

Example: Let's consider a 2D case in vacuum with E_x , E_y , and B_z .

Then, we have to solve these :

Physical domain

The trick is to split the B_z component into two : $B_z = B_{zx} + B_{zy}$

$$\frac{\partial E_{y}}{\partial t} + \sigma_{x} E_{y} = -c \frac{\partial}{\partial x} (B_{zx} + B_{zy}) \qquad \frac{\partial B_{zx}}{\partial t} + \sigma_{x} B_{zx} = -c \frac{\partial E_{y}}{\partial x}$$
$$\frac{\partial E_{x}}{\partial t} + \sigma_{y} E_{x} = c \frac{\partial}{\partial y} (B_{zx} + B_{zy}) \qquad \frac{\partial B_{zy}}{\partial t} + \sigma_{y} B_{zy} = c \frac{\partial E_{x}}{\partial y}$$

Easily generalized to all components in 2D and 3D.

B. Cerutti

Problem : 2 times more equations to solve !

Field boundary conditions in Zeltron

Choice of boundary conditions (mod_input.f90)

```
! Specify the boundary conditions for the fields:
! 1. "PERIODIC": Periodic boundary conditions
! 2. "METAL": Perfect metal with infinite conductivity
CHARACTER(LEN=10), PARAMETER, PUBLIC :: BOUND_FIELD_XMIN="PERIODIC"
CHARACTER(LEN=10), PARAMETER, PUBLIC :: BOUND_FIELD_XMAX="PERIODIC"
CHARACTER(LEN=10), PARAMETER, PUBLIC :: BOUND_FIELD_YMIN="PERIODIC"
CHARACTER(LEN=10), PARAMETER, PUBLIC :: BOUND_FIELD_YMAX="PERIODIC"
```

Perfectly conducting wall along x-direction for E_{z} (mod_fields.f90)

B. Cerutti

Particle boundary conditions: a few examples

7

B. Cerutti

Particle boundary conditions in Zeltron

Choice of boundary conditions (mod_input.f90)

! Specify the boundary conditions for the particles: ! 1. "PERIODIC": Periodic boundary conditions

2. "REFLECT": Particles are elastically reflected at the wall

3. "ABSORB": Particles are absorbed at the wall

CHARACTER (LEN=10),	PARAMETER,	PUBLIC ::	BOUND_PART_XMIN="PERIODIC"
CHARACTER (LEN=10),	PARAMETER,	PUBLIC ::	BOUND_PART_XMAX="PERIODIC"
CHARACTER (LEN=10),	PARAMETER,	PUBLIC ::	BOUND_PART_YMIN="PERIODIC"
CHARACTER (LEN=10),	PARAMETER,	PUBLIC ::	BOUND_PART_YMAX="PERIODIC"

Chunk from **SUBROUTINE** BOUNDARIES_PARTICLES (mod_particles.f90)

```
Case 1: x>xmax
    IF (x.GT.xmax) THEN
   ! Elastic reflection
   IF (BOUND PART XMAX.EQ. "REFLECT") THEN
   x=2.0 \times max - x
   ux = -ux
   END TF
   ! Absorption
   IF (BOUND PART XMAX.EQ. "ABSORB") THEN
   wt=0d0
   END IF
                                                       8
 END TF
B. Cerutti
```

Parallelization: Domain decomposition

PIC code are really demanding in computing resources => **Need to parallelize the code!**

A common practice is to use the **Message Passing Interface (MPI)** library and the **domain decomposition technique.**

Example: Consider a 2D mesh 9x9 cells and 9 CPUs.

2D decomposition

Applicable to an arbitrary number of CPUs

Choice decomposition depends on the problem

Define a topology

SUBROUTINE COM_TOPOLOGY in *mod_initial.f90*

```
! Initialization of the cartesian topology
periods(1) = . TRUE.
periods(2) = . TRUE.
reorder=.FALSE.
dims(1)=NPX ! Number of processors along X
dims(2)=NPY ! Number of processors along Y
! Creation of the dimension in each direction
CALL MPI DIMS CREATE (NPROC, 2, dims, ierr)
! Creation of the topology
CALL MPI CART CREATE (MPI COMM WORLD, 2, dims
, periods, reorder, COMM, ierr)
! To obtain the ID number of each process
CALL MPI COMM RANK (COMM, id, ierr)
! To obtain the coordinates of the process
```

CALL MPI_CART_COORDS(COMM, id, 2, coords, ierr)

Local grids and arrays

Each processor has its own local grid and local particle arrays (main.f90)

```
! Spatial boundaries in the X-direction of each domain
DOUBLE PRECISION :: xminp, xmaxp
! Spatial boundaries in the Y-direction of each domain
DOUBLE PRECISION :: yminp, ymaxp
! Global nodal grid
DOUBLE PRECISION, DIMENSION(1:NX) :: xg
DOUBLE PRECISION, DIMENSION(1:NY) :: yg
! Nodal grid in each domain
DOUBLE PRECISION, DIMENSION(1:NXP) :: xqp
DOUBLE PRECISION, DIMENSION(1:NYP) :: yqp
! Yee grid in each domain
DOUBLE PRECISION, DIMENSION(1:NXP) :: xyeep
DOUBLE PRECISION, DIMENSION(1:NYP) :: yyeep
              SPATIAL BOUNDARIES FOR EACH SUB-DOMAIN
                     xminp=xmin+coords(1)*NCXP*dx
xmaxp=xminp+NCXP*dx
yminp=ymin+coords(2)*NCYP*dy
ymaxp=yminp+NCYP*dy
```

Neighbours

Once the topology defined, it is crutial that each processor knows its neighbours

In Zeltron this information is contained in : ! ngh: neighbor array (2D)

1D decomposition

2D decomposition

Communications between CPUs : Fields

<u>Example</u>: We want to compute E field on the grid (**SUBROUTINE** FIELDS_NODES in *mod_fields.f90*)

$$Exg_{i,j} = \frac{Ex_{i+1/2,j} + Ex_{i-1/2,j}}{2}$$

But we need $\mathbf{Ex}_{_{1/2,j}}$ to compute $\mathbf{Ex}_{_{0,j}}$ This value is known by the neighbour W => W must send its values of $\mathbf{Ex}_{_{\mathrm{nxp}-1,j}}$

Communications between CPUs : Fields

A very typical MPI "point-to-point" communication of a 1D array in Zeltron

B. Cerutti

Communications between CPUs : Particles

MPI Communications

1D: Up to **2** / **CPU**

2D: Up to **8** / **CPU**

3D: Up to **26 / CPU**

Example: 2D decomposition

Communications between CPUs : Particles

Steps for exchanging particles

SUBROUTINE COM_PARTICLES (*mod_motion.f90*)

<u>Step 1</u>: Count all particles leaving the processor domain towards the neighbouring processors.

<u>Step 2</u>: Ask the neighbours how many particles are leaving their domains towards processor id.

Communications between CPUs : Particles

Step 3: Exchange particle data (x,y,z,ux,uy,uz,wgt,tag,...)

<u>Step 4:</u> Resize particle array to update the content of particles in each domain.

$$pcl(N_{new}) \leftarrow pcl(N_{old} - N_{esc} + N_{inc})$$
¹⁷

B. Cerutti

PIC codes scale well to large number of CPUs

The era of **High-Performance Computing!** Today ~> 10⁶ CPUs

See <u>http://www.top500.org/</u>

Weak scaling

Strong scaling

Load balancing issues

Computing time (without communications): ~ 90% particles, ~10% fields Few particles **Processor #9** is **#8 #9 #7** Many particles waiting for all the **Processor #5** is others slowing down all the others **#5** #4 **#6 #2** #3 #1

Another specific example: a shock

Density contrast ~ 4

1D decomposition is appropriate here, but maximum number of cores is **limited.**

Hybrid parallelization: MPI-OpenMP

Supercomputer

B. Cerutti

Hands-on III: Relativistic collisionless shocks

Collisionless shock sounds counter-intuitive. To form a shock we need collisions, something that thermalizes the flow (randomize particle's velocity). In collisionless shocks, waves and magnetic irregularities effectively collide with particles.

Main astrophysical applications:

How efficient at accelerating particles? What are the main acceleration mechanisms?

Pulsar Wind Nebulae Wind termination shock $\Gamma \sim 10^2 - 10^6$ **Relativistic jets** Lobes, collimation, internal shocks $\Gamma \sim 10$ 23

Diffusive shock acceleration

Axford 1977, Krymsky 1977, Blandford & Ostriker 1978, Bell 1978 See e.g. Pelletier et al. 2017 for a review

<u>Prediction</u>: generates broad steep (~-2) power-laws, but <u>needs strong plasma</u> <u>turbulence at kinetic scales</u> on both downstream and upstream!

Does it work?

Recent studies are based on ab-initio particle-in-cell (PIC) simulations

The usual numerical setups

Periodic

Good setup to follow the formation of one shock only (the reverse shock)

Simulation frame = Frame of the downstream flow

У

Good setup to follow the formation of all the shocks plus contact discontinuity 25

Unmagnetized collisionless shock formation

<u>Phase 2:</u> Electromagnetic counter-streaming **instabilities** grows (linear phase)

<u>Phase 3</u>: Non-linear phase, the shock form and particle acceleration begins

Numerical Cherenkov radiation

Numerical dispersion relation (Lecture I) $\left[\frac{1}{c \Delta t} \sin\left(\frac{\omega \Delta t}{2}\right)\right]^2 = \left[\frac{1}{\Delta x} \sin\left(\frac{k_x \Delta x}{2}\right)\right]^2 + \left[\frac{1}{\Delta y} \sin\left(\frac{k_y \Delta y}{2}\right)\right]^2$

Instead of:

$$\frac{\omega^2}{c^2} = k_x^2 + k_y^2$$

If relativistic cold plasma beam v~c => Numerical Chenrenkov radiation

> **Plasma beam heats up !** $\Gamma \approx 1 \Rightarrow$ Non-relatvistic shock

How to mitigate :

- Filtering

- Higher order schemes for derivatives See e.g. *Greenwood* + 2004

A.D. Greenwood et al. | Journal of Computational Physics 201 (2004) 665-684