
HABILITATION A DIRIGER DES RECHERCHES
Spécialité : Astrophysique

Présentée par

Benoît CERUTTI

Préparée au sein de l’Institut de Planétologie et d’Astrophysique de Grenoble
dans l'École Doctorale de Physique

Accélération de particules dans les 
magnétosphères relativistes

Particle acceleration in relativistic 
magnetospheres

HDR soutenue publiquement le 8 janvier 2021 à 14h dans la salle 
Manuel Forestini à l’IPAG devant le jury composé de : 

Mme Elena AMATO
Chercheure INAF,  Rapporteur
M Fabien CASSE
Professeur Université de Paris, Examinateur
M Laurent DEROME
Professeur Université Grenoble Alpes, Président
M Arache DJANNATI-ATAÏ
Directeur de recherche CNRS, Examinateur
M Serguei KOMISSAROV
Professeur University of Leeds, Rapporteur
M Martin LEMOINE
Directeur de recherche CNRS, Rapporteur





Contents

I Context 5

1 Gamma-ray �ares from the Crab Nebula 7

1.1 The discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The synchrotron burno� limit and the 160MeV barrier . . . . . . . 11
1.4 Proposed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 The magnetic reconnection scenario . . . . . . . . . . . . . . . . . 13

2 Birth of the Zeltron PIC code 17

2.1 Relativistic plasmas under the PICoscope . . . . . . . . . . . . . . 18
2.2 Collisionless plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The particle approach . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Main computing procedures in PIC . . . . . . . . . . . . . . . . . 20
2.5 Numerical Cherenkov radiation . . . . . . . . . . . . . . . . . . . . 26
2.6 Conservation of charge and magnetic �ux . . . . . . . . . . . . . . 26
2.7 The radiation-reaction force . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Parallelization strategies . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Brief overview of Zeltron architecture . . . . . . . . . . . . . . . . 31
2.10 Publications and impact on the community . . . . . . . . . . . . . 32

3 First applications: Particle acceleration in relativistic reconnec-
tion sites 35

3.1 Relativistic magnetic reconnection . . . . . . . . . . . . . . . . . . 36
3.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 The relativistic Harris equilibrium . . . . . . . . . . . . . . 38
3.2.2 Numerical implementation . . . . . . . . . . . . . . . . . . 39

3.3 Tearing and kink instabilities . . . . . . . . . . . . . . . . . . . . . 42
3.4 Reconnection dynamics . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Particle acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Application to the Crab �ares . . . . . . . . . . . . . . . . . . . . 49

3



II Pulsar magnetospheres 53

4 Pulsar electrodynamics 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Vacuum magnetospheres: The Deutsch �elds . . . . . . . . . . . . 58
4.3 Electrosphere: The Goldreich-Julian solution . . . . . . . . . . . . 59
4.4 Force-free magnetosphere: The plasma-�lled solution . . . . . . . . 63

4.4.1 Analytical solution: the monopole . . . . . . . . . . . . . . 63
4.4.2 Numerical solutions: the dipole . . . . . . . . . . . . . . . . 65

5 2D axisymmetric model 71
5.1 Numerical developments in Zeltron: Spherical geometry . . . . . . 71

5.1.1 Maxwell's solver and spherical Yee mesh . . . . . . . . . . . 71
5.1.2 Particle pusher, spherical remapping and shape . . . . . . . 73
5.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 75

5.2 The plasma supply problem . . . . . . . . . . . . . . . . . . . . . . 77
5.3 From the electrosphere to the force-free magnetosphere . . . . . . . 78
5.4 Particle acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.1 Acceleration of ions . . . . . . . . . . . . . . . . . . . . . . 83
5.5.2 Binary pulsars . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 3D model: pulsed emission and dissipation of the striped wind 89
6.1 Gamma-ray pulsars: Salient observational features . . . . . . . . . 89
6.2 3D setup and radiation . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Initial �elds . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Synchrotron and curvature cooling . . . . . . . . . . . . . . 93
6.2.3 Synchrotron and curvature spectrum . . . . . . . . . . . . . 95
6.2.4 Reconstruction of light curves . . . . . . . . . . . . . . . . 96

6.3 Inclined magnetospheres and synthetic light curves . . . . . . . . . 98
6.4 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5 Dissipation of the striped wind . . . . . . . . . . . . . . . . . . . . 105

6.5.1 Context and motivations . . . . . . . . . . . . . . . . . . . 105
6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5.3 A toy model for dissipation . . . . . . . . . . . . . . . . . . 108
6.5.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 109

III Black-hole magnetospheres 111

7 Context and the need for a kinetic description 115
7.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 State-of-the-art and the need to go beyond the magnetohydrody-

namic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



8 Numerical developments in Zeltron: 3+1 implementation 121
8.1 The 3+1 description of general relativity . . . . . . . . . . . . . . . 121
8.2 Maxwell solver in curved spacetime . . . . . . . . . . . . . . . . . 123

8.2.1 Maxwell's equation in 3+1 . . . . . . . . . . . . . . . . . . 123
8.2.2 Numerical implementation . . . . . . . . . . . . . . . . . . 124
8.2.3 Poisson solver . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Particle pusher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3.1 Equation of motion in 3+1 . . . . . . . . . . . . . . . . . . 125
8.3.2 Tetrads and Boris push . . . . . . . . . . . . . . . . . . . . 126

8.4 Monte-Carlo implementation of radiative transfer . . . . . . . . . . 126
8.4.1 Inverse Compton . . . . . . . . . . . . . . . . . . . . . . . . 127
8.4.2 γ-γ pair production . . . . . . . . . . . . . . . . . . . . . . 131

9 2D axisymmetric model 135
9.1 The Kerr metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2 Uniform �eld: Vacuum solution . . . . . . . . . . . . . . . . . . . . 137
9.3 The plasma supply problem . . . . . . . . . . . . . . . . . . . . . . 139
9.4 Uniform �eld: Plasma-�lled solution . . . . . . . . . . . . . . . . . 140

9.4.1 Setup and magnetospheric features . . . . . . . . . . . . . . 140
9.4.2 Energy extraction: Blandford-Znajek versus Penrose process 142

9.5 Pair producting solution . . . . . . . . . . . . . . . . . . . . . . . 144
9.5.1 Setup and scales . . . . . . . . . . . . . . . . . . . . . . . . 144
9.5.2 1D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.5.3 2D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

IV Perspectives 149
9.6 Pair production and jet loading. Application to EHT observations

& ultra-rapid AGN gamma-ray �ares . . . . . . . . . . . . . . . . . 151
9.7 Black-hole-disk interaction. Application to Gravity observations of

SgrA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.8 Binary black hole-neutron star interaction. Application to LIGO-

VIRGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.9 The need to scale simulations up: Hybrid PIC-force-free simulations 155
9.10 Project impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

V Curriculum Vitae & list of publications 157
9.11 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.11.1 Personal information . . . . . . . . . . . . . . . . . . . . . 159
9.11.2 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.11.3 Current and previous positions . . . . . . . . . . . . . . . . 159
9.11.4 Awards & fellowships . . . . . . . . . . . . . . . . . . . . . 159
9.11.5 Supervision of graduate students and Postdoctoral fellows . 160



Chapter 0

9.11.6 Teaching activities . . . . . . . . . . . . . . . . . . . . . . . 160
9.11.7 Outreach activities . . . . . . . . . . . . . . . . . . . . . . 160
9.11.8 Organisation of scienti�c meetings . . . . . . . . . . . . . . 161
9.11.9 Institutional responsibilities . . . . . . . . . . . . . . . . . . 161
9.11.10Reviewing activities . . . . . . . . . . . . . . . . . . . . . . 161

9.12 List of talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.12.1 Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.12.2 Seminars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.13 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.13.1 Refereed journals articles . . . . . . . . . . . . . . . . . . . 167
9.13.2 Book chapters . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.13.3 Conference proceedings . . . . . . . . . . . . . . . . . . . . 170

Page 1



Chapter 0

Page 2



Prologue

In September 2010, as I just moved from Grenoble into Boulder, Colorado, for
my �rst postdoc in the group of Prof. Dmitri Uzdensky, a cosmic phenomenon of
prime signi�cance was detected 550 km above our heads by the gamma-ray space
telescopes Fermi and Agile. I am not yet aware of it then, but this event will have a
huge impact on the focus of my research, leading me to unexpected and unexplored
territories. This feeling is still alive today. This memoir traces this journey, from
the �rst semi-analytical models of particle acceleration in reconnection layers to
today's global general relativistic radiative particle-in-cell (PIC) simulations of
Kerr black-hole magnetospheres.

Part I gives the context I was in back then during my �rst postdoc which
lead me to the �eld of computational plasma astrophysics, culminating with the
creation of the Zeltron PIC code in the Summer 2012 and its �rst applications to
relativistic reconnection in the context of the Crab Nebula gamma-ray �ares. These
developments turned out to be crucial for the understanding of particle acceleration
in relativistic magnetospheres. This part also explains how I naturally arrived into
this �eld. Part II dives deep into the main focus of this memoir with the �rst type
of relativistic magnetospheres discussed here, which forms around pulsars. This
new Chapter of my scienti�c life began in Princeton when I joined Prof. Anatoly
Spitkovsky's group back in 2013 as a Lyman Spitzer Junior Postdoctoral Fellow
joint with the Max Planck Princeton Center. I describe the �rst global ab-initio
PIC models of pulsar magnetospheres, and how those have contributed to a better
understanding or perhaps even solve some of the most outstanding mysteries in
high-energy astrophysics, such as the origin of the gamma-ray pulsed emission and
magnetic dissipation in pulsar winds. Part III describes a new exciting chapter
opened in 2017, born from the vow passed in 2015 between Sasha Philippov, Kyle
Parfrey and myself just before we all left Princeton, to produce the �rst PIC
model of a black hole magnetosphere. I describe the signi�cant new numerical
developments performed in Zeltron to reach this objective, and the �rst global
models in both 1D and 2D. We are still at the dawn of a promising exploitation
of this code in the context of horizon-scale observations of supermassive black
holes. This is the purpose of the ERC Consolidator grant SPAWN that I have
been awarded at the end of 2019. In Part IV, I describe some of the main lines
of investigation proposed in the SPAWN project for the period 2020-2025, and I
conclude this memoir with some thoughts about exciting new possibilities beyond
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this horizon.
Before proceeding, I would like to warmly thank my closest collaborators Guil-

laume Dubus, Dmitri Uzdensky, Gregory Werner, Mitch Begelman, Sasha Philip-
pov, Anatoly Spitkovsky, Kyle Parfrey, Amir Levinson, Benjamin Crinquand,
Claire Guépin, Kumiko Kotera, and Gwenael Giacinti for making me grow as
a scientist.

As a �nal historical note, this memoir was initiated and partly written during
the Great Quarantine period of March-May 2020.
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Chapter 1

Gamma-ray �ares from the
Crab Nebula

This chapter is based on a review article I wrote with a few other colleagues on
the recent progress in observations and theoretical models of pulsar wind nebulae.
This work was performed in the context of the ISSI working group �The Strongest
Magnetic Fields in the Universe� as a book chapter published in Space Science
Reviews (Kargaltsev et al. 2015). This chapter is also inspired from a paper pub-
lished in the annual special issue of Physics of Plasmas based on an invited talk
at the 55th American Physical Society Division of Plamas Physics annual meeting
held in Denver, Colorado (Cerutti et al. 2014a). One may refer to the excellent
review on this topic by Bühler & Blandford (2014) for more details.

1.1 The discovery

Between September 19-21, 2010, the unthinkable had happened: the Crab Nebula,
the steady high-energy astrophysical source par excellence used as a standard can-
dle for calibrating X-ray and gamma-ray instruments for decades, is in fact a bright
emitter of short gamma ray �ares above 100MeV (Tavani et al. 2011; Abdo et al.
2011). This event was captured by both gamma-ray space telescopes operating
at the time, Fermi and Agile, which immediately convinced both teams that they
were dealing with a real astrophysical phenomenon rather than an instrumental
�uke. After this event, both collaborations looked back in time and realized that
their instruments have already made this discovery. Ironically, the Agile team ob-
served a �rst �are back in 2007 during the calibration phase of the instrument.
The information is kept secret and the most probable scenario envisioned at the
time is an instrumental e�ect. The Fermi satellite is launched a year later, and
another �are in February 2009 is discovered a posteriori.

Today, after more than 10 years of continuous monitoring of the gamma-ray sky,
17 �ares have been clearly identi�ed (see Huang et al. 2020 for a recent accounting).
Figure 1.1 shows the complete data set of the Fermi-LAT lightcurve of the Crab
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Figure 1.1: Fermi-LAT lightcurve above 100MeV of the Crab Nebula since the
launch of the satellite in 2008. A 4-days binning is used in this �gure taken from
Huang et al. (2020).

Nebula. Outside of these spectacular events, identi�ed as the ��ares� where the
�ux goes well above the background, the gamma-ray lightcurve remains apparently
restless with continuous small variations of the �ux (Buehler et al. 2012; Striani
et al. 2013), as if the engine never really switches o�. One of the most extreme
�are was detected in April 2011 during which the �ux was multiplied by 30 over a
period of about a week, representing nearly 1% of the total Crab pulsar spindown
power (Buehler et al. 2012, Figure 1.2).

1.2 Implications

Now, why is this discovery so important? A closer look at the properties of the
�ares reveals a much richer and puzzling picture, showing that there is much more
at stake here than the loss of a standard candle. First, the duration of the �are puts
constraints on the size of the emitting region. For a typical 1-week long episode, and
making the reasonable assumption that the emitting zone is causally connected,
gives a source size ctflare ∼ 1016cm. This means that a volume equivalent to 106

times smaller than that of the Crab Nebula is outshining by 30 times the emission
from the entire system. This constraints is even more stringent if one considers
the intra-�are ultra-rapid variability (Balbo et al. 2011; Buehler et al. 2012; Mayer
et al. 2013; Huang et al. 2020), which goes as short as < 8-hours �ux doubling time
in the brightest events like the April 2011 super�are (Figure 1.2). Therefore, time-
variability alone puts severe constraints on the energetic budget needed to power
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Figure 1.2: Zoomed-in view of the April 2011 super�are seen by the Fermi-LAT
(Buehler et al. 2012). The horizontal blue dashed line shows the average, quiescent
gamma-ray �ux above 100 MeV.

Figure 1.3: Broadband spectral energy distribution of the Crab Nebula. The qui-
escent emission is composed of a radio to gamma-ray synchrotron bump (green)
along with an inverse Compton component in the TeV range (red). The April 2011
super�are spectrum (blue) sticks out above 100MeV without any other counter-
parts. Figure adapted from Weisskopf et al. (2013).
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the �ares. One may wonder, with good reason, whether such a compact region
would not point towards the magnetosphere, but the �ares do not seem connected
with the pulsed emission produced there or with any other magnetospheric events
like giant pulses or glitches.

Another very odd property of the �ares is the lack of a counterpart at any other
wavelength. Figure 1.3 shows the broadband spectral energy distribution averaged
over the Crab Nebula. To a �rst order, it is usually interpreted in the context
of a synchrotron-self Compton emission model (Atoyan & Aharonian 1996; Meyer
et al. 2010). Electron-positrons pairs created within the pulsar magnetosphere
escape in the form of a relativistic magnetic wind; they are randomized and re-
accelerated at the wind termination shock radius. It follows a bright synchrotron
emission in the nebula from radio to 100MeV. The inverse-Compton component
takes over from 100MeV to about 100TeV. The �aring emission sticks out as an
extra component at the end of the quiescent synchrotron component and peaking
up to about 400MeV. It is consistent with a hard power-law with an exponential
cut-o�. The Crab Nebula cannot be resolved by Fermi or Agile, and therefore
the hope quickly grew amongst observers that the location of the �are could be
determined with a high precision at other wavelength, using radio, IR, optical and
with X-rays observations where the nebula is well resolved. The morphology of the
Crab Nebula is complex and rich of small scale features (e.g., knots, rings, anvil,
etc...). In spite of a large coverage using the best telescopes, before, during and
after the �ares, nothing has been detected thus far. Figure 1.3 compiles the data
of such an e�ort for the 2011 super�are (Weisskopf et al. 2013).

The particle spectrum emitting the �are must be very narrow in energy, per-
haps even close to being monoenergetic. This is a strong argument against particle
acceleration via di�usive-shock acceleration, which predicts steep and broad power-
law distributions. Another strong argument against this scenario is again coming
from the �are duration. The only viable radiative process which can possibly emit
these photons in this band over this short period of time and in this environ-
ment is synchrotron radiation. Other processes such as bremsstrahlung or inverse
Compton are far too ine�cient and/or too slow in comparison. Incidentally, the
inverse Compton component above 100GeV remained unchanged during the �are
(H. E. S. S. Collaboration et al. 2014; Aliu et al. 2014). The synchrotron cooling
time is given by

tsync = −γmec
2

Psync
=

9mec

4r2
eB

2γ
≈ 9 B−2

mGγ
−1
9 days, (1.1)

whereme is the electron rest mass, c is the speed of light, re is the classical radius of
the electron, B = BmG mG is the ambiant magnetic �eld strength and γ = 109γ9

is the electron Lorentz factor. Therefore, the �ares can be emitted by PeV (1015eV)
electrons immersed in a milliGauss magnetic �eld, much stronger than the usual
few 100 µG usually estimated from spectral �tting (e.g., Meyer et al. 2010). It
was already known that the Crab Nebula accelerates particles up to PeV energies
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(e.g., de Jager & Harding 1992). What is new, however, is the evidence that such
particles are accelerated over such a short timescale. The gyration time of the PeV
particles is

tL =
γmec

eB
≈ 16 γ9B

−1
mG hours, (1.2)

i.e., of order the shortest variability timescale. Hence, the particles must be acceler-
ated over a sub-Larmor timescale, i.e., the acceleration process must be extremely
e�cient. It also implies that when a �are is observed the acceleration mechanism
is turned on. Di�use shock-acceleration is not adequate because it operates over
multiple gyrations of the particles moving back and forth through the shock front.
Recent PIC simulations of relativistic collisionless shocks indicates that the particle
energy increases as the square-root of time which is far too slow to explain the �are
(Sironi et al. 2013; Plotnikov et al. 2018). In addition, di�usive shock acceleration
do not operate in pulsar wind nebula because the plasma magnetization is most
likely too high, but this is another story.

1.3 The synchrotron burno� limit and the 160MeV

barrier

The last, and arguably the most astonishing feature of the �are is the emission of
synchrotron photons with energies above what is known as the synchrotron burno�
limit (Guilbert et al. 1983; de Jager et al. 1996). Consider a uniform medium where
an electron is accelerated by a constant electric �eld such that the force applied to
the electron is FE = eE. As the particle energy increases, the synchrotron energy
losses grow as ∝ γ2. In reaction to the emission of synchrotron photons, a force
opposite to the particle's velocity direction applies to the electron. In the context
of classical electrodynamics, this force can be approximately expressed as (see next
chapter for a more detailed discussion and derivation, Sect. 2.7)

Frad ≈ −
2

3
r2

eγ
2B2
⊥, (1.3)

where B⊥ is the magnetic �eld strength perpendicular to the particle's direction
of motion. The radiation reaction force balances the electric force, Frad = FE, for
γ = γrad, where

γrad =

√
3eE

2r2
eB

2
⊥
. (1.4)

The corresponding synchrotron photon energy is

εrad =
3~e

2mec
B⊥γ

2
rad =

9

4

mec
2

αF

(
E

B⊥

)
≈ 160

(
E

B⊥

)
MeV, (1.5)

where αF = e2/~c ≈ 1/137 is the �ne structure constant. Another way to interpret
this limit is that a particle with such an energy would radiate away its energy over
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a cyclotron turn. Therefore, under the usual astrophysical regime where ideal
MHD applies, i.e., with E < B⊥, we should not expect synchrotron radiation of
energy above 100MeV and the quiescent emission spectrum of the Crab Nebula
is indeed limited by the burno� limit (de Jager et al. 1996; Abdo et al. 2010a).
Yet, the spectral energy distribution systematically extends well above this limit
and even peaks at about 400MeV in the most extreme �ares (Figure 1.3). This
implies either that the �aring region is moving relativistically towards the observer
with a velocity v > 0.9c, or that the ideal MHD condition breaks down such that
E > 2− 3B⊥.

To summarize, the discovery of the gamma-ray �ares in the Crab Nebula calls
for a revisit of the classical theory of particle acceleration in this environment, and
perhaps also in other relativistic out�ows as found in gamma-ray bursts and black
hole jets. Di�usive-shock acceleration accumulates di�culties, a more impulsive
acceleration mechanism seems preferable. The following section brie�y discusses
some of the scenario envisioned in the community, with an emphasis on my con-
tribution.

1.4 Proposed models

We should �rst note that the estimates and constraints (e.g., energetic, size) de-
rived above from observations are quite conservative, in a sense that the e�ect
of beaming (geometrical or relativistic), spatial and/or temporal inhomogeneities
were ignored. Models proposed so far are taking advantage of one or more of these
e�ects to alleviate the tight constraints imposed by the �ares. For instance, one
feature commonly invoked in models is a strong inhomogeneity of the �aring region,
in particular in the magnetic �eld structure. Bykov et al. (2012) proposed that
the �ares occur around the equatorial belt of the nebula where the abrupt dissipa-
tion of the striped pulsar wind at the shock may accelerate particles (Lyubarsky
2003; Pétri & Lyubarsky 2007; Sironi & Spitkovsky 2011) and generates strong
magnetic turbulence. In this context, the �uctuating nature of the magnetic �eld
can generate a strongly polarized, intermittent gamma-ray signal most pronounced
at the high-energy synchrotron cut-o�. To this end, however, the �eld must vary
over a timescale shorter than the synchrotron cooling time of the particles, which
is determined only by the mean value of the �eld. In their model, the observed
gamma-ray variability would re�ect the properties of the magnetic turbulence.

In the extreme turbulent regime where the coherence length-scale of the mag-
netic �eld, λB, is signi�cantly smaller than the formation length of synchrotron
photons, i.e., lsync = mec

2/eB � λB, then the particles emit in the jitter regime
rather than the classical synchrotron radiation regime (Medvedev 2000). While
the cooling rate remains unchanged, the critical photon energy is boosted by a
factor εjitter/εsync ∼ lsync/λB > 1, and therefore the > 100MeV �are emission could
then be emitted by particles below the radiation reaction limit (Teraki & Takahara
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2013). Another by-product is the hardening of the emission spectrum, changing
from Fν ∝ ν1/3 in the synchrotron regime to Fν ∝ ν for a monoenergetic popula-
tion of particles although the current upper limits in radio, IR anf X-rays are still
compatible with the synchrotron spectrum (Weisskopf et al. 2013). Perhaps the
most challenging issue with this scenario is how to generate magnetic turbulence
to such small sub-Larmor scales. For instance, this regime cannot be achieved even
within Weibel magnetic turbulence generated at the skindepth scale in relativistic
shocks (Sironi & Spitkovsky 2009).

As mentioned earlier, an easy way out of this is to consider a relativistic bulk
out�ow within the �aring region, such that the radiation-reaction-limited syn-
chrotron photons < 100MeV in the co-moving frame are Doppler boosted to higher
energies in the observer's frame (Bednarek & Idec 2011; Yuan et al. 2011; Komis-
sarov & Lyutikov 2011; Lyutikov et al. 2012; Clausen-Brown & Lyutikov 2012).
A modest Lorentz factor would do, Γ > 2. Doppler beaming would also allevi-
ate some of the energetic , size and duration constraints of the �ares. The same
argument is used in the context of rapid �ares in blazars. This simple solution
seems to solve many problems at once, but a direct evidence for such relativistic
out�ows in the Crab Nebula is still missing. At most, the �ow velocity reaches
above half the speed of light (Hester 2008). This being said, theoretically, a weak
shock at the pulsar wind termination could easily result in a faster �ow (Kennel &
Coroniti 1984). It is reasonable to conceive this con�guration at the polar regions
of the nebula where the pulsar wind is more magnetized and the shock oblique
(Lyubarsky 2012; Komissarov 2013). One region of particular interest is the so-
called �inner knot�, a bright compact feature near the pulsar (Hester et al. 1995)
interpreted as the location where the downstream �ow of the oblique shock points
towards the observer, magni�ed by Doppler beaming (Komissarov & Lyubarsky
2003; Komissarov & Lyutikov 2011). Here again, in spite of a huge observational
e�ort, no correlation was seen between the knot and the gamma-ray �ares (Tavani
et al. 2011; Lobanov et al. 2011; Weisskopf et al. 2013; Rudy et al. 2015), at odds
with what the model predicts.

1.5 The magnetic reconnection scenario

The alternative scenario I have been working on shortly after my arrival in Boul-
der is that the �ares are powered by a magnetic reconnection event. The idea was
imagined by Dmitri Uzdensky, who made the simple observation that a reconnec-
tion site is a region where the non-ideal MHD approximation breaks down, and
therefore where the electric �eld could locally exceed the magnetic �eld, E > B,
leading to particle acceleration above the synchrotron burno� limit (Uzdensky
et al. 2011). We realized afterwards that this argument was already proposed by
Kirk (2004) and Contopoulos (2007), well before the discovery of the �ares.

In the classical Sweet-Parker reconnection site (Sweet 1958; Parker 1957), the
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Figure 1.4: Example of a test particle trajectory (blue line) numerically integrated
in the vicinity of a symmetric plane-parallel reconnection current sheet whose
thickness is shown by the red dotted lines. The inset plots shows the evolution
of the particle Lorentz factor and velocity pitch angle with respect to the y-axis.
Figure taken from Uzdensky et al. (2011).

magnetic �eld reverses sign over a small di�usion layer of thickness δ, or simply
referred to as the reconnection layer or the current sheet in the following. By
symmetry, the �eld must decrease within the layer and even vanish at its center.
An electric �eld and current localized in the layer must also �ow to sustain the
sharp gradient of the magnetic �eld. In principle, a particle trapped deep inside
a reconnection layer could be linearly accelerated to arbitrary large energies with
virtually no synchrotron losses. At best, a particle is trapped over the full length
of the layer, L, limiting the particle energy to Emax = eEL.

The �rst question I have been investigating was whether particles could be
trapped long enough in the sheet to overcome the burno� limit. Using a test-
particle approach with static prescribed magnetic and electric �elds, and the
radiation-reaction force turned on, I showed that particles were naturally trapped
by the layer (Uzdensky et al. 2011; Cerutti et al. 2012a). Their trajectories have
the peculiar property to be composed of a succession of a fraction of a Larmor
circular motion which �ips direction each time the particle crosses the midplane
due to the change of sign of the magnetic �eld, leading to a sine-like trajectory
instead of the usual Larmor gyromotion (see Figure 1.4). These trajectories are
the relativistic analog of the well-known Speiser orbits in space physics (Speiser
1965).

Another odd, but important property of these trajectories is that the amplitude
of the particle motion transverse to the sheet decreases as the particle energy
grows. In other words, the particle becomes more con�ned within the sheet as
it accelerates, and as a consequence of this the particle probes an ever smaller
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e�ective magnetic �eld reducing even more synchrotron losses. This behavior can
be understood as the e�ect of a E × B drift motion, which pushes the particles
towards the midplane. The model therefore predicts a strong anisotropy of the
particle and photon distributions, the higher the energy the higher the anisotropy.

At this point, we were aware that these conclusions were drawn upon a very
naive model of a reconnection site. Current sheets are known to be bursty and
prone to several plasma instabilities, and thus it was unclear whether this scenario
would still hold under more realistic physical conditions. Therefore, the only way
to make progress and develop further our model for the Crab �ares in this extreme,
yet unexplored regime of particle acceleration was to use more sophisticated and
ab-initio numerical methods, which naturally lead me to PIC simulations.

Page 15



Chapter 1

Page 16



Chapter 2

Birth of the Zeltron PIC code

Being in a laboratory �lled with plasma physicists (the Center for Integrated
Plasma Studies, CIPS) gave me the opportunity to meet specialists of plasma
simulations. My encounter with Greg Werner was particularly fortunate and cru-
cial for what follows. At the time, I had no experience as a developer or not
even as a user in plasma simulations. Being a specialist of electromagnetic and
PIC simulations for his own research, Greg taught me the basics of the numerical
methods and algorithms and a collaboration naturally began between us. A PIC
code was even available at CIPS, the VSim code1, a commercial product under
license co-developed between the University of Colorado and Tech-X corporation,
but it became quickly clear for various reasons that its use would not be well
adapted for my needs. One important reason is that I needed to implement new
capabilities that regular PIC codes did not have at the time: radiation and the
radiation-reaction force. Having no access to the source code was therefore not an
option. I ended up writing my own PIC code from scratch during the academic
summer break in 2012, which later became the Zeltron code. Since I was not
(and still not!) a computer scientist nor a HPC specialist, the spirit was to create
a simple and robust code that could be easily handled by other users, but also a
code that I could adapt rapidly to my research needs and interests. This spirit is
still alive today.

In this chapter, I give a brief overview of the main numerical methods used in
explicit, relativistic electromagnetic PIC code as in Zeltron , with an emphasis on
the implementation of the radiation reaction force. Here, I focus on the publicly
available Cartesian grid version, more recent developments involving spherical and
more generally curvilinear grids will be described later in this memoir. This chapter
is partially based on a review paper published in the book �Modelling Nebulae�
edited by Diego Torres, that I wrote with my colleague from Columbia University
Lorenzo Sironi (Sironi & Cerutti 2017), but also on my lectures notes and hands-
on sessions prepared for the Astrosim doctoral school held in Lyon (2017) and in
Montpellier (2020). Many of the material presented here is also described in a
more comprehensive way in Birdsall & Langdon (1991), the �holy book� for the

1https://www.txcorp.com/vsim
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PIC addicts like me.

2.1 Relativistic plasmas under the PICoscope

The particle-in-cell method was �rst developed by plasma physicists back in the
sixties, but it is only in the last two decades or so and with the rise of super-
computers that it became an increasingly essential tool for theoretical high-energy
astrophysics. PIC simulations led to ground-breaking discoveries in the �eld, such
as �rst evidence of particle acceleration in collisionless shocks (Spitkovsky 2008),
relativistic reconnection (Zenitani & Hoshino 2001, next chapter), kinetic turbu-
lence (Zhdankin et al. 2017), pulsar magnetospheres (Part II) and spinning black
hole magnetospheres (Part III). The PIC approach consists of describing a plasma
ab-initio, i.e., from its most fundamental components: discrete charged particles
(e.g., electrons, ions) evolving in time-dependent electromagnetic �elds. The main
purpose of the PIC method is to capture microscopic plasma processes, i.e., at the
plasma skindepth and sub-Larmor radius scales, or simply referred below to as the
�kinetic� scale. As we will see in the next chapter, these microscopic scales are
involved in particle acceleration processes and, thus, they must be well resolved
by simulations. In constrast, the MHD approach, more widely used in the astro-
physical community, is valid on the large plasma scales and assumes the Larmor
radius scale to be in�nitely small and therefore ignores the microphysics. In this
sense, the PIC and the MHD approaches are complementary and cannot address
the same questions. This being said, PIC simulations must also capture large scale
features, i.e., system size and long integration time to obtain meaningful astro-
physical results, which makes PIC simulations particularly challenging to carry
out and computationally expansive.

2.2 Collisionless plasmas

A necessary condition for non-thermal particle acceleration is the absence of Coulomb
collision in the plasma of interest. This is the case for most high-energy astrophysi-
cal systems, and in particular pulsar wind nebulae, where plasmas are very diluted.
Roughly speaking, a plasma can be considered as �collisionless� if the frequency of
Coulomb collision (ν) is much smaller than the plasma frequency, ωpe � ν. This
condition implies that the number of particles per Debye sphere must be large,
i.e., ND � 1. The dynamics of individual particle is driven by collective plasma
phenomena rather than binary collisions at the sub-Debye length and plasma fre-
quency scales.

The evolution of a collisionless plasma is governed by the Vlasov equation

∂f

∂t
+

p

γm
· ∂f
∂r

+ q

(
E +

v ×B

c

)
· ∂f
∂p

= 0, (2.1)
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Figure 2.1: Particle-particle versus particle-mesh interaction.

where f ≡ dN/drdp is the particle distribution function de�ned in the 6D phase
space (r,p) and 1D in time, where r is the position and p = γmv is the momentum,
and q is the electric charge. Along with Maxwell's equations for the �elds (E and
B), this is a closed set of equations to model a collisionless plasma from �rst
principles.

2.3 The particle approach

Analytical solutions to the Vlasov equation are known for a few idealized situations
only. In most cases, it must be solved numerically. They are at least two ways to
solve this equation. In the �rst approach, phase space is treated as a continuous
�uid and Vlasov equation is solved directly using semi-Lagrangian or Eulerian
methods (Cheng & Knorr 1976; Elkina & Büchner 2006). This approach has the
advantage to be insensitive to particle noise, and hence can capture well weak
plasma phenomena and broad particle distribution functions. In theory, this is the
most appropriate approach to follow, but in practice the use of Vlasov codes is
currently limited due to prohibitive numerical costs for multidimensional problems
(6D phase space +1D for time).

In PIC, Vlasov equation is solved indirectly by integrating discrete particle
trajectories. This approach is equivalent to the direct method. An easy way to see
this is to rewrite Vlasov equation as a usual advection equation: ∂f/∂t + ∇r,p ·
(fU) = 0, where∇r,p = (∂/∂r, ∂/∂p) and U = (p/γm, q (E + v ×B/c)). Thus,
using the methods of characteristics, this �rst-order partial di�erential equation
can be rewritten as a sets of ordinary di�erential equations (Newton's law) along
characteristic curves which corresponds here to particle trajectories. For point-like
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particles, the particle distribution function is then approximated as

f (r,p, t) ≈
N∑
k=1

δ (r− rk(t)) δ (p− pk(t)) , (2.2)

where δ is the Dirac delta function, and N is the total number of particles. The
number of particles must be very high for a good sampling of phase space and
to be close to the exact solution of Vlasov equation. In practice, however, this
number will be limited by computing resources and is always much smaller than
the number of particles contained in real plasmas. To overcome this di�culty, a
PIC particle represents a large number of physical particles that would follow the
same trajectory in phase space (with the same q/m ratio). For this reason, the
simulation particles are usually called �macroparticles� or �superparticles�. The
number of physical particles the macroparticle k represents is given by a weight,
wk.

Even though the plasma is collisionless, particles feels each other via long-
range interactions. Summing over all particle-particle binary interactions, i.e.
N (N − 1) /2 ≈ N 2, is numerically expansive and hard to implement (e.g., propa-
gation e�ects, global communications in the parallelization of the code). Instead,
in PIC, particles do not feel each other directly but via the electromagnetic �elds
known on the grid which result from the plasma evolution. In this case, the num-
ber of operations scales as the number of particles N instead of N 2, which is
numerically much more manageable (Figure 2.1). PIC codes are much cheaper in
comparison to Vlasov codes, and they are also conceptually simple, robust and easy
to implement and parallelize e�ciently to a large number of cores. This simplicity
comes at the cost of signi�cant particle noise which can lead to poor sampling of
the particle distribution (e.g., steep power-law tails), di�culty in capturing sub-
tle or weak phenomena, arti�cial collisions, and load-balancing issues in parallel
computing.

2.4 Main computing procedures in PIC

Figure 2.2 describes the three main operations performed per timestep ∆t of an
explicit PIC code like Zeltron : (i) Solve Newton's equation for each particle
to evolve velocities and positions (ii) Collect charge and current densities from
all particles and deposit them on the grid, and (iii) Solve Maxwell's equations to
update the �elds on the grid. In this way, particle motion and electromagnetic
�elds evolve in a self-consistent manner. Below is a brief technical description of
each step:
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Δt

Solve 
Newton's
 equation

Deposit 
charges and 

currents 
( ,J)ρ

Solve 
Maxwell’s

 equations 
(E,B)

Step 1

Step 2Step 3

Figure 2.2: Computation procedure per time step ∆t in PIC.

Step 1: Particle push

For a pure electromagnetic model, the set of equations to solve are

du

dt
=

q

mec

(
E +

u×B

γ

)
(2.3)

dr

dt
=

cu

γ
, (2.4)

where u = γv/c is the particle 4-velocity vector divided by the speed of light

and γ = 1/
√

1− (v/c)2 is the Lorentz factor. One of the most successful and
most common method used in PIC to solve Newton's equation is the Boris push
(Birdsall & Langdon 1991). It has all the desirable numerical features one might
think of: it is fast, stable and second order accurate, conserves well the particle
energy and phase space volume (Qin et al. 2013). The algorithm is based on the
usual leapfrog integration scheme, i.e., 4-velocities u and positions r are staggered
in time by half a timestep (Figure 2.3). If particle positions and �elds are known
at time tn (rn, En, Bn) and velocities at time tn−1/2 (un+1/2), the �nite-di�erence
time-centered expression of Eq. (2.3) is

un+1/2 − un−1/2

∆t
=
qEn

mec
+

q

mec

(
un ×Bn

γn

)
. (2.5)

Now, the trick is to rewrite un appearing on the right-hand side of the equation
as un =

(
un−1/2 + un+1/2

)
/2. Assuming that En and Bn are known, un+1/2 can

be extracted. To this end, it is convenient to de�ne the following intermediate
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Time

tn­1/2 tn+1/2tn tn+1tn­1

rn rn+1un­1/2 un+1/2
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Figure 2.3: The leapfrog scheme of the Boris method to solve Newton's equation.

variables

u− = un−1/2 +
q∆tEn

2mec
(2.6)

u+ = un+1/2 − q∆tEn

2mec
. (2.7)

Then, using Eqs. (2.6)-(2.7) and after a few algebraic manipulations, one �nds

u+ = u− + u− × s +
(
u− ×w

)
× s, (2.8)

where

w =
q∆tBn

2mecγn
, s =

2w

1 + w2
, γn =

√
1 + (u−)2. (2.9)

Physically, the Boris push can be seen as a decomposition of the Lorentz force in
three separate steps, (1) half-acceleration by the electric �eld (Eq. 2.6), (2) a pure
rotation by the magnetic force (Eq. 2.8), and (3) another half-acceleration by the
electric force (Eq. 2.7). It is important to notice that the �elds appearing in these
equations are those felt at the particle position, not at the grid point where the
�elds are known. The �elds must be interpolated to the particle positions. A linear
interpolation scheme is usually su�cient and this is what is done in Zeltron . The
�nal step is to update the particle positions

rn+1 = rn + c∆t
un+1/2

γn+1/2
, (2.10)

where γn+1/2 =
√

1 +
(
un+1/2

)2
.

For completeness, other e�cient methods exist in the literature like the Vay
(2008) or the Higuera & Cary (2017) pushers or even fully implicit schemes (Rip-
perda et al. 2018). These particle pushers can sometimes be more accurate than
the Boris push depending on the physical problem (e.g., whether there is a strong
drift, gradients). For a comprehensive comparison between di�erent schemes, see
Ripperda et al. (2018). The Boris and the Vay pushers have been implemented in
Zeltron .
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(i,j) (i+1,j)

(i,j+1) (i+1,j+1)
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y

x

Figure 2.4: The area-weighting technique to interpolate �elds or deposit charges
and currents onto a 2D Cartesian cell (xi, yi) for a particle located in P (x, y). The
contribution to node (i, j) is given by S4/Stot, to (i+ 1, j) is S3/Stot, to (i, j + 1)
is S2/Stot and to (i+ 1, j + 1) is S1/Stot.

Step 2: Charge and current deposition

To evolve the �elds, we need the source terms in Maxwell's equations ρ and J that
are given by the particles. In a continuous space, these macroscopic quantities can
be recovered by summing over the contribution from all particles

ρ (r) =
N∑
k=1

qkwkδ (r− rk) , J (r) =
N∑
k=1

qkwkvkδ (r− rk) , (2.11)

where qk, vk are respectively the electric charge and the 3-velocity of the particle k.
In PIC, charges and currents from the particles must be collected and dispatched
among the nearest grid points. Charge and current densities at the grid point ri
can be written as

ρ (ri) =
N∑
k=1

qkwkS (ri − rk) , J (ri) =
N∑
k=1

qkwkvkS (ri − rk) , (2.12)

where S is a shape function which depends on the desired deposition scheme. Even
though the particles are point-like, they have a virtual size that is e�ective through
the deposition of currents on the grid.

In the spirit of keeping things simple and robust in Zeltron , we use a �rst order
deposition scheme identical to the interpolation procedure used for computing the
�elds felt by the particles. It is important to keep the same scheme for deposition
and interpolation to avoid numerical e�ects like self-force, which could lead for
instance to spurious particle acceleration (Birdsall & Langdon 1991). Figure 2.4
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shows the example of a �rst order linear deposition scheme in a 2D Cartesian grid
cell (or area-weighting method). The contributions from all the particles contained
in the cell (xi, yj) to the current J are given by

Ji,j =

Ncell∑
k=1

qkwkvk (1− ak) (1− bk) (2.13)

Ji+1,j =

Ncell∑
k=1

qkwkvkak (1− bk) (2.14)

Ji,j+1 =

Ncell∑
k=1

qkwkvk (1− ak) bk (2.15)

Ji+1,j+1 =

Ncell∑
k=1

qkwkvkakbk, (2.16)

where
ak =

xk − xi
xi+1 − xi

, bk =
yk − yj
yj+1 − yj

(2.17)

are the usual bilinear interpolation coe�cients.

Step 3: Fields evolution

The last step is to update the �elds on the grid. Knowing the current density as
well as the �elds at the previous time step, we just need to solve Maxwell-Faraday
and Maxwell-Ampère equations,

∂E

∂t
= c∇×B− 4πJ (2.18)

∂B

∂t
= −c∇× E. (2.19)

In Zeltron , we use what is by far the most successful explicit numerical scheme
to solve the time-dependent Maxwell's equations known as the �nite di�erence
time domain (FDTD) method proposed by Yee (1966). Like the Boris push, the
FDTD method combines stability, e�ciency and second-order accuracy (here in
both space and time). To achieve this, �elds must be staggered in time and in
space. Figure 2.5 shows the order in time (top panel), as well as the spatial
con�guration of the �elds within a Cartesian cell in 2D (bottom-left panel) and
in 3D (bottom-right panel). For illustrative purposes, within this framework the
z-component of Eq. (2.19) is

(Bz)
n+1/2
i+1/2,j+1/2,k − (Bz)

n−1/2
i+1/2,j+1/2,k

∆t
= −c

(Ey)ni+1,j+1/2,k − (Ey)ni,j+1/2,k

∆x

+c
(Ex)ni+1/2,j+1,k − (Ex)ni+1/2,j,k

∆y
, (2.20)
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Figure 2.5: Top: Leapfrog scheme for the �elds in time. Bottom: Staggered mesh
proposed by Yee (1966) in 2D (left) and in 3D (right).

where ∆x, ∆y are the spatial step size along x and y, ∆t is the time step, and
where the integer indices (i, j, k) give the coordinates of the cell in the x- y- and
z- directions respectively. In essence, the Yee algorithm solves the integral form of
Maxwell's equations at the scale of a cell

∂

∂t

¨
B · dScell = −c

˛
E · dlcell. (2.21)

For instance, the way to interpret Eq. (2.20) is the �ux of Bz centered on the
cell face, which is equal to the contour line integral of the electric �eld whose
components are centered on the edges of the cell face. As we will see in Part II
and Part III, it is important to keep this in mind for generalizing the scheme to
non-Cartesian lattices. The FDTD method is stable under the usual Courant-
Friedrichs-Lewy (CFL) condition, i.e., (

c∆t

∆x

)2

< 1 (1D), (2.22)

(c∆t)2

(
1

∆x2
+

1

∆y2

)
< 1 (2D),

(c∆t)2

(
1

∆x2
+

1

∆y2
+

1

∆z2

)
< 1 (3D).
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This is a purely numerical requirement for the electromagnetic �elds alone, but
plasma physics imposes other constraints on the size of the steps, namely that the
Debye length and the plasma frequency are well resolved by the code (∆x/ΛD � 1
and ωpe∆t� 1), the latter condition being more stringent.

2.5 Numerical Cherenkov radiation

For a plane wave in vacuum of the form

An
i,j,k = A0 exp I (nωt− ikxx− jkyy − kkzz), (2.23)

where I is the imaginary number unit, and using the FDTD discretization of
Maxwell's equations, the dispersion relation is given by

1

c2∆t2
sin2 ω∆t

2
=

1

∆x2
sin2 kx∆x

2
+

1

∆y2
sin2 ky∆y

2
+

1

∆z2
sin2 kz∆z

2
, (2.24)

instead of the exact dispersion relation for light waves

ω2

c2
= k2

x + k2
y + k2

z . (2.25)

We can recover the good relation for small wave numbers, while we observe signif-
icant deviations at high wave numbers where the speed of electromagnetic waves
becomes smaller than the speed of light in vacuum (see Figure 2.6). As a side
note, it is interesting to notice that the form of the numerical dispersion relation
resembles those derived in condensed matter, in this sense the Yee lattice behaves
like a crystalline medium. Therefore, an ultrarelativistic particle can travel faster
than the electromagnetic waves it generates thus leading to a Cherenkov e�ect,
very much like cosmic rays travelling through ice in the Icecube detector, except
that in PIC simulations this phenomenon is spurious. This e�ect is a real plague
in simulations involving a ultrarelativistic beam of particles moving coherently
through the grid, such as shock simulations. It leads to numerical heating and
eventually to the disruption of the beam. This is the reason why relativistic shock
simulations are usually limited to moderate bulk Lorentz factors (see Greenwood
et al. 2004 for ways to mitigate this e�ect). Fortunately, in other situations this
e�ect is generally harmless and we will not need to worry about it.

2.6 Conservation of charge and magnetic �ux

In principle, by solving the time-dependent Maxwell equations the other two should
be automatically satis�ed but this is not necessarily true due to truncation errors
in the discretization of space and time derivatives. The other beauty of the FDTD
scheme is that it conserves ∇ × B = 0 to machine roundo� precision (similarly
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Figure 2.6: Dispersion relation of electromagnetic plane waves solved on the Yee
mesh, where ∆x = ∆y = ∆z = ∆ and ν is the CFL number. Figure taken from
Greenwood et al. (2004).

to the constraint transport method often used in MHD simulations). It is un-
fortunately not so straightforward for Gauss law. The simple current deposition
scheme presented in Section 2.4 does not guarantee charge conservation to machine
precision, meaning that

∇ · J = −∂ρ/∂t (2.26)

is not exactly satis�ed. Today, the standard procedure is to use a di�erent current
deposition scheme and particle shape function than the simple linear method pre-
sented above to enforce Eq. (2.26) to machine precision, as proposed by Villasenor
& Buneman (1992) and Esirkepov (2001).

In Zeltron , I made the choice to keep the simple linear interpolation/deposition
scheme for more �exibility when dealing with non-Cartesian or non-uniformly
spaced grids as we will see later in this memoir. This comes at the expense of
solving Poisson equation to correct the electric �eld so that ∇ · E = 4πρ. Fortu-
nately, this procedure does not need to be done at every time step, every once for
a while is usually su�cient (by default, this is done every 25 time steps in Zeltron

). If E is the electric �eld evolved on the Yee mesh, and if δE = −∇δφ is the
small correction to the electric �eld to ensure charge conservation, we must solve

∇2 (δφ) = − (4πρ−∇ · E) . (2.27)

We use a standard iterative Gauss-Seidel method with 3 points in 1D, 5 points in
2D and a 7-points stencil in 3D. We are interested in local variations so that the
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global scale and boundary conditions are usually irrelevant for the correction. By
default, the code performs 500 iterations per divergence cleaning cycle. As for the
time-dependent equations, we use the integral form of Poisson equation at the cell
scale on the Yee lattice,

"
(E + δE) · dScell = 4π

˚
ρdVcell. (2.28)

So far, this method has been working well but it has a non-negligible numerical cost.
This is why I am currently considering to use more e�cient numerical methods
such as parabolic and hyperbolic divergence cleaning (Marder 1987; Munz et al.
2000).

2.7 The radiation-reaction force

While all of the above is standard in explicit PIC codes, the main novelty of the
Zeltron code at its creation was the ability to take into account the radiation-
reaction force, in addition to the Lorentz force. The equation of motion is then
changed into the Lorentz-Abraham-Dirac equation Landau & Lifshitz (1971)

mec
duµ

ds
= −e

c
F µνuν + gµ, (2.29)

where F µν is the electromagnetic tensor, and

gµ =
2e2

3c

d2uµ

ds2
− Prad

c2
uµ, (2.30)

is the radiation-reaction force, where s = cdt/γ and Prad is the radiative energy
loss rate given by the Larmor formula

Prad =
2

3
e2c

(
duµ

ds

)(
duµ
ds

)
. (2.31)

The strength of the radiation-reaction force depends on the acceleration of the
particle, which itself depends on the Lorentz force and the radiation-reaction force.
The second derivative of the particle momemtum appearing in gµ is particularly
problematic, and �nding a general solution to this equation is delicate. Fortunately,
there is a solution valid in the framework of classical electrodynamics proposed by
Landau & Lifshitz (1971), whose two main terms are given by in the 3-vector
formulation

g =
2

3
r2

e [(E + β ×B)×B + (β · E) E]

−2

3
r2

eγ
2
[
(E + β ×B)2 − (β · E)2

]
β, (2.32)
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where re = e2/mec
2 is the classical radius of the electron. In the ultrarelativistic

limit γ � 1, the second term dominates such that

g ≈ −Prad

c2
v, (2.33)

the radiation-reaction force acts as a classical friction force opposite to the direction
of the particle motion. However, we will see in Part II that the non-relativistic
term can play a surprisingly important role in some cases, and therefore both terms
are included in Zeltron .

We follow the numerical scheme proposed by Tamburini et al. (2010) to include
the radiation-reaction force into the particle pusher (see, e.g., Sokolov et al. 2009
and Capdessus et al. 2012 for alternative implementations). The idea is to split
the equation of motion into two, where the contribution from each force is solved
separately, such that

u
n+1/2
L − u

n−1/2
L

∆t
=

Fn
L

mec
, (2.34)

where Fn
L is the Lorentz force, and

u
n+1/2
R − u

n−1/2
R

∆t
=

gn

mec
. (2.35)

Adding these two equations up, and assuming that u
n−1/2
L = u

n−1/2
R = un−1/2

yields

un+1/2 = u
n+1/2
L + u

n+1/2
R − un−1/2, (2.36)

so that we obtain the �nal result

un+1/2 = u
n+1/2
L +

gn∆t

mec
. (2.37)

Thus, the �rst step is to solve Eq. (2.34) using the standard Boris push to calculate
u
n+1/2
L . This is not yet over because we need an estimate of the particle momentum

at time tn, un, to compute gn. This is done in a similar way as in the Boris push,
i.e., we evaluate the midpoint value by doing the following average

un =
u
n+1/2
L + un−1/2

2
, γn =

√
1 + (un)2, βn =

un

γn
. (2.38)

This method preserves the fantastic features of the Boris push (stability and ac-
curacy) while adding a small computing overhead due to the few extra steps re-
quired to include the radiation-reaction force. Its implementation is therefore
rather straightforward in an explicit PIC code.
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Figure 2.7: Spatial arrangements of 9 processors using a domain decomposition
technique in 1D (left) and in 2D (right) for a full domain size composed of 9 × 9
cells.

2.8 Parallelization strategies

PIC codes must be e�ciently parallelized to model large system size and long in-
tegration time to have meaningful astrophysical applications. A common practice
is to use the domain decomposition technique. It consists in dividing the compu-
tational box into smaller domains where one or more cores are assigned along with
the particles they contain. In Zeltron , the cores are arranged in space according
to a Cartesian topology in 1D, 2D or 3D. For instance, consider a full 2D domain
of 9× 9 cells and 9 processors. Using a 1D topology means slicing the full domain
into 9 subdomains of 1 cells, while using a simple 2D topology would mean slicing
into 9 3×3 cells subdomains (Figure 2.7). Each CPU goes through the main steps
described in Sect. 2.4 independently of the other processors. At the end of each
time step all CPU must communicate with their nearest neighbours to exchange
information about particle leaving/entering their subdomain and the electromag-
netic �elds at their interface stored in ghost cells. The number of communications
depends on the number of nearest neighbours, 2 in 1D (left-right), 8 in 2D, and 26
in 3D.

Communications between an arbitrary number of processes are done thanks to
the Message Passing Interface (MPI) library. While the number of operations to
evolve electromagnetic �elds is �xed, the number of particles can vary signi�cantly
both in time and in space over the duration of a simulation. Given that pushing
particles and depositing currents onto the grid typically take about 90% of the
commuting time, a common issue in PIC simulations is load balancing. A situa-
tion where the number of particles per core is of the same order will be perfectly
balanced and parallelization will be optimal. In contrast, a poor load balancing
severely slows down a simulation. If, for some reason, there is a concentration of
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Figure 2.8: Strong (�xed total domain size, left panel) and weak (�xed domain
size per processor, right panel) scaling of Zeltron in its 3D spherical version on
the TGCC-Curie machine, tested up to 80% of the full machine (65,536 cores).

particles in a few subdomains (e.g., a current sheet), only a few processors will have
to push a lot of particles while the others will remain idle. The way how the domain
is decomposed for a given setup can usually make a big di�erence. Hybrid codes
combining MPI and OpenMP, variable particle weighting, or dynamical changes
of the domain decomposition are other solutions to have better performances.

PIC codes scale well to a large number of CPUs, today at least up to ∼ 106

processes. These scaling plots are usually done under ideal conditions with perfect
load balancing, and do not necessarily re�ect problem-dependent loss of perfor-
mance. Over the past 8 years, Zeltron ran on many di�erent supercomputer types
and architectures (e.g., Blue Gene, Skylake, KNL) and has shown excellent per-
formances over a very large number of cores on several di�erent machines such as
Kraken (Oak Ridge National Lab, USA), Stampede (TACC, USA), Janus (Univ.
of Colorado, USA), Curie and Irene (TGCC, France), Mira (Argonne National
Laboratory, USA), and Occigen (CINES, France). The code has been tested suc-
cessfully up to 219 (524288) cores or up to 2.1 million MPI ranks (4 ranks per core)
on Mira with nearly perfect scaling. Figure 2.8 shows an example of scaling plots
performed on the TGCC-Curie machine in the context of the FROMTON PRACE
Project Access (Part II).

2.9 Brief overview of Zeltron architecture

Zeltron is written in Fortran 90. It is divided into several modules which deal with
the di�erent steps of the PIC loop, for instance, there is one module dedicated to
the particle motion, one for the �eld evolution, one for the currents, etc... This
division allows for a better readability and an easier management of the code.
The code has the ability to write/read simulation data e�ciently in parallel. A
module exists to perform data writing/reading with parallel HDF5. The code has
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also checkpointing abilities which is essential for performing large production runs.
Except for MPI and HDF5, Zeltron does not need any other external libraries which
makes the code easily deployable into a new system. Zeltron contains a series of
diagnostic tools embedded into the code which can analyse e�ciently the data on
the �y (e.g., particle spectra, density map, �elds, pressure, radiation distribution).
This ability turns out to be extremely useful to check that simulations are running
correctly well before the wall time has ended. It also allows to reduce signi�cantly
the amount of useful data dumped to disk, the raw data is not necessarily needed
if the user already knows what to look for. In the last resort, checkpoint data
contain the full raw information so that there is no risk to lose information. I
usually perform more advanced data analysis and visualization of the data with a
library of Python scripts and Paraview for 3D rendering.

2.10 Publications and impact on the community

The basic Cartesian version of the code has been released in 2015 and is publicly
available under the terms of the GNU General Public License on the Git repository:
https://github.com/bcerutti/Zeltron-code. So far, the code was successfully
used in 30 refereed journal articles. This number includes the 20 publications
where I am a co-author. Research topics includes the study of relativistic magnetic
reconnection, pulsar and double pulsar magnetospheres and winds, Kerr black hole
magnetospheres and jets, kinetic plasma turbulence, and more recently collisionless
shocks.

Below is a list of important milestones reached over the last 8 years, in chrono-
logical order:

� Summer 2012: Creation a 2D and 3D Cartesian serial version.

� Fall 2012: Parallelization with MPI.

� 2013: First publication using simulations performed with Zeltron (Cerutti
et al. 2013).

� Summer 2013: Special and successful production 3D run on the entire Kraken
supercomputer (97,200 cores) (Cerutti et al. 2014b).

� 2014: Development of the 2D axisymmetric and full 3D spherical versions.

� 2015: Publication of the aligned pulsar magnetospheric model (Cerutti et al.
2015).

� 2016: INCITE allocation awards, 93 millions CPU hours on the Mira super-
computer, PI: D. Uzdensky.

� 2017: Development of the full general relativistic 1D and 2D versions.
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� 2018: FROMTON PRACE Project Access, 26.7 millions Intel Skylake CPU
hours on the Irene supercomputer, PI: B. Cerutti.

� 2019: INCITE allocation awards, 108 millions CPU hours on the Mira su-
percomputer, PI: D. Uzdensky.

� 2019: First 2D GRPIC model of a Kerr black hole magnetosphere (Parfrey
et al. 2019), main cover of PRL.

� 2020: First 2D black hole magnetospheric model with radiative transfer (GR-
RPIC, Crinquand et al. 2020).

Today, the main developers of Zeltron are: my current PhD student Benjamin
Crinquand (IPAG, Grenoble), Krzysztof Nalewajko (CAMK, Warsaw), Kyle Par-
frey (PPPL, Princeton), Alexander Philippov (CCA, New York City), Gregory
Werner (CU Boulder) and myself.
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First applications: Particle
acceleration in relativistic
reconnection sites

My �rst incentive to develop Zeltron was to perform a more realistic model of
particle acceleration in a magnetic reconnection site, with the hope it could bring
a viable explanation of the Crab gamma-ray �ares. Little was known on this topic
at the time, in particular in the relativistic regime and even less on the strong
synchrotron cooling regime (Jaroschek & Hoshino 2009). There is no real theory
of magnetic reconnection, thus, the only way to make progress is through sim-
ulations. Early studies of particle acceleration in reconnection sites focused on
the test particle approximation using a static prescribed magnetic �eld con�gu-
ration (Romanova & Lovelace 1992; Schopper et al. 1998, 1999; Larrabee et al.
2003; Nodes et al. 2003), very much like what I have presented in the �rst chapter.
While this approach bring valuable insights on particle trajectories and trapping
phenomena, it cannot capture the intermittent nature of magnetic reconnection
and the feedback of the particles on the dynamics. PIC simulation is the natural
next step to have a more self-consistent model of reconnection. While this nu-
merical exercise has already been performed rather extensively in space physics
(Solar corona, Earth magnetosphere), only a few studies were done in the rela-
tivistic regime starting from the seminal paper by Zenitani & Hoshino (2001). My
goal was to reproduce a similar numerical setup, and extend it to a larger box size
taking into account the radiation reaction force.

This chapter gives an overview of my research activity from 2012 to 2015 which
was mostly focused on the study of particle acceleration in magnetic reconnection
sites using PIC simulations. It begins with a short introduction on relativistic
reconnection partly based on an ISSI working group review paper that I wrote with
3 other colleagues on the topic (Kagan et al. 2015) and an invited review talk I gave
at the HEPRO VII meeting (Cerutti 2019). I will then proceed with a description
of the classical numerical setup used in the community to study reconnection.
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Figure 3.1: Schematic anti-parallel magnetic reconnection con�guration.

I will summarize some of the highlights of reconnection dynamics and particle
acceleration as a generic mechanism, with an emphasis on my contribution to the
�eld. I will close the loop and this �rst part by discussing the application to the
Crab �ares.

3.1 Relativistic magnetic reconnection

Magnetic reconnection is by de�nition a sudden rearrangement of the magnetic
�eld line topology (Zweibel & Yamada 2009; Yamada et al. 2010). If one considers
the simplest con�guration of anti-parallel �eld lines brought together, Ampère law
implies that a current sheet must form where both polarities meet. Field lines
di�use and reconnect within the current layer whose thickness is governed by the
scale at which non-ideal MHD e�ects dominate. In astrophysical plasmas, the
resistivity is usually very low meaning that the di�usion layer will be very small
in comparison to the system size. In the absence of collisions, there is no explicit
resistive scale such that the layer thickness drops to the smallest plasma scale there
is, where �nite-Larmor radius e�ects play the role of e�ective resistivity. Field lines
entering the reconnection region bring plasma from the upstream into the layer.
Plasma is then expelled close to the Alfvén speed sideways in the plane of the layer
in the form of out�ows as �eld lines snap and reconnect (Figure 3.1). The ratio of
the in�ow to the out�ow velocity is the reconnection rate, βrec, which de�nes how
fast reconnection proceeds,

βrec =
Vin

VA
. (3.1)
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Away from the layer, ideal MHD applies such that

E +
Vin ×B

c
= 0, (3.2)

meaning that the reconnection rate is also a measure of the ratio between the
electric and the magnetic �eld. In the steady state, the electric �eld within the
layer matches the ideal MHD �eld upstream except that it is sustained by non-
ideal e�ects rather than by the motion of �eld lines. There is probably no clear
answer to which electric �eld comes �rst, but perhaps part of the answer may be
whether reconnection is �spontaneous�, i.e., driven by microphysics in the sheet, or
whether it is �forced� or �driven� from the outside by large-scale plasma motion.

Using mass-conservation between the in�ow and reconnection ou�ow and as-
suming incompressibility imply that the reconnection rate is directly related to the
aspect ratio of the layer,

βrec =
Vin

VA
=
δ

L
, (3.3)

where δ is the layer thickness and L its length. In the classical Sweet-Parker model
of reconnection (Sweet 1958; Parker 1957), the length scale is macroscopic of order
the system size, while, as we have argued earlier, the layer thickness is microscopic
such that the expected reconnection rate should be tiny, δ/L� 1. This is clearly
at odds with observations of the Solar Corona, the Earth magnetosphere, or mea-
surements in laboratory experiments which show must faster reconnection rates
of order 0.01 to 0.1. As an alternative, Petschek (1964) proposed a much smaller
aspect ratio reconnection region to allow for a higher rate. To do so, he proposed
that this con�guration is maintained by standing oblique shock waves on both sides
of the sheet. Unfortunately, this con�guration requires special physical conditions
to exist and remain stable (Uzdensky & Kulsrud 2000). This being said, the basic
idea of shortening the reconnection layer is the key to achieve fast reconnection as
we will report in the following, although its cause has a fundamentally di�erent
origin than what Petschek envisioned: plasma instabilities (Sect. 3.3).

Magnetic reconnection proceeds in the relativistic regime when the Alfén speed
approaches the speed of light (Blackman & Field 1994; Lyutikov & Uzdensky 2003;
Lyubarsky 2005),

VA =

√
σ

1 + σ
c ≈ c, (3.4)

or in other words when the plasma magnetization parameter, de�ned as the ratio
of the magnetic enthalpy density to the particle enthalpy density in the upstream
medium (outside the layer), is

σ =
B2

0

4π (nmc2 + P )
& 1, (3.5)

whereB0 is the upstream magnetic �eld strength, nmc2 is the mean plasma internal
energy density, and P is the plasma pressure (we will neglect this term in the
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following for simplicity since it will be at best of the same order as the internal
energy density). Another way to interpret this de�nition is that if a signi�cant
fraction of the magnetic energy density B2

0 is dissipated and channelled to the
particles, and B2

0/4π & nmc2 (σ & 1) the plasma energy density will become larger
than its rest mass energy density, i.e., it necessarily becomes relativistic. This
regime is achieved in very peculiar astrophysical environments, most certainly in
pulsar magnetospheres and pulsar winds (Cerutti & Beloborodov 2017; Kirk et al.
2009, Part II) and black hole magnetospheres (Blandford & Znajek 1977, Part III),
most likely in relativistic jets (Romanova & Lovelace 1992; Giannios et al. 2009),
black-hole accretion-disk coronae (Galeev et al. 1979; Goodman & Uzdensky 2008),
pulsar wind nebulae (Porth et al. 2014, this chapter), and possibly gamma-ray
bursts (Drenkhahn & Spruit 2002). It will therefore be the main regime of interest
throughout this memoir.

Some of the key questions we want to address are: What are the basic features
of relativistic reconnection dynamics? How fast is it? How e�cient reconnection is
at producing non-thermal particle acceleration? What are the acceleration mecha-
nisms and where do they take place? How does reconnection proceed in the strong
synchrotron cooling regime and can this explain the Crab �ares?

3.2 Numerical setup

3.2.1 The relativistic Harris equilibrium

It is often desirable to initialize a numerical simulation from an equilibrium. For
reconnection studies, the most commonly used con�guration is given by the Harris
solution1, an exact 1D kinetic equilibrium generalized to the relativistic regime by
Kirk & Skjæraasen (2003). In a (x,y,z) Cartesian coordinate system, this solution
is characterized by the magnetic pro�le

Bx(y) = B0 tanh
(y
δ

)
, (3.6)

where δ is the layer thickness (Figure 3.2). A current density must �ow within the
layer along the z-direction so that

Jz(y) =
c

4π
∇×B = −cB0

4πδ
cosh−2

(y
δ

)
. (3.7)

The current is carried by two counter-streaming beams of opposite electric charges
moving along the ±z-direction at the constant speed

βd = ±λD

δ
, (3.8)

1see however, e.g., Guo et al. (2014) for an initially force-free con�guration, Lyutikov et al. (2017b); Nalewajko
(2018) for an initially ABC equilibrium, and Lyutikov et al. (2017a) for an X-point collapse con�guration.
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Figure 3.2: Magnetic �eld and plasma density pro�les in the Harris equilibrium.

where λD is the Debye length de�ned in the layer,

λD =

√
kT ?d

4πnd0e2Γd
, (3.9)

T ?d is the co-moving temperature and nd0 is the density of the drifting particles,
and Γd = 1/(1− β2

d)1/2. The plasma density pro�le must thus follow

nd(y) = nd0 cosh−2
(y
δ

)
, (3.10)

which is maximum inside the layer and quickly vanishes outside (Figure 3.2). Pres-
sure balance across the sheet, connects the upstream magnetic �eld strength to the
plasma parameters of the sheet via

B0 =
√

16πnd0kTd. (3.11)

3.2.2 Numerical implementation

The problem with the above solution is that there is virtually vacuum outside of
the sheet, meaning an in�nite magnetization. If the reconnection process begins,
there will be no plasma in�ow to maintain the process active. In practice, we
always add a uniform plasma at rest of density n0 all over the box, including
inside the sheet. In this way, this plasma does not change the pressure balance of
the Harris equilibrium. The relevant magnetization is de�ned with the upstream
plasma parameters,

σ =
B2

0

4πn0mc2
. (3.12)

Page 39



Chapter 3

Using Eq. (3.11) yields

σ =
4kTd

mc2

(
nd0

n0

)
, (3.13)

meaning that in the relativistic regime where σ � 1, and with kTd/mc
2 . 1, the

background density must be much smaller than the initial plasma density in the
sheet, n0 � nd0. This high density contrast can be problematic in PIC and lead
to a poor statistical sampling of the particle distribution function of the upstream
plasma, which will be the plasma of interest in the following. To circumvent this
problem, we split the plasma into two separate populations: (i) a high-density
�drifting� component concentrated inside the sheet carrying the initial current,
and (ii) a low-density �background� component for the uniform plasma at rest.
Both distributions are sampled with the same number of particle per cell, but the
trick is to assign them a di�erent numerical weight to model the desired density
contrast. This technique also allows to model the exact initial density pro�le of
the drifting particles (Eq. 3.10).

The background plasma is initialized with an isotropic relativistic Maxwellian
distribution in the simulation frame of temperature Θb = kTb/mc

2, such that

fb (u) ∝ exp

(
−γ − 1

Θb

)
, (3.14)

where u = γβ. Integrated over a spherical shell in phase space yields the distri-
bution function of the total particle momentum, ||u|| = u,

fb (u) ∝ u2 exp

(
−γ − 1

Θb

)
. (3.15)

In Zeltron , we generate this distribution in two steps:

� Step 1: Generate the total particle momentum u. A particularly elegant and
general way to do so is to use the cumulative distribution function,

F (u) =

ˆ u

−∞
f(u′)du′. (3.16)

We can invert it numerically by sampling F with a random number R uni-
formly distributed between 0 and 1, and then infer u given that F (u) = R.

� Step 2: Generate an isotropic distribution by drawing the two spherical
angles θ and φ such that φ is uniformly distributed between 0 and 2π and
cos θ is uniformly distributed between −1 and 1. The three components of
the particle momentum are then given by

ux = u sin θ cosφ (3.17)
uy = u sin θ sinφ (3.18)
uz = u cos θ. (3.19)
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Generating the drifting particle population is more involved because of frame
transformation. We follow below the derivation proposed by Swisdak (2013). In
the co-moving frame, particles are distributed according to an isotropic relativistic
Maxwellian of temperature Θd = kTd/mc

2. In the lab frame, the distribution of
momentum is

fd (u) ∝ exp

(
−γ

? − 1

Θd

)
, (3.20)

where γ? = Γd (γ − βd · u). Because of the Lorentz boost, the distribution func-
tion in the lab frame is anisotropic and it is therefore more practical to decompose
the momentum into a parallel and perpendicular component to the direction of the
drift motion. Eq. (3.20) can be rewritten as

fd (u) ∝ exp

−Γd
√

1 + u2
‖ + u2

⊥ − Γdβdu‖ − 1

Θd

 . (3.21)

Integrating over the perpendicular component in phase space and taking a cylindri-
cal integration elementary volume u⊥du⊥dθ gives the following distribution func-
tion for the parallel component (and dropping constant multiplicative factors which
do not matter here because we only need normalized distributions)

fd(u‖) =

ˆ 2π

0

ˆ +∞

0

u⊥fd (u) du⊥dθ

∝
(

1 +
Γdγ‖
Θd

)
exp

(
−

(
u‖ − ud

)2

Θd

(
γ‖Γd + u‖ud + 1

)) , (3.22)

where ud = Γdβd and γ‖ =
√

1 + u2
‖. The parallel component is obtained from

the corresponding cumulative distribution. Once u‖ chosen, u⊥ cannot be taken

independently. De�ning us = u⊥/
√

1 + u2
‖, its distribution function knowing u‖ is

(Swisdak 2013)

fd(us|u‖) ∝ us exp

(
−
(
u‖ − ud

)2
+ γ2

‖Γ
2
du

2
s

Θd

(
γ‖Γdγs + u‖ud + 1

)) , (3.23)

where γs =
√

1 + u2
s . Once again us (and therefore u⊥) is obtained from the

cumulative distribution. As a �nal check, one can compute the total particle
momentum distribution function of a relativistic drifting Maxwellian,

fd (u) = 2π

ˆ +1

−1

u2fd (u) d cos θ

fd (u) ∝ u
sinh (udu/Θd)

ud/Θd
exp

(
−Γdγ − 1

Θd

)
. (3.24)
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In the limit ud → 0, we recover the more familiar isotropic Maxwellian distribution
(Eq. 3.15).

Although these considerations may appear as rather technical, it turns out to be
important to begin with the correct distribution function, otherwise an equilibrium
cannot be reached initially and a transient forms which can disturb the system. For
this reason, I found it useful to report this non-trivial solution here. We now have
all the elements for the initial con�guration. All of the results described below,
whether this is my work or from other groups, were obtained with this setup.

3.3 Tearing and kink instabilities

The Harris solution is not a stable equilibrium, it is prone to two main plasma
instabilities which have a major role in the reconnection dynamics, namely the
tearing and the kink. The tearing mode fragments a long thin current layer into a
succession of magnetic loops, or O-point, and magnetic X-points. In the relativistic
regime, the fastest growing mode is (Zelenyi & Krasnoselskikh 1979; Zenitani &
Hoshino 2007; Pétri & Kirk 2007)

kxδ =
1√
3
, (3.25)

where kx is the wave number along the x-direction, meaning that the layer will
break apart if the aspect ratio of the layer is greater than

Lx

δ
& 2π

√
3 ≈ 10. (3.26)

As a result, the classical Sweet-Parker sheet which assumes L/δ � 1 is unstable,
and instead breaks up into a chain of shorter secondary current layers of aspect
ratio or order 10, analog to a Petschek con�guration. For this reason, the tearing
instability mediates fast reconnection. In the ultrarelativistic regime, the growth
rate of the tearing modes, γTI, is (Zenitani & Hoshino 2007)

γTIω
−1
0 =

2
√

2

π
kxδ
(
1− k2

xδ
2
)
β

3/2
d , (3.27)

where ω0 is the �ducial upstream plasma Larmor gyrofrequency. For βd = 0.6, the
growth rate peaks at γTIω

−1
0 ≈ 0.16, i.e., the sheet in unstable after less than 10

Larmor cycles, which is very fast.
In this context, the kink instability has similar fastest growing modes and rates

than the tearing instability. Following Zenitani & Hoshino (2007), the fastest
growing mode in the ultrarelativistic limit is

kzδ =
1

8Γdβ2
d

, (3.28)
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Figure 3.3: E�ect of the tearing (left panel) and kink (right panel) instabilities
on two anti-parallel Harris sheets using 2D PIC simulations. Figure taken from
Cerutti et al. (2014b).

with a growth rate

γKIω
−1
0 =

1

16Γdβd
. (3.29)

Thus, both instabilities compete in the linear phase, although they operate in
directions perpendicular to each other. The kink modes grow along the direction
of the current (z-direction), while the tearing modes grow along the reconnecting
magnetic �eld (x-direction). Figure 3.3 shows PIC simulations of two parallel
Harris sheets simulated in the plane perpendicular to the current (xy-plane, left
panel) where the tearing modes alone operate, and in the plane perpendicular to
the �eld (zy-plane, right panel) where the kink modes operate. These snapshots
are taken in the early evolution of the simulations to show the linear phase of
each instabilities. The measured growth rates are compatible with the predicted
rates from the linear analysis given above. The kink instability eventually leads
to the disruption of the sheet, or at least to an e�ective broadening of the layer.
However, it can be e�ectively quenched by adding some sti�ness to the �eld lines
along the current direction, known as the guide �eld (Zenitani & Hoshino 2008;
Cerutti et al. 2014b). The latter represents the non-reconnecting component of
�eld lines crossing at an arbitrary angles, as opposed to the perfectly antiparallel
case we have considered so far where there is no guide �eld. Although the kink does
indeed play an important role at the early stages, large-box size 3D PIC simulations
have shown that it becomes subdominant over the tearing mode in the non-linear
phase (Sironi & Spitkovsky 2014; Werner & Uzdensky 2017), and for this reason
we will not discuss any further the role of the kink in what follows (although we
will brie�y encounter it again later in the context of relativistic magnetospheres).
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Figure 3.4: Top: Plasma density snapshot of a 2D PIC simulation in the non-linear
phase of the plasmoid evolution from Sironi & Spitkovsky (2014). Bottom: Space-
time diagram showing the merging tree of plasmoids as the simulation evolves
leading to bigger and bigger structures, until there is just one island left �lling the
simulation box. Figure adapted from Nalewajko et al. (2015).
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3.4 Reconnection dynamics

Fast magnetic reconnection is triggered when the tearing instability fragments
the current layer into a series of shorter secondary current layers separated by
magnetic O-points �lled with plasma, called �plasmoids� or �magnetic islands�.
This structure is highly dynamical in the non-linear phase. Plasmoids move away
from secondary layers leading to the mergers of plasmoids pushed towards each
other by the reconnection out�ows. Mergers result to bigger and bigger structures
over time as more plasmoids are accreted until a single giant plasmoid �lls the
entire simulation box in the saturated state. The space-time diagram in Figure 3.4
(bottom panel) shows this inverse-cascade process as observed in a PIC simulation.
In parallel to this process, the motion of plasmoids leads to the stretching of
secondary layers which in turn becomes tearing unstable and new plasmoids form.
This phenomenon is often called the plasmoid instability as discussed in Uzdensky
et al. (2010). In a well-evolved but not saturated state, the reconnection layer is
composed of a hierarchical chain of magnetic islands of di�erent sizes (Figure 3.4,
top panel). Plasmoids can also be produced at the interface between two large
merging islands where a short-lived current sheet forms perpendicular to the main
reconnection plane.

Field lines reconnect within secondary current sheets. The tension of freshly
reconnected �eld lines drives powerful plasma ou�ows into plasmoids. The recon-
nection process is maintained by the advection of new �eld lines and plasma from
the upstream. Figure 3.5 shows the bulk �uid velocity structure reconstructed
from a 2D PIC simulation. It clearly shows this in�ow-out�ow structure within
each layer. The in�ow velocity is of order Vin ≈ 0.1-0.2c, while the out�ow velocity
approaches the speed of light, Vout ∼ c, as anticipated by Lyubarsky (2005) (see
also Sironi et al. 2016). Using the de�nition in Eq. (3.1), the reconnection rate
is of order 0.1-0.2, which is also consistent with the aspect ratio of the secondary
layers. A measure of the electric �eld strength gives a similar rate. This rate is also
nearly independent of the plasma magnetization as long as σ & 1, meaning that
relativistic reconnection is very fast because it operates over a few light-crossing
time of the reconnection site.

3.5 Particle acceleration

There is also a consensus today in the community that relativistic reconnection
is e�cient at channeling the dissipated magnetic energy into energetic particles.
Di�erent groups over the last two decades, including myself, came to the same con-
clusion that reconnection naturally produces hard particle spectra at high mag-
netization (Zenitani & Hoshino 2001; Cerutti et al. 2012b; Sironi & Spitkovsky
2014; Werner et al. 2016). The spectrum hardens with increasing σ and seems
to saturate to nearly γ−1.2 . A physical origin of such power-law indices is still
debated and poorly understood. But the simple fact that reconnection produces
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Figure 3.5: Plasma bulk velocity structure in the vicinity of a reconnecting current
sheet in the plasmoid-dominated regime. Taken from Kagan et al. 2015.

Figure 3.6: Left: Time evolution of the particle energy spectrum in a 2D PIC
relativistic reconnection simulation with σ = 10 (other values are shown in the
inset plot). Right: Power-law index of the particle spectrum as function of σ.
Figure adapted from Sironi & Spitkovsky (2014) and Werner et al. (2016).
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Figure 3.7: PIC electron trajectories from a 2D PIC simulation of two anti-parallel
Harris sheet located at y/ρc = 125 and 375 projected into the plane perpendicular
to the simulation plane. Energetic particle are running away along the±z-direction
within the sheet along the reconnection electric �eld Ez. Taken from Kagan et al.
2015.

power laws harder than −2 already have strong implications on the maximum
particle energy. Indeed, this means that the energy distribution γ2dN/dγ peaks
at the high end of the spectrum, γmax. Conservation of energy tells us that γmax

cannot be arbitrarily large and should depend on how much magnetic energy there
is available per particle, i.e., σ. In Werner et al. (2016), we indeed found that the
maximum particle energy is limited by γmax ≈ 4σ.

To gain physical insights into the acceleration process itself, it is usually in-
structive to use the full power of PIC simulations by looking at individual particle
trajectories. This analysis shows that particle acceleration usually begins with
an impulsive episode by the reconnection electric �eld inside the current layer.
Particles undergo a quasi-linear acceleration and follow relativistic Speiser orbits
as expected from test-particle simulations. Figure 3.7 shows a randomly selected
sample of particle trajectories from a 2D PIC simulation similar to Figure 3.3
(left panel) projected into the plane perpendicular to the magnetic �eld, where
the high-energy particles run away along the direction of the electric �eld (along
the z-direction here). The further away they go, the higher their energy is. The
particle lifetime in the accelerating region, and therefore its �nal energy, is limited
by the de�ections of the reconnected magnetic �eld line which pushes the particle
into the islands (Cerutti et al. 2012a; Sironi & Spitkovsky 2014). It already results
from this a broad particle energy distribution. The energy gain is proportional to
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Figure 3.8: Energy-dependent angular distribution of the particle velocity distri-
bution reconstructed from 2D PIC simulations of relativistic reconnection. Figure
adapted from Cerutti et al. (2012b).

time, consistent with a linear-like acceleration.
We also found that the particle distribution within the layer is highly anisotropic

due to the preferential direction of the reconnection electric �eld, the most ener-
getic particles being the most beamed (see Figure 3.8), as we anticipated from test
particle simulations (Cerutti et al. 2012a). This beaming mechanism di�ers from
the usual achromatic relativistic Doppler beaming e�ect, and for this reason we
called this e�ect the �kinetic beaming� (Cerutti et al. 2012b; Mehlha� et al. 2020).
This beaming is lost as soon as the particles enter the magnetic islands where they
are con�ned by the magnetic �eld, and where their directions are randomized.
Nonetheless, this anisotropy could be observed in the form of short bright �ares in
the strong radiative cooling regime which can apply near the high-energy cuto�,
the best example being the Crab Nebula (see next section).

Mergers of large plasmoids can lead to an extra particle energy boost within
the short-lived, perpendicular current sheets. The acceleration process is of similar
nature as for the initial acceleration within secondary current layers. A recent
study by Petropoulou & Sironi (2018) suggests that another regime of particle
acceleration has been missed by previous studies at even larger system sizes. They
found that while the early evolution of reconnection is consistent with linear-like
acceleration episodes leading to γmax ∝ t and hard spectra, the late evolution is
dominated by a slower, di�usive-like acceleration within large magnetic islands
such that γmax ∝

√
t. This is accompanied by a spectral steepening allowing

the maximum energy to grow signi�cantly above the 4σ limit without any clear
sign of saturation. This extra acceleration is attributed to the slow compression
of magnetic islands. It is a promising way to accelerate particles to very high
energies in astrophysical environments where σ may not be very high (of order
unity), except of course in pulsar and black hole magnetospheres where σ � 1 is
most likely guaranteed. If island compression is indeed the dominant acceleration
process in reconnection, this also implies that the role of the kinetic scale physics
at X-points becomes secondary. What happens at X-points could be seen as an
injection mechanism which promotes a low-energy particle from the background
plasma into a high-energy particle which will further be accelerated to even higher
energies inside islands. Ironically, we can speculate that the full PIC simulation
artillery may not be needed in the future, and resistive MHD simulations with
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Figure 3.9: Typical PIC particle trajectory accelerated above the radiation-
reaction limit in 2D (left panel) and 3D (right panel) PIC simulations. Figure
adapted from Cerutti et al. (2014a).

test particles could come handy to explore larger, more realistic system sizes at a
smaller numerical cost without missing much of the dominant particle acceleration
physics.

3.6 Application to the Crab �ares

To come back to what has initiated and motivated all this work, at least as far
as I am concerned, we now consider a regime of special interest for the Crab
gamma-ray �ares. This regime is characterized by particle acceleration above the
radiation reaction limit, i.e., the radiation reaction force is now turned on and can
be as large as the Lorentz force. As we have shown in test-particle simulations,
this can be achieved deep within the reconnection layer, where E > B⊥, but does
this happen in PIC simulations? The answer is a clear yes. Figure 3.9 shows
the typical trajectory of a particle accelerated above the radiation reaction limit,
both in 2D (top panel) and 3D simulations (bottom panel). The particle �rst
drifts from the upstream into the current layer where it is linearly accelerated by
the reconnection electric �eld above the radiative limit. Not only the trajectory
follows a Speiser orbit, but the amplitude of the oscillatory motion perpendicular
to the layer also shrinks at the rate we have predicted (Cerutti et al. 2012a). The
particle is then pushed away towards an island where the perpendicular magnetic
�eld suddenly increases and the particle loses its energy catastrophically over a
sub-Larmor radius, i.e., it radiates synchrotron photon above the classical 160MeV
limit. Figure 3.10 shows the total particle and synchrotron radiation energy spectra
measured towards the end of the simulation, where we can see a clear excess above
the radiation reaction limit.
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Figure 3.10: Total particle (left panel) and synchrotron radiation (right panel)
spectra in 2D (solid lines) and 3D (dashed lines) PIC simulations with radiation
reaction force turned on. The particle Lorentz factor is normalized to the classical
radiation-reaction limit value de�ned in Eq. (1.4). Figure adapted from Cerutti
et al. (2014a).

As mentioned in the previous section, this impulsive acceleration mechanism
naturally produces a strong particle anisotropy, the higher the particle energy is,
the higher the degree of anisotropy is (kinetic beaming). Under usual circum-
stances where radiative cooling is small, the radiative cooling time is larger than
the acceleration time such that particles radiate while moving inside magnetic is-
lands giving a nearly isotropic emission. In the strong cooling regime, particles
radiate at the end point of their acceleration in the layer and therefore their emis-
sion is strongly beamed in a preferential direction. The beam direction changes
rapidly and re�ects the dynamics of the reconnection process (island formation,
mergers). A static observer looking in the plane of the reconnection layer would
see short, bright and symmetric in time �ares as the reconnection beam sweeps by
its line of sight (Figure 3.11, left panel), with a variability timescale as short as
6 hours. We proposed that particle acceleration deep inside the reconnection layer
combined with the e�ect of the kinetic beaming could provide a viable explanation
for the origin of the fast Crab Nebula gamma-ray �ares. Figure 3.11 (right panel)
shows the �nal 3D PIC synchrotron spectrum model compared with the Crab �are
data. Our model can at least reproduce weak �ares like the February 2009 one,
stronger �are may be produced with a larger simulation box size but this issue has
not been investigated due to limited numerical ressources at this time.

While this model addresses successfully some of the most puzzling features of
the �ares, such as the synchrotron photon energy above 160 MeV and the fast
variability and energetic requirements, we are still left with an important open
question: Where are the �ares emitted in the Nebula? A fundamental consequence
of the reconnection scenario is that the zone of interest must be highly magnetized,
with σ � 1. However, the classical 1D MHD model of Kennel & Coroniti (1984)
predicts a very low magnetization on average in the nebula, σ = 3×10−3. A higher
magnetization would lead to a strong magnetic hoop stress that would squeeze and
collimate the nebula along the pulsar rotation axis which would be at odds with
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Figure 3.11: Energy-dependent synchrotron emission lightcurve produced within
the reconnection layer seen by a distant observer. Total synchrotron spectrum
produced by the reconnection event and comparison with the observed gamma-ray
�are data. The quiescent emission are the black data points, as opposed to �aring
emission given by the colored points. Figure adapted from Cerutti et al. (2013)
and Cerutti et al. (2014b).

observations. 2D MHD simulations later con�rmed this conclusion and showed
that this limit could be pushed to σ ∼ 10−2.

This obvious discrepancy was partly lifted shortly after the publication of our
model thanks to the �rst 3D MHD model of the Crab Nebula by Porth et al. (2013,
2014). This important study shows that 3D e�ects lead to a signi�cant decrease
of the magnetic hoop stress due to kink instabilities and magnetic dissipation in
the nebula, as predicted by Begelman (1998). As a result, the mean magnetization
in the nebula must be as large as σ ∼ 1, and may be even higher, in order to
explain all the details of the Crab Nebula morphology. Because of the anisotropic
nature of the pulsar wind (see next part), the magnetization varies signi�cantly
with latitude, from nearly zero within the equatorial plane to high values, close
to σ ∼ 10 at high latitudes. The formation of current sheets in the magnetized
environment of the polar and jet regions is seen as the most promising location of
the �ares (Cerutti et al. 2012a; Lyubarsky 2012; Komissarov 2013; Mignone et al.
2013). Kink-like motion of the Crab jet as notoriously known in the Vela pulsar
wind nebula (Pavlov et al. 2003; Durant et al. 2013), and perhaps already seen in
the Crab Nebula (Weisskopf 2011), could be a clear manifestation of dissipation in
the nebula.

There is still one last, yet critical, unsolved issue. As discussed in the previous
section, the high-energy cut-o� of the particle spectrum is limited to about 4σ.
Particle acceleration within islands at later times is not an option here because
(1) this process is too slow, and (2) ideal MHD applies within islands so the the
maximum energy will be limited by the radiation reaction force. If the bulk of the
pairs is injected at TeV energies in the Nebula as usually assumed, γ0 ∼ 106, and

Page 51



Chapter 3

taking σ = B2
0/4πγ0n0mc

2 ∼ 10 would give γmax ∼ 4γ0σ0 ∼ 4× 107, which is too
small in comparison with the γmax ∼ 109 required to power the �ares.

In a recent study in collaboration with Gwenael Giacinti, postdoctoral fellow
in Heidelberg, we showed that a complete revisit of particle acceleration in highly
magnetized, anisotropic shocks may bring new insights into this issue (Cerutti &
Giacinti 2020). This is a promising new approach to this problem that we are
intending to pursue in the near future.

Page 52



Part II

Pulsar magnetospheres

53





Chapter 3

This new chapter in my scienti�c life began when I moved to Princeton at the
end of the summer 2013. Like in Boulder, this research activity has been strongly
in�uenced by a particularly fortunate encounter, the one with Sasha Philippov, a
protégé of Vasily Beskin and PhD student of Anatoly Spitkovsky. I knew little
about how pulsar worked in details when I arrived, but I knew this would be the
best environment to study particle acceleration in relativistic reconnection under
strong radiative cooling. Zeltron was all ready for it. This is what convinced
me to come to Princeton. Shortly after my arrival, Sasha and Anatoly published
the very �rst global PIC model of an aligned pulsar magnetosphere (Philippov &
Spitkovsky 2014), which showed everyone that such an ambitious enterprise, as im-
possible as it may sound (in particular at this time), was in fact possible. Perhaps
more importantly, it also demonstrated that PIC simulations were very promising
to make further progress in the �eld and the next logical step following the break-
throughs of MHD simulations in the late nineties and early 2000 (Contopoulos
et al. 1999; Spitkovsky 2006). The discovery of a few hundred gamma-ray pulsars
by the Fermi-LAT (Abdo et al. 2010b, 2013) has also revived a strong interest of
the commmunity onto the old problem of pulsar electrodynamics.

To this end and as a �rst step, I developed a global high-resolution 2D axisym-
metric PIC model to investigate the role of plasma supply in structuring pulsar
magnetospheres, and I performed a detailed analysis of particle acceleration via
particle tracking to establish the role of reconnection. This work required signi�-
cant code development to adapt Zeltron to a spherical grid as well as non-standard
boundary conditions for both the �elds and the particles (e.g., plasma injection,
open boundaries). These new technical developments are reported in Chapter 5.
This �rst axisymmetric model marked another important milestone in my research
because it became the elementary building block of all the models and studies that
followed, including black hole magnetospheres. I then report on the main results
obtained with this 2D axisymmetric setup in the context of an isolated aligned
pulsar. Next, I describe new extensions done to this setup to include ions and the
study of their acceleration in millisecond pulsars, and interacting magnetospheres
in the context of binary pulsar systems.

My next objective was to combine this new setup with the radiative capabilities
of Zeltron to focus on the origin of the incoherent (i.e., high-energy as opposed
to the coherent radio emission) pulsed emission. Observed pulsars are most likely
inclined rotators, meaning that the rotation and the magnetic axes are not aligned,
and therefore full 3D e�ects must be taken into account to capture the pulsar
phenomenon. After extending the code to a full 3D spherical domain, I performed
the �rst ab-initio modeling of high-energy pulsar lightcurves which establishes its
origin to the base of the equatorial current sheet, at odds with the classical models
where the loci of emission lie within the light-cylinder radius, but consistent with
Lyubarskii (1996) remarkable prediction. This work is described in Chapter 6. I
show that the model reproduces well some of the basic features of the gamma-ray
pulsed pro�les observed by the Fermi-LAT. I argue that phase-resolved polarization
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is probably the best diagnostic to disentangle between models in the future. Last,
I report on a more recent project which focuses on the pulsar wind region and
magnetic dissipation and particle acceleration within the equatorial current sheet
at large scales. To probe these distant regions, simulations on an unprecedented
large scale have been carried out in 2D and more recently in full 3D. The later
required to move to the next level of computing power available in Europe, i.e.,
Tier-0 via a PRACE allocation successfully granted to us in the fall 2018 (17th

call).
We begin this new part with a brief introduction to pulsar electrodynamics.
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Pulsar electrodynamics

This chapter is based on an ISSI working group review paper that I wrote in 2016 in
collaboration with Andrei Beloborodov, professor at Columbia University (Cerutti
& Beloborodov 2017). It aims at brie�y introducing the basic concepts of pulsar
electrodynamics from a theoretical perspectives that will be important to interpret
the simulations results presented in the following chapters. Other relevant reviews
in the �eld are by Arons (1979, 2009, 2012); Michel & Li (1999); Michel (2004);
Grenier & Harding (2015); Beskin et al. (2015); Pétri (2016).

4.1 Introduction

Pulsars are compact (r? ∼ 10km, M? ∼ 1�2M�), strongly magnetized (B? ∼ 109�
1015G), and rapidly rotating (P? ∼ 1�1000ms) neutron stars. They represent great
laboratories to probe extreme physical conditions, e.g., super-strong electromag-
netic �elds, strong gravitational �eld, super-nuclear densities, particle acceleration
and relativistic out�ows. Shortly after the discovery of neutrons, Baade & Zwicky
(1934) hypothesized that neutron stars would form after the collapse of massive
stars and the forthcoming supernovae explosions. Pulsars were also invoked to
explain the additional source of energy needed to explain the late activity at the
center of supernova remnants like in the Crab Nebula (Pacini 1967). They were
then serendipitously discovered as pulsating radio sources in 1967 (Hewish et al.
1968) and quickly associated to spinning neutron stars, especially thanks to the
remarkable stability of the pulsations (Pacini 1968; Gold 1968). The precise mea-
surements of both the rotation period and the spinning down of the star provide
an extremely accurate knowledge of both the total energy reservoir, and the to-
tal power (seen and unseen) released by the star. This is a real advantage in
comparison with other astrophysical compact objects.

Thanks to multi-wavelength observations, we know that pulsars radiate through-
out the electromagnetic spectrum, from radio waves up to very-high energy gamma
rays. Fermi-LAT observations revealed that young rotation-powered pulsars radi-
ate away a signi�cant fraction of their spindown power (typically 1-10%) in the
high-energy gamma-ray band (0.1-10 GeV, Abdo et al. 2010b, 2013). This result

57



Chapter 4

suggests that pulsars are e�cient particle accelerators. The origin of particle accel-
eration and radiation are still largely unsolved problems today, but it appears clear
that these processes must happen in the magnetosphere of an oblique rotator, i.e.,
where the magnetic axis is misaligned with the rotation axis. Hence, one needs to
understand really well what is happening in the magnetosphere. At �rst sight, this
looks like a fairly well-posed problem, but behind this apparent simplicity there is a
complex interplay between electrodynamics, plasma physics, particle acceleration
and creation, and non-thermal radiation.

I summarize some of the theoretical e�orts developed over the last 50 years
to model pulsar magnetospheres. I will focus on the close environment of the
star, delimited by the stellar surface up to a few light-cylinder radius, RLC, the
latter being de�ned where the co-rotation velocity with the star equals the speed of
light. This introduction is relevant to rotation-powered pulsars ; accreting (X-ray
pulsars) or highly magnetized pulsars (magnetars) follow a di�erent dynamics and
phenomenology that I do not address here. I adopt a simple heuristic approach
to the development of pulsar magnetosphere theory which approximatively follows
the chronological order, from the early models of vacuum (Sect. 4.2) and charge-
separated magnetospheres (or �electrospheres�, Sect. 4.3) to the plasma-�lled force-
free magnetosphere solutions (Sect. 4.4).

4.2 Vacuum magnetospheres: The Deutsch �elds

In the early models of pulsar magnetosphere, the star is surrounded by near vacuum
(Pacini 1967, 1968; Ostriker & Gunn 1969). The argument behind this assumption
is that the gravitational �eld at the surface of the star is too strong to allow for
a dense plasma to �ll the magnetosphere (Hoyle et al. 1964). This assumption
is most likely incorrect as we will see in the next section. Nevertheless, it is
useful to have this model in mind to understand how particles are injected into the
magnetosphere (Sect. 4.3). For illustrative purposes and for simplicity, we consider
only the case where the magnetic dipole moment of the star, µ, is aligned with the
rotation axis. The aligned rotator will guide us through the main features of the
magnetosphere. This simplier con�guration also played an important role in the
development of the theory of pulsar magnetospheres.

It is commonly accepted that neutron stars are very good electric conductors.
If the star is at rest and neglecting the e�ect of gravity, the electric �eld inside the
star would vanish for an in�nite conductivity, i.e., Eint = 0. Now, if the star is
rapidly rotating, this condition is replaced by

Eint +
V ×Bint

c
= 0, (4.1)

where V = Ω × r, and Ω = c/RLC is the stellar angular velocity. This condition
implies that the star is polarized by the rotation, very much like in a Faraday
disk (�unipolar induction�). Charges would quickly rearrange inside the star to
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compensate the Lorentz force exactly, with an excess of negative charges at the
poles and positive charges at the equator (for Ω·µ > 0 and vice-versa if Ω·µ < 0).
Charges would also be in rigid co-rotation with the star, such that

V = c
Eint ×Bint

B2
int

= r sin θΩeφ, (4.2)

where we use the usual spherical coordinate system (r, θ, φ). With these properties
in mind, and using the boundary conditions for the electromagnetic �elds at the
surface of the star, Davis (1947); Deutsch (1955); Hones & Bergeson (1965) derived
the structure of the external �elds ( i.e., for r > r?). For a dipolar magnetic �eld
in vacuum1, and assuming that the star has no net charge, the �elds near the star
are given by (for r � RLC, Michel & Li 1999)

Br = 2B?

(r?
r

)3

cos θ (4.3)

Bθ = B?

(r?
r

)3

sin θ (4.4)

Bφ = 0 (4.5)

Er =
Ωr?B?

c

(r?
r

)4 (
1− 3 cos2 θ

)
(4.6)

Eθ = −Ωr?B?

c

(r?
r

)4

sin 2θ (4.7)

Eφ = 0, (4.8)

where B? = µ/r3
? is the magnetic �eld strength at the equator. The external

electric �eld has a pure quadrupolar structure (see Figure 4.1). If the star has a
net electric charge Q, the radial electric �eld would admit an additional monopolar
component.

The net Poynting �ux from the aligned rotator (integrated over a sphere of
radius r > r?) vanishes, Lvac = 0. Therefore, the rotating star does not lose
energy and hence does not spin down. The vacuum solution can be generalized to
the case of an oblique rotator, where the magnetic moment is inclined at an angle
χ relative to the rotation axis. In this case, the net Poynting �ux becomes (Pacini
1968; Ostriker & Gunn 1969)

Lvac =
2

3

µ2Ω4

c3
sin2 χ. (4.9)

4.3 Electrosphere: The Goldreich-Julian solution

From the vacuum solution (Eqs. 4.3-4.8), one immediately realizes that there is
a strong unscreened component of the electric �eld parallel to the magnetic �eld,

1The Deutsch solution was generalized to arbitrary multipolar order by Bonazzola et al. (2015); Pétri (2015).
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Figure 4.1: External electric �eld (left: Er, right: Eθ) induced by the rotation of an
aligned perfectly conducting neutron star in vacuum (Michel & Li 1999). Electric
�elds are normalized to E0 = Ωr?B?/c. Black solid contours represent magnetic
�eld lines.

i.e., E‖ = E · B/B2 6= 0. This is in contrast with the interior of the star where
E · B = 0 everywhere. Goldreich & Julian (1969) pointed out that the potential
di�erence at the surface of the star would largely overcome any work function and
the gravitational potential. Hence, charges would be extracted and accelerated
from the surface of the star and �ll the magnetosphere until the charge density
is dense enough to screen the parallel electric �eld. The minimum charge density
needed to achieve this is

ρGJ =
1

4π
∇ · Eco = − 1

4πc
∇ · ((Ω× r)×B) (4.10)

= − 1

4πc
[− (Ω× r) · (∇×B) + B ·∇× (Ω× r)] (4.11)

=
1

4πc
(Ω× r) · (∇×B)− Ω ·B

2πc
. (4.12)

Since these charges are in co-rotation with the star, they generate an electric
current such that

∇×B =
4π

c
J =

4π

c
ρGJ (Ω× r) , (4.13)

which gives the �nal result (Goldreich & Julian 1969)

ρGJ = −Ω ·B
2πc

1

1− (Ω× r)2 /c2
. (4.14)
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In practice, we will always neglect the relativistic corrections which appear in
the denominator, i.e., Ωr/c � 1, which is a good approximation near the stellar
surface, so that

ρGJ ≈ −
Ω ·B
2πc

= −ΩB?

2πc

(r?
r

)3 (
3 cos2 θ − 1

)
, (4.15)

for a dipolar �eld. Goldreich & Julian (1969) envisioned a fully charged-separated
magnetosphere (or �electrosphere�) instead of pure vacuum, with negative charges
at the poles and positive charges at the equator (for Ω ·µ > 0) separated by a null
surface, i.e., ρGJ (θnull) = 0, located at θnull = cos−1

(
1/
√

3
)
≈ 55o at the surface

of the star for a dipole (see Figure 4.2).
Some of the main features of this scenario were con�rmed by several groups

using iterative or PIC numerical simulations (Krause-Polstor� & Michel 1985a,b;
Shibata 1989; Neukirch 1993; Thielheim & Wolfsteller 1994; Smith et al. 2001;
Pétri et al. 2002b; Spitkovsky & Arons 2002; McDonald & Shearer 2009; Wada
& Shibata 2011; Philippov & Spitkovsky 2014; Cerutti et al. 2015). In almost all
cases, simulations are initiated with the vacuum solution and zero work function at
the surface of the star. Then, as expected, the surface electric �eld extracts charges
from the star, which �ll out the magnetosphere to form a perfectly charge-separated
structure. The equilibrium con�guration looks like a dome of electrons on top of
both poles, and an equatorial torus of positive charges at about the Goldreich-
Julian charge density (Eq. 4.15). Both species are separated by a large vacuum gap
along the null surface. Figure 4.2 presents the charge spatial distribution obtained
from a 2D axisymmetric PIC simulation of the aligned electrosphere similar to
what is presented in Cerutti et al. (2015).

In contrast to the original Goldreich & Julian (1969) scenario, numerical sim-
ulations show no particle out�ow through the light-cylinder, but instead, charges
are electrostatically trapped very close to the star. There are no currents so no
spindown, in other words the pulsar is �dead�. However, Pétri et al. (2002a);
Spitkovsky & Arons (2002) realized that the disk of charges in the equator is not
in rigid co-rotation. A velocity shear causes the disk to be unstable to the dio-
cotron instability, the analog of the Kelvin-Helmholtz instability in neutral �uids,
which can be captured by 3D simulations (the unstable modes are not axisym-
metric). This instability induces a drift of the disk outward and even result in
an out�ow through the light cylinder. Unfortunately, the densities are too low to
drive strong currents and a powerful wind, and explain the pulsar spindown. Pétri
(2007) showed that the situation is even more desperate because the diocotron
instability is suppressed when relativistic e�ects become important near the light
cylinder.

The bottom line is that the electrosphere model might not a good description
either of active pulsars. However, it could be appropriate to model old inactive
pulsars.
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Figure 4.2: Fully charge-separated solution (electrosphere) of the aligned rotator
(Ω · µ > 0) obtained with a 2D axisymmetric PIC simulation after one rotation
period (Cerutti et al. 2015). Electrons form a dome on top of each pole (in blue),
while positive charges (here positrons, in red) form the equatorial torus. Both
species are contained well within the light-cylinder radius, here set at RLC = 6r?.
Charge densities are normalized by the surface Goldreich-Julian density. Solid
contours are magnetic �eld lines and the oblique dashed line shows the null surface
(where ρGJ = 0).
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4.4 Force-free magnetosphere: The plasma-�lled

solution

Observations and models of pulsar wind nebulae suggest that pulsars provide a
large supply of electron-positrons pairs, well above the �ducial Goldreich-Julian
density n = κnGJ = κρGJ/e, where κ� 1 is the multiplicity (Hibschman & Arons
2001a,b). This dense plasma cannot be created by pulling o� charges from the star
only, there must be copious pair creation in the magnetosphere (Sturrock 1971;
Ruderman & Sutherland 1975; Daugherty & Harding 1982). The basic picture is
that as the primary particles are accelerated by E‖ along the curved �eld lines,
they emit gamma-ray curvature radiation that is quickly absorbed by the intense
magnetic �eld to form a pair (Erber 1966; Harding & Lai 2006). This process
ignites an electromagnetic cascade of gamma rays and pairs until the density of
the plasma is high enough to short out the accelerating electric �eld, so that the
ideal magnetohydrodynamic condition E ·B = 0 applies.

4.4.1 Analytical solution: the monopole

In the limit where the electromagnetic force dominates over the plasma inertia and
other external forces such as gravity and pressure gradient, the plasma dynamics
is solely governed by the force-free condition

ρE +
J×B

c
= 0, (4.16)

where ρ and J are the charge and current densities. In steady state axisymmetric
MHD, it is possible to translate the force-free condition into the so-called �pulsar
equation� (Scharlemann & Wagoner 1973; Michel 1973b). Unfortunately, there is
no known analytical solution to this equation for a dipolar �eld. Instead, Michel
(1973b) found an exact solution for a monopolar magnetic �eld. Although not
physically sound, this result is very instructive because it captures a number of
important features also found in the dipole case. In particular, this con�guration
turns out to be relevant for describing the pulsar wind zone, beyond the light-
cylinder. Michel's solution is given by (in spherical coordinates)

Br = B?

(r?
r

)2

(4.17)

Bθ = 0 (4.18)

Bφ = −B?

(
r?
RLC

)(r?
r

)
sin θ (4.19)

Er = 0 (4.20)
Eθ = Bφ (4.21)
Eφ = 0. (4.22)
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Figure 4.3: Analytical solution of the aligned split monopole (Michel 1973b). Left:
Magnetic �eld line structure winding up around the star (black sphere) due to
the stellar rotation. The green arrow is the rotation axis of the star. Red lines
represent outgoing �eld lines while blue lines show the incoming �eld lines. The
�eld changes its polarity in the equator. The magnetosphere contained within the
light-cylinder radius is shown in grey. Right: E × B drift velocity (solid line:
βr = Vr/c, dashed line: βφ = Vφ/c) and Lorentz factor (Γ = 1/

√
1− β2) as a

function of the cylindrical radius to the star.

The associated current density is purely radial,

J =
c

4π
(∇×B) = −Ω ·B

2π
er = cρGJer, (4.23)

meaning that the current can be carried away by one sign of charge pulled out
from the star and moving at close to the speed of light. To ensure that we have
∇ · B = 0, this solution can be applied to one hemisphere only. In the opposite
hemisphere, we must change B→ −B, E→ −E, and J→ −J, i.e., we must form
a �split monopole�. The reversal of the magnetic �eld along the equator implies
that a current sheet must form there (missing in Eq. 4.23) that carries the necessary
return current back to the star and ensures that the net charge of the star does
not grow inde�nitely. We will come back to the essential role of the return current
layer later.

Field lines are purely radial close to the star (r sin θ � RLC), and starts winding
up around the pulsar with increasing distance (see Figure 4.3, left panel). At the
light-cylinder radius, the poloidal and toroidal magnetic components are equal near
the equator, i.e., the �eld line makes a 45o angle with the radial direction. Far
from the light cylinder, the �eld is almost purely toroidal. Contrary to the vacuum
solution, the split-monopole solution predicts that the aligned rotator is spinning
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down at a rate given by the out�owing Poynting �ux, i.e.,

Lmono =

¨
Π · erdS =

2cB2
?r

4
?

3R2
LC

, (4.24)

where Π = (c/4π) E×B is the Poynting vector. This result applies also to oblique
split monopole, i.e., it does not depend on the inclination angle χ (Bogovalov 1999).

In the large pair supply limit, the plasma motion is set by the E × B drift
velocity given by,

V = c
E×B

B2
=

c er

1 +
(
RLC

R

)2 +
RΩ eφ

1 +
(

R
RLC

)2 , (4.25)

where R = r sin θ is the cylindrical radius2. Close to the star (R/RLC � 1), the
plasma is in solid rotation, i.e., V ≈ RΩ eφ. Far from the light cylinder, the
plasma �ies away radially at the speed of light, V ≈ c er, and form a relativistic
wind (Figure 4.3, right panel). It follows from Eq. (4.25) that the bulk Lorentz
factor of the �ow is given by

Γ =

√
1 +

(
R

RLC

)2

, (4.26)

so the pulsar wind accelerates linearly with cylindrical radius beyond the light
cylinder (Buckley 1977; Contopoulos & Kazanas 2002).

4.4.2 Numerical solutions: the dipole

Contopoulos et al. (1999) obtained the structure of the aligned dipole in rota-
tion by direct numerical integration of the pulsar equation (see also, Goodwin
et al. 2004; Gruzinov 2005; Timokhin 2006). The solution of the force-free mag-
netosphere presents the following essential features, depicted schematically in Fig-
ure 4.4: (i) a closed zone, (ii) an open zone, and (iii) current sheets. In contrast to
the split-monopole con�guration, the solution presents closed magnetic �eld lines
co-rotating with the star, which correspond approximatively to the vacuum dipolar
�eld lines that are closing within the light-cylinder. The plasma contained within
this region is trapped and does not participate to the pulsar activity. The �eld
lines near the rotation axis cross the light cylinder. They open to in�nity due to
the e�ective inertia of the magnetic �eld lines (Michel 1973a) and not due to the
plasma inertia since it is negligible by construction (i.e., the force-free condition).
Considering a pure dipolar �eld, the bundle of open �eld lines at the polar cap of
the star has an angular size given by

sin2 θpc =
r?
RLC

. (4.27)

2This would not be valid if the magnetosphere was perfectly charge-separated. In this case, charges must
travel close to the speed of light to carry the necessary current, see Eq. (4.23).
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Figure 4.4: Sketch of the ideal force-free magnetosphere of the aligned dipole
pulsar. The main elements are: (i) The closed �eld line region (grey, and black
�eld lines) lying between the star surface and the light-cylinder radius. This zone
is dead as it does not participate to the pulsar activity. (ii) The open �eld line
region (red and blue �eld lines) extend beyond the light cylinder, carries the polar
cap current, the out�owing Poynting �ux and the relativistic pulsar wind. (iii) The
equatorial current sheet separating both magnetic polarities in the wind zone, and
the separatrix current sheets �owing in between the last open and the �rst closed
�eld lines (shown in green), and the Y-point connecting both sheets. These sheets
enable the polar-cap currents to close back to the star.
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Figure 4.5: Time-dependent force-free simulations of the aligned (left) and oblique
(right, χ = 60o in the Ω − µ plane) rotators from Spitkovsky (2006). Solid lines
represent magnetic �eld lines while the colors give the amplitude of the magnetic
�eld perpendicular to the plane (i.e., the toroidal �eld in the left panel).

In real pulsars, r?/RLC � 1 so that only a small fraction of the �eld lines are open.
Yet, this region carries the polar-cap current and the out�owing Poynting �ux in
the wind zone. This is the active part of the magnetosphere which can slow down
the star. To quantify the amount of open �eld lines, it is convenient to work with
the magnetic �ux function, Ψ, de�ned as (in axisymmetric MHD)

BP =
∇Ψ× eφ
r sin θ

, (4.28)

with BP = Br + Bθ is the poloidal magnetic �eld. Then, the magnetic �ux across
the polar cap is

Ψpc =

ˆ θpc

0

Brr
2 sin θdθ =

µ

RLC
. (4.29)

In fact, numerical simulations show that the amount of �ux is slightly larger than
Ψpc (by about 30%) because the polar cap is wider in the force-free magnetosphere
than in the vacuum dipole case (e.g., Bai & Spitkovsky 2010a,b). The pulsar
spindown power can be obtained with order of magnitude estimates (e.g., see Arons
2009). At the light cylinder, the poloidal and the toroidal magnetic components
are comparable (in the split monopole they are exactly equal), then Bφ(RLC) ∼
µ/R3

LC. With Eθ ≈ Bφ, we have L ∼ 4πR2
LC × (c/4π)B2

φ which gives

L0 ≈
µ2Ω4

c3
. (4.30)

We implicitly assumed above that the last closed �eld line touches the light-
cylinder radius, which is not necessary the case as pointed out by Timokhin (2006).
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Figure 4.6: Compilation of the spindown power for the oblique plasma-�lled mag-
netosphere reported in the literature using the following numerical approach: force-
free (Spitkovsky 2006), spectral force-free (Pétri 2012), full MHD (Tchekhovskoy
et al. 2013), PIC (Philippov et al. 2015b; Cerutti et al. 2016b). The spindown
power is normalized to the force-free aligned spindown power L0 = µ2Ω4/c3.

However, time-dependent simulations show that the system naturally relaxes to
the con�guration depicted in Figure 4.4 once the steady state is established, i.e.,
where the Y-point is at the light cylinder (left panel in Figure 4.5, Spitkovsky 2006;
McKinney 2006b; Parfrey et al. 2012). In such simulations, the time-dependent
Maxwell equations are solved numerically. In ideal force-free MHD, the current
density is fully determined by a combination of the E and B �elds. Combining
Eq. (4.16) with ∂ (E ·B) /∂t = 0, we have (Blandford 2002; Spitkovsky 2006)

J =
c

4π
∇ · E

(
E×B

B2

)
+

c

4π
(B · ∇ ×B− E · ∇ × E)

B

B2
. (4.31)

These two terms correspond to the current densities perpendicular (�rst) and par-
allel (second) to the magnetic �eld lines. Three-dimensional time dependent sim-
ulations were then obtained for the oblique rotator (right panel in Figure 4.5,
Spitkovsky 2006; Kalapotharakos & Contopoulos 2009; Kalapotharakos et al. 2012b;
Pétri 2012). One of the main result is the variation of the pulsar spindown power
with the inclination (Figure 4.6, Spitkovsky 2006)

L ≈ L0

(
1 + sin2 χ

)
, (4.32)

which is almost identical to the vacuum solution (Eq. 4.9), with the notable di�er-
ence that the aligned force-free rotator does spin down. This important result is
in contradiction with the oblique split-monopole solution which does not depends

Page 68



Chapter 4

on the inclination angle (Bogovalov 1999). The origin of the variations of the spin-
down with the inclination was clari�ed only recently. Tchekhovskoy et al. (2016)
found that this di�erence is partly due to a variation of the open magnetic �ux
(explains 40%) with the inclination. In their analysis, the rest is attributed to the
concentration of open magnetic �ux in the equatorial regions. Other than this,
the split monopole solution roughly captures the structure of the magnetosphere
in the wind region.

Force-free simulations have also clearly established the existence of current
sheets in the magnetosphere. Their presence in the system is essential because
they carry the return current which enables the closure of the poloidal current
streaming through the polar caps of the star. In the wind zone, a current sheet
separates the two magnetic polarities in the equatorial regions. In the aligned
rotator, the current sheet is �at and is located at θ = 90o. For an oblique rotator,
the sheet has the shape of a ballerina skirt (�striped wind�, the relativistic analog
to the heliospheric current sheet) which oscillates between π/2−χ < θ < π/2 +χ
with a wavelength 2πRLC. At the light cylinder (the �Y-point�), the current splits
and �ows along the magnetic separatrices, i.e., in the region that separates the
closed and the open �eld line regions. They extend all the way to the star along
the outer edge of the polar caps (Figure 4.4).

The force-free MHD approach has proven to be very useful for better under-
standing the structure of the magnetosphere of pulsars, but it has also severe
limitations which obliges us to seek for more physical realism. First of all, the
equatorial current sheet is a non-ideal MHD region where the magnetic �eld van-
ishes so that E > B, and where the force-free approximation breaks down (the
plasma pressure and inertia become important). Arti�cial resistivity can be applied
there to stabilize the layer (Li et al. 2012; Parfrey et al. 2012; Kalapotharakos et al.
2012b), or the full MHD approach can be employed to have a better description of
the plasma heating and inertia in the sheet (Komissarov 2006; Tchekhovskoy et al.
2013). This �uid approach cannot also capture near vacuum regions, or �gaps�
where pairs may be created in the magnetosphere (e.g., the polar-cap gap). More
importantly, the ideal force-free approach cannot put constraint on particle accel-
eration and radiation since E · B = 0 everywhere by construction. This is where
global PIC simulations become relevant and what motivated my work presented
in the next chapters.
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2D axisymmetric model

Before turning into the main PIC simulation results, I will review some of the
major transformations that I had to implement into the Zeltron code in order
to be capable of simulating pulsar magnetospheres (Sect. 5.1). To my knowledge,
there was not PIC code capable of handling spherical coordinates at the time, so
I had to �gure out the way to do this. What I did not know then was that two
other researchers were doing the exact same thing independently and at the same
time, Alexander Chen at Columbia University and Mikhail Belyaev at UC Berke-
ley, which lead to stimulating discussions between us afterwards. My guideline was
to keep the architecture of the code and algorithms as much as possible to preserve
their nice features (accuracy, stability and e�ciency, see Chapter 2). We will then
turn to the fundamental question of plasma supply in the simulation (Sect. 5.2),
a delicate issue that must be explicitly addressed in PIC simulations, in constrast
to MHD simulations where the plasma is present by construction. The main re-
sults obtained with the 2D model are then presented for a variety applications:
the dipole (Sect. 5.3) and the role of plasma supply on the magnetospheric fea-
tures and on particle acceleration (Sects. 5.4-5.5.1), and interacting binary pulsar
magnetospheres in the context of merging neutron star binaries (Sect. 5.5.2).

This chapter is based on the following papers: Cerutti et al. (2015); Crinquand
et al. (2019); Guépin et al. (2020).

5.1 Numerical developments in Zeltron: Spherical

geometry

Throughout this memoir, we refer to the usual spherical coordinates systems: the
spherical radius r, the angle to the polar axis θ, and the azimuthal angle φ.

5.1.1 Maxwell's solver and spherical Yee mesh

The second-order accuracy is preserved by keeping the �eld components o�set in
space and in time. The electric �eld is de�ned in full time steps, En, whereas
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Figure 5.1: Yee lattice for a 2D axisymmetric spherical grid (2D) and full 3D
spherical grid (right).

the magnetic �eld is in half-time steps, Bn+1/2 (same as in Cartesian coordinates).
The �eld components are mapped on the spherical Yee lattice shown in Figure 5.1.

To derive the second-order �nite-di�erence scheme, we use the integral form of
Maxwell equations integrated over the volume of a cell. For conciseness and for
illustrative purposes, I give the derivation for the 2D axisymmetric grid only. It
can easily be generalized to full 3D as shown in Cerutti et al. (2016b). Using the
usual relation ¨

(∇× E) · dScell =

˛
E · dlcell, (5.1)

we �nd the components of (∇× E) as

� (∇× E)ri,j+1/2: The �ux is computed through the a belt of radius ri con-
tained between the angle θj and θj+1, ∆S = 2πr2

i (µj − µj+1), where µ ≡
cos θ. The integration gives

(∇× E)ri,j+1/2 =
Eφi,j+1 sin θj+1 − Eφi,j sin θj

ri (µj − µj+1)
. (5.2)

� (∇× E)θi+1/2,j: The �ux is computed through an annulus of inner radius
ri and outer radius ri+1 inclined at an angle θj, of total surface ∆S =
π
(
r2

i+1 − r2
i

)
sin θj. The integration gives

(∇× E)θi+1/2,j = −2
Eφi+1,jri+1 − Eφi,jri

r2
i+1 − r2

i

. (5.3)
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� (∇× E)φi+1/2,j+1/2: The �ux is computed through the area of the cell in the

poloidal plane of area ∆S =
(
r2

i+1 − r2
i

)
∆θ/2. The integration yields

(∇× E)φi+1/2,j+1/2 = −2
ri+1 − ri(

r2
i+1 − r2

i

)
∆θ

(
Eri+1/2,j+1 − Eri+1/2,j

)
+(5.4)

2

r2
i+1 − r2

i

(
Eθi+1,j+1+1/2ri+1 − Eθi,j+1/2ri

)
. (5.5)

The curl of B can be derived in the same way, which we do not report here.
Perhaps the most important feature to remember in these expressions is to have
the correct indices, and make sure that the time and spatial indices on the right
hand side correspond to, or are centered around the indices on the left hand side of
the above expressions. These local integral expressions also have the advantageous
property to show no divergence at the polar axis (θ = 0, π), in contrast with
the di�erential expressions (division by sin θ). With these expressions at hand,
Maxwell's equations can be evolved in time using the same scheme in time as used
in the Cartesian version, i.e.,

En+1 = En + ∆t
[
c (∇×B)n+ 1

2 − 4πJn+ 1
2

]
, (5.6)

Bn+ 1
2 = Bn− 1

2 − c∆t (∇× E)n . (5.7)

Similarly, the Poisson solver can be adapted using the integral expressions of the
divergence and gradient operators on a spherical grid cell. The stability criterion
is again �xed by the CFL condition. For a 2D axisymmetric grid with a constant
spacing in r and θ, this condition translates into

c∆t ≤ 1√
1/∆r2 + 1/(rmin∆θ)2

, (5.8)

where rmin is the inner radius of the domain.

5.1.2 Particle pusher, spherical remapping and shape

The code keeps in memory the particle position and normalized four-velocity com-
ponents in spherical coordinates,

r =

rθ
φ

 , u =

ur

uθ
uφ

 . (5.9)

In order to preserve the fantastic numerical properties of the Boris pusher, a com-
plete remapping of particle positions and velocities into Cartesian coordinates is
necessary,

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (5.10)
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as the volumes involved in the linear interpolation and current deposition scheme
used in Zeltron .

ux = ur sin θ cosφ+ uθ cos θ cosφ− uφ sinφ (5.11)
uy = ur sin θ sinφ+ uθ cos θ sinφ+ uφ cosφ (5.12)
uz = ur cos θ − uθ sin θ (5.13)

and its reverse operation (from Cartesian to spherical) once the push has been
completed, i.e.,

r =
√
x2 + y2 + z2, θ = arccos

(z
r

)
, (5.14)

φ =


arccos

(
x√
x2+y2

)
if y ≥ 0

2π − arccos

(
x√
x2+y2

)
if y < 0

 , (5.15)

ur = ux sin θ cosφ+ uy sin θ sinφ+ uz cos θ (5.16)
uθ = ux cos θ cosφ+ uy cos θ sinφ− uz sin θ (5.17)
uφ = −ux sinφ+ uy cosφ. (5.18)

Charge and current depositions use the same linear interpolation scheme and
volume weighting technique as introduced in Chapter 2 (Sect. 2.4). The contribu-
tion to the current of a single particle located in the cell (i, j) of position (r, θ),
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velocity v, electric charge q and numerical weight w is

Ji,j =
Vi+1,j+1

Vtot
qwv = (1− fr) (1− fθ) qwv (5.19)

Ji+1,j =
Vi,j+1

Vtot
qwv = fr (1− fθ) qwv (5.20)

Ji,j+1 =
Vi+1,j

Vtot
qwv = (1− fr) fθqwv (5.21)

Ji+1,j+1 =
Vi,j

Vtot
qwv = frfθqwv, (5.22)

where Vtot = 2π
3

(
r3

i+1 − r3
i

)
(µj − µj+1) is the total volume of the cell, Vi(+1),j(+1)

are the partial volumes shown in Figure 5.2, and the interpolation parameters

fr =
r3 − r3

i

r3
i+1 − r3

i

(5.23)

fθ =
µj − cos θ

µj − µj+1
. (5.24)

5.1.3 Boundary conditions

We consider here the speci�c con�guration where the inner boundary coincides
with the neutron star surface, the outer boundary is located outside the light
cylinder radius. The θ-boundary extends all the way to the polar axis which is
aligned with the rotation axis of the star.

Fields

� θ-boundaries: We apply the axial symmetry to all Yee �eld components
sitting on the boundary θ = 0, θ = π, i.e., ∂Er/∂r = 0, Eφ = 0 and Bθ = 0.

� Radial inner boundary: The initial magnetic �eld is frozen into the sur-
face of the star and �xed throughout the simulation. The star is assumed
to be a conducting sphere of in�nite conductivity spinning at the angular
velocity Ω. The solid rotation of the magnetic �eld lines is enforced through
the co-rotation electric �eld applied on the stellar surface,

E? = −(Ω× r?)×B?

c
. (5.25)

In fact, Eθ,? alone must be enforced for an axisymmetric con�guration (Eφ,? =
0), Er is free to evolve because it is de�ned above the surface on the Yee lat-
tice.

� Radial outer boundary: In the particular problems we are interested in
the following, a natural choice for the outer edges of the box is an open
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boundary. What we mean by �open� here is a perfectly absorbing boundary
with no re�ection of waves and particles, which isolates the system from the
external environment. A simple and robust way to achieve this is to add an
unphysical dissipative term to Maxwell's equations to damp exponentially
the �elds in a spherical shell located in the outer regions of the box, such
that (Birdsall & Langdon 1991)

∂E

∂t
= −λ(r)E + c (∇×B)− 4πJ, (5.26)

∂B

∂t
= −λ(r)B− c (∇× E) , (5.27)

where λ(r) is the conductivity of the absorbing region. This approach is a
simpli�ed 1D version of the more general perfectly-matched-layer technique
valid for multidimensional open boundaries (Berenger 1994, 1996). The ra-
dial pro�le of the conductivity term must be chosen with care. A simple
step function or any abrupt pro�le would lead to a partial re�ection of waves
back into the physical domain, and therefore fail the purpose of the layer.
The pro�le cannot be too shallow either otherwise the absorbing layer must
be very thick to full absorb the incoming waves, reducing the size of the
physical domain of interest, and therefore it would increase the cost of the
simulation. Empirically, I found that the following polynomial is a good
compromise between gradual absorption and compactness of the damping
layer,

λ(r) =
Kabs

∆t

(
r − rabs

rmax − rabs

)3

(5.28)

where Kabs > 1 is a numerical prefactor that controls the damping strength,
and rabs (rmax) is the inner (outer) radius of the absorbing layer. Typically, I
chose the thickness of this layer to be 10% of the total box size, i.e., (rmax−
rabs)/rmax = 0.1. On top of this, we apply the regular zero-gradient boundary
conditions to all �eld components at r = rmax, i.e., ∂(Br, Eθ, Eφ)/∂r = 0.

� φ-boundary (3D runs): Regular periodic boundary conditions apply to
all components.

Particles

� θ-boundaries: Particles are re�ected with no loss of energy.

� Radial-boundaries: Whether a particle hits the inner or outer (inner ra-
dius of the absorbing layer) boundaries, it is deleted from the simulation.

� φ-boundary (3D runs): Regular periodic boundary conditions apply.
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5.2 The plasma supply problem

Before turning into the main results, we must address the delicate issue of the
plasma supply in the simulation. The simple fact that the simulation box is open
means that whatever plasma is injected in the �rst place, it must be continuously
replenished throughout the simulation. Particle injection is of paramount impor-
tance for the problem of pulsar magnetospheres, and it is still an unsolved issue as
of today.

The �rst source of particles for which there is no controversy is the stellar
surface itself, where a primary beam of charges is extracted from the surface electric
�eld. The surface charge density, Σ, is given by the jump conditions of the electric
�eld at the surface of a conducting medium, i.e., by the di�erence between the
radial electric �eld right above the neutron star surface and the co-rotation solution
(Eq. 5.25, Cerutti et al. 2015),

4πΣ = Er,? − Eco
r,?. (5.29)

This numerical recipe combined with a plasma limiter at the surface to avoid over-
injection is well-suited to model electrosphere-like con�gurations (see Chapter 4).
However, it is insu�cient to establish a force-free-like con�guration.

As discussed in Chapter 4, the main source of plasma supply is most likely
provided by copious pair creation within the magnetosphere, but the loci and
the e�ciency of this process are still uncertain. PIC simulations coupled with a
Monte-Carlo description for the treatment of the radiative transfer is an adequate
tool to tackle this di�cult problem (Timokhin & Arons 2013, and see Chapter 9),
but published multidimensional PIC studies have proposed simpli�ed formulations
of the problem, which all slightly di�er from one another. The main reason for
this simpli�cation is the lack of a realistic separation of scales in multidimensional
simulations, separation between the macroscopic (stellar radius, light cylinder) and
microscopic (skindepth, Larmor radius, cooling and pair production lengths) scales.
In the �rst model by Philippov & Spitkovsky (2014), pair creation is assumed to
be so vigorous that new particles are injected in every cell and at every timestep
to reach a con�guration as close to force-free as possible (see also Kalapotharakos
et al. 2018). In the same spirit, Belyaev (2015) proposed an injection criterion
based on a the local magnitude of the parallel electric �eld, which traces potential
zones of intense particle acceleration, such that the number of created pairs per
time step is

dN

dt
∝ finj

|E ·B|
B

, (5.30)

where finj is a numerical prefactor that controls the strength of pair creation.
In Cerutti et al. (2015), I proposed another e�cient way to �ll the magneto-

sphere, which consists in injecting cold pairs at the stellar surface with an initial
mildly relativistic speed along the �eld lines, vkick, in addition to the corotation
velocity. The motivation behind this choice is to assume that the cascade took
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place near the stellar surface on scales unresolved by the global model. The initial
net momentum along �eld lines is also a natural outcome of the development of
the cascade near the star. The �ux of new pairs, Finj, in then parametrized as

Finj = vkickfinjn
?
GJ, (5.31)

where finj is a dimensionless parameter which controls how much of the �ducial
Goldreich-Julian density is delivered per timestep. In the following, the initial kick
velocity will be set at vkick = 0.5c. The last prescription discussed here and that
we make use of in the applications discussed in Sects. 5.5.1-5.5.2 is based on the
particle energy. A particle produces a new pair if its energy exceeds a �xed fraction
of the full vacuum potential drop, fpp < 1. In return, the created pair takes away a
�xed fraction of the parent particle energy, γp, such that γnew = fγγp. The parent
particle is cooled accordingly. This prescription allows to produce pairs wherever
particle acceleration takes place in the magnetosphere (Philippov et al. 2015b),
which is physically sound and well-motivated. An analogous prescription was also
used by Chen & Beloborodov (2014) and Chen et al. (2020).

5.3 From the electrosphere to the force-free mag-

netosphere

The �rst numerical experiment I carried out was the aligned dipole. My objective
was to investigate the impact of the plasma supply on the magnetosphere, from
a nearly vacuum solution to a quasi force-free magnetosphere. Initially, the box
is �lled with a static magnetic dipole in vacuum. At t > 0, the star is set into
a solid rotation by applying the co-rotation electric �eld (Eq. 5.25) at the inner
boundary. Plasma is injected from the stellar surface at a constant rate controlled
by the parameter finj = 0.1, 0.2, 0.5, 1. Shortly after the onset of the simulation,
a torsional Alfvén wave is launched from the surface which gradually sets the
magnetosphere into rotation. A quasi-steady state is quickly established after a
few rotation periods.

Figure 5.3 shows the �nal state for a high plasma injection rate (finj = 1, left
panels) and a low plasma injection rate (finj = 0.2, right panels). The high-supply
solution exhibits all of the expected features of a force-free magnetosphere: (i) a
bundle of open magnetic �eld lines at the polar caps passing smoothly through the
light cylinder, (ii) closed �eld lines within the light cylinder (top panel), and (iii) a
set of current layers �owing along the magnetic separatrices inside the light cylin-
der, merging at the Y-point to form a single current layer in the equatorial plane
beyond the light-cylinder (middle panel). There are also important di�erences with
respect to the ideal force-free solution, even if the plasma supply is high, which
are the features of interest here. While numerical tricks are needed to model the
equatorial current sheet in force-free simulations where ideal MHD breaks down,
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Figure 5.3: 2D axisymmetric PIC model of an aligned pulsar magnetosphere with
RLC/r? = 3. Top: toroidal �eld rBφ/B?, middle: Radial current density nor-
malized to the �ducial Goldreich-Julian value, r2Jr/J

?
GJ, bottom: Electric �eld

component parallel to the magnetic �eld, E · B/B2. Left: high-plasma supply
solution leading to a quasi-force-free magnetosphere, right: low-plasma supply so-
lution. Figure taken from Cerutti et al. (2015).
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Figure 5.4: Radial pro�le of the outgoing Poynting �ux integrated over a sphere of
radius r. Left: E�ect of the plasma injection rate finj. Right: E�ect of the number
of particle-per-cell for finj = 1.

PIC simulations capture the physics of magnetic reconnection leading to dissipa-
tion and particle acceleration. These zones of interest are well-visible as E ·B 6= 0
regions localized within the layer (bottom panel). Kinks in the equatorial cur-
rent sheet are also the signature of kinetic e�ects driven by the beams of particles
carrying the current, reminiscent of kink modes in Harris layers (Sect. 3.3).

These departures from the ideal solution are necessarily more pronounced if
the plasma supply is insu�cient to sustain the force-free current. In this case,
some �eld lines remain closed even outside the light cylinder, and large gap forms
in the magnetosphere. The low-plasma supply solution shown in the right pan-
els in Figure 5.3 is intermediate between an electrosphere-like solution (no pair
production, no current and therefore no spindown, see Sect. 4.3) and a force-free
magnetosphere. The plasma structure is highly (but not perfectly) charge sepa-
rated, n ∼ qρ, with almost exclusively electrons at the poles and positrons at the
equator. Plasma supply has a direct in�uence on the pulsar spindown and dissi-
pation. Figure 5.4 (left panel) shows the outgoing Poynting �ux integrated over a
sphere of radius r as a function of finj. For the high-supply solutions finj = 0.5, 1,
L ≈ 1.1L0 inside the light cylinder followed by a gradual dissipation reaching about
30% at 6RLC. The spindown power decreases with decreasing plasma supply as
expected, reaching L ≈ 0.6L0 for finj = 0.1 and a dissipation rate of about 50%
at r = 6RlC.

It is important to emphasize at this point that the dissipation reported here is
by no means of numerical origin, it is physical. The lost electromagnetic power is
self-consistently channeled to particle kinetic energy via the reconnection electric
�eld in the sheet or via vacuum gap electrostatic �elds, if any. We checked that
the dissipation rate is robust against numerical e�ects such as resolution and the
number of particle-per-cell as shown in Figure 5.4 (right panel). These numbers
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Figure 5.5: Electron (top) and positron (bottom) mean particle Lorentz factor,
〈γ〉.
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Figure 5.6: Representative high-energy positron (left) and high-energy electron
(right) trajectories.

are also consistent with other PIC studies, in particular with Belyaev (2015) who
performed a similar analysis of the plasma supply on the magnetosphere using the
prescription based on Eq. (5.30). What is important to notice is that dissipation
reaches a saturation at a high plasma supply (finj = 0.5, 1), meaning that simula-
tions are capturing an irreducible amount of dissipation. No matter how close to
force-free the magnetosphere is and how high the numerical resolution is, there will
always be a �nite amount of dissipation due to reconnection occuring at kinetic
scales, in contrast to MHD simulations (Tchekhovskoy et al. 2013). We will come
back to the delicate issue of dissipation in the following chapter.
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5.4 Particle acceleration

The connection between dissipation in the current sheet and particle acceleration
has been well established thanks to this study. Figure 5.5 shows the mean particle
Lorentz factor computed in each cell and for both species. There is a clear spa-
tial correlation between the location of the high-energy particles and the sheets.
High-energy positrons are exclusively found in the equatorial current sheet, while
energetic electrons are concentrated near the Y-point and the separatrix current
layers. To understand this asymmetry, it is more instructive to look at individual
particle trajectories. Figure 5.6 shows a representative trajectory of an accelerated
particle for each species. High-energy positrons are injected at the footpoints of
the last open �eld lines. They �ow out along the separatrices and equatorial cur-
rent layers. Most of their energy gain occurs near the Y-point and proceeds at a
slower rate further out. In contrast, high-energy electrons originate from higher
latitudes. They propagate in the wind without much acceleration until they are
captured by the equatorial current sheet. At this point, they experience an abrupt
acceleration by the reconnection electric �eld, which pushes them back towards the
star. Their acceleration stops when they reach Y-point. Electrons then head back
to the star along the separatrices. These major di�erences between electronic and
positronic trajectories lead to a strong excess of positrons at high energies leaving
the system (and vice-versa if Ω · B < 0). This result may give new clues as to a
possible astrophysical origin of the high-energy positron excess as reported by the
PAMELA collaboration Adriani et al. (2009).

As discussed in Chapter 3, relativistic reconnection accelerates particles are an
energy scale given by the upstream plasma magnetization. In this global con�g-
uration where σ varies signi�cantly, it is most relevant to use the magnetization
measured at the light-cylinder,

σLC ≡
B2

LC

4πΓLCκLCnLC
GJmec2

, (5.32)

as also shown in Figure 5.6 (bottom panels) where γ ∼ σLC. Compared with the
vacuum potential drop across the polar cap, de�ned as

Φpc =

ˆ θpc

0

Eθ(r?)r?dθ =
µΩ2

c2
, (5.33)

the particle Lorentz factor accelerated in the sheet can be recast as

γ ∼ φpc

ΓLCκLC
. (5.34)

where φpc = eΦpc/mec
2. It is interesting to notice that this expression depends

on both the global properties of the star (µ and Ω) and the microphysics of pair
production via the multiplicity parameter. This result does not depend signi�-
cantly on synchrotron cooling (not modeled in this work, but see next chapter)
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because particles are accelerated within the current layer where synchrotron losses
are small (chapter 3). In the high-supply solution, this energy scale represents a
substantial fraction of the polar-cap potential drop, 20% on average and up to 50%
for the most energetic particles.

To summarize, this work has clearly established a link between reconnection,
dissipation and particle acceleration in the current sheet. Major results are: (i)
An irreducible amount of dissipation in the high-supply regime (ii) A very e�cient
particle acceleration close to the maximum polar-cap potential drop, and (iii) The
magnetospheric features and spindown are strongly sensitive to the plasma sup-
ply. In particular, we discovered charge-separated pulsar magnetosphere states,
intermediate between an electrosphere and a force-free solution, which may be
appropriate for describing pulsars near the death line, i.e. pulsars where pair
production is weak, but not absent.

5.5 Other applications

This �rst 2D PIC magnetospheric model inspired other studies. I brie�y describe
below two of those applications:

� The study of ion acceleration in millisecond pulsar magnetospheres carried
out by Claire Guépin when she was a PhD student at IAP with Kumiko
Kotera (Guépin et al. 2020). This work has been performed in the con-
text of the ANR JCJC APACHE project led by Kumiko, for which I was a
collaborator.

� The study of binary pulsar magnetospheres and the emission of a high-energy
radiation precursor during the inspiral phase prior to their merger. This work
has been carried out by Benjamin Crinquand during his Master 2 thesis under
my supervision (Crinquand et al. 2019).

Another application was dedicated to the study of the Lense-Thirring e�ect on
pair production at the polar caps (Philippov et al. 2015a), but this work will not
be presented here for conciseness.

5.5.1 Acceleration of ions

The extraction of ions from the crust via the surface electric �eld is a natural
outcome of pulsar electrodynamics. For instance, if Ω ·B > 0, ions are extracted
within the equatorial regions and are injected into the magnetosphere. In contrast
to pairs, their number density can be at most of the order of the Goldreich-Julian
density, and therefore ions should be highly subdominant in number for a force-
free-like magnetosphere. In this work, Claire studied how and how much protons
are accelerated in the magnetosphere as a function of the pair cascade e�ciency,
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Figure 5.7: Electron (left), positron (middle) and ion (right) densities for a high
pair production rate.

using the particle threshold energy recipe for pair production. Ions are injected
as a third species, with a reduced mass ratio mp = 18.36me for numerical conve-
nience. Figure 5.7 shows the plasma density of all species for a high rate of pair
production. A static disk of ions forms very close to the stellar surface, reminiscent
of the electrosphere solution. These protons are trapped and are not signi�cantly
accelerated. Ions extracted along the last open �eld lines freely stream along the
separatrices current layers and in the equatorial plane outside the light cylinder.

Claire showed that protons are signi�cantly accelerated along the separatrices
inside the light cylinder rather than in the equatorial current layer, in contrast to
pairs. Ions being highly subdominant, the layer thickness is determined by the
electronic scale. Although captured by the layer, the meandering width of ion
Speiser trajectories is too wide so that ions spend most of their time outside the
layer, and thus they do not feel the reconnection electric �eld. Nonetheless, in this
regime ions are accelerated close to the polar-cap potential drop (Figure 5.8, left
panel, see also Philippov & Spitkovsky 2018). If pair production decreases, large
vacuum gaps open up as described in the previous section, and the ion maximum
energy increases until it reaches nearly 80% of the full vacuum potential drop.
The total power carried away by ions represents a few percent of L0 (right panel
in Figure 5.8).

This work con�rms that pulsars are very e�cient particle accelerators, also for
hadrons. Although few in number, ions carry a substantial fraction of the pulsar
spindown. Scaled up to the typical millisecond pulsars properties with B? = 109G,
P = 1 ms, our results suggest that protons can be accelerated to a few PeV in a
force-free state and up to a few tens of PeV in low-plasma supply solutions, and
contribute to the �ux of galactic cosmics ray. For new-born millisecond pulsars
with B? = 1013G, pulsars could even accelerate ultra-high energy cosmic rays
(Fang et al. 2012). This exciting perspective should be con�rmed in future studies
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Figure 5.8: Left: Maximum proton energy normalized to the full vacuum poten-
tial drop (γ0,p, orange dashed line) as a function of the energy threshold for pair
production (γth, in terms of the fraction of the fpp = γth/γ0,p). The green dashed
line represents the polar-cap potential drop. Right: Power carried away by ions in
terms of L0 as a function of fpp. Figure taken from Guépin et al. (2020).

with a larger separation of scales than what we can a�ord numerically today.

5.5.2 Binary pulsars

The discovery of the �rst gravitational wave event associated with a binary neu-
tron star merger has revived a strong interest in the study of interacting pulsar
magnetospheres (Abbott et al. 2017a). The magnetic coupling between both stars,
combined with di�erent stellar spins and the relative orbital motion can signi�-
cantly change the magnetospheric features observed in an isolated pulsar, in par-
ticular in the last orbits prior the merger. The goal of this work, led by my student
Benjamin Crinquand, was to revisit the theory of binary pulsar magnetospheres
(Vietri 1996; Hansen & Lyutikov 2001; Lai 2012; Piro 2012), with the help of PIC
simulations. As thoroughly discussed in the next chapter, particle acceleration in
isolated pulsar magnetospheres leads to bright high-energy synchrotron emission.
My hope with this work was to estimate how much energy could be channeled in
the form of a high-energy percursor electromagnetic emission from the interacting
magnetospheres, prior the merger, the short gamma-ray burst and the kilonova
emission (Abbott et al. 2017b).

As a proof of principle and for practical reasons, I proposed to Benjamin to
perform this study using 2D axisymmetric simulations, meaning that the spin axis
of both stars must be aligned. The orbital motion must also be neglected, but we
consider that the orbital separation, a, decreases due to the energy losses carried
away by gravitational waves emitted by the system, such that

a(t) = a0

(
1− t

τ

)1/4

, (5.35)
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Figure 5.9: Magnetospheric structure for a parallel (left) and anti-parallel (right)
con�gurations. The dashed vertical line shows the light cylinder of both stars.
Figure taken from Crinquand et al. (2019).

where τ is the inspiral time, and a0 the initial orbital separation between both stars.
Although unphysical, this setup is ideally suited to study some of the basic features
of interacting magnetospheres, with a particular emphasis on the role played by the
pulsar spins and the orbital separation. This work is the �rst step towards future,
more realistic 3D PIC simulations of merging pulsar-pulsar and pulsar-black-hole
binaries, which will include the orbital motion (see research project, Chapter IV).

For this study, it was most convenient to work with a cylindrical version of
Zeltron in the Rz-plane. The injection of pairs in based on the particle energy
threshold as in the previous section, but without ions. Benjamin considered two
main classes of initial setup: (i) the parallel con�guration where both pulsars are
identical (spin and magnetic polarity), and (ii) the anti-parallel con�guration where
the magnetic axes are aligned but the spin axes are anti-aligned. We assumed that
pair production is e�cient so that both magnetospheres are close to the force-free
regime.

Figure 5.9 shows the magnetic structure once a quasi-steady state has been
established and assuming a constant orbital separation. In both con�gurations,
we can easily recognize the familiar structures of an isolated pulsar: a set of open
�eld lines at the poles pointing away from the binary and an equatorial current
sheet for each star. In contrast, the inter-binary region presents new structures,
where both stars interact. In the parallel con�guration, another current sheet
forms in between both stars to sustain the jump in the magnetic �eld topology.
Apart from a narrow bundle of �eld lines directly connecting both stars at the
poles, the magnetic interaction is mainly felt through reconnection. In the anti-
parallel con�guration, there is a direct magnetic linkage between both stars and
no inter-pulsar current sheet. The di�erential rotation between both stars leads
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Figure 5.10: High-energy synchrotron lightcurve as received by a distant observer
for a symmetric (left) and asymmetric (right, Ωdown/Ωup = 4, Bup/Bdown = 4)
binary pulsar system. Fluxes are normalized by L0. Figure taken from Crinquand
et al. (2019).

to a strong winding of magnetic �elds at the poles, and therefore a strong electric
current must �ow. In 3D, this con�guration is highly unstable to kink modes when
the toroidal �eld becomes greater than the poloidal component, Bφ/Bz & 1, which
momentarily disrupts the magnetic linkage in the form of powerful �ares driven by
reconnection (Lai 2012; Most & Philippov 2020).

The magnetic coupling becomes stronger with decreasing orbital separation.
E�cient dissipation and particle acceleration occur within the current sheets and
intense synchrotron radiation is emitted. Figure 5.10 shows that a bright pre-
cursor emission is indeed expected prior the merger. Regardless of the initial
magnetic/spin con�guration, the radiative power represents up to 5L0 in the form
of high-energy synchrotron radiation, i.e., it is a two orders of magnitude increase
with respect to an isolated pulsar (see next chapter). Benjamin also explored
asymmetric, arguably more realistic binary systems: a high-spin low-�eld pulsar
(millisecond pulsar) in orbit with a lower-spin higher-�eld pulsar (young pulsar).
The same scenario as the one described above qualitatively holds in this asymmet-
ric con�guration (right panel in Figure 5.10).

In spite of this large magni�cation, the expected �ux is way too weak to be de-
tected at cosmological distances, even in the nearby Universe. Assuming a powerful
Crab-like pulsar would give a 1038erg/s luminosity. For comparison, the luminosity
of the gamma-ray burst that followed the gravitational wave event GRB 170817A
detected by the Fermi-GBM is 1045erg/s for a source located at 40 Mpc, and was
just above the noise level. A more promising way to observe a precursor emission
from these systems could be in the radio band. We noticed that a strong enhance-
ment of pair production at the polar caps that accompanies the increase in the
synchrotron emission during the inspiral phase. The quasi-periodic discharge of
the polar caps is an e�cient mechanism to produce coherent radio waves (Philip-
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pov et al. 2020). If a small fraction of the total spindown power is channeled into
these waves, it could be detectable as a fast, non-repeating radio transient. Last,
the orbital motion could also play an important role at magnifying even more the
expected radiative output. This issue is left to future 3D simulations.
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3D model: pulsed emission
and dissipation of the striped
wind

The simple fact that pulsars are pulsating sources by de�nition means that the
emission most likely originates from an oblique magnetosphere, i.e., where the
magnetic axis is misaligned at an arbitrary angle with respect to the spin axis. In
practical terms, breaking the axisymmetry implies that full 3D simulations must
be employed to model realistic pulsar magnetospheres, in the hope of elucidating
one of the most outstanding mystery of high-energy astrophysics: the origin of the
high-energy (incoherent) pulsed emission from pulsars. I begin this chapter with a
brief summary of some of the most important observational features discovered by
the Fermi-LAT in the > 100MeV gamma-ray band. I then turn into the numerical
strategies that I developed to model the radiative output, and I present the main
PIC results. I will close this part of the memoir with the most recent study of
dissipation and particle acceleration in the wind region based on a large 3D PIC
model of pulsar magnetosphere and striped wind.

This chapter is based on the following articles: Cerutti et al. (2016b), Cerutti
et al. (2016a), Cerutti & Philippov (2017), Cerutti et al. (2020), and Cerutti (2018)
based on an invited review talk at at the Agile gamma-ray symposium held in Rome
in 2017.

6.1 Gamma-ray pulsars: Salient observational fea-

tures

The gamma-ray space telescopes Agile and Fermi have greatly contributed to the
discovery of new pulsars shinning in the gamma-ray band, and therefore they have
clearly established that pulsars are e�cient particle accelerators. Their number
detected in the high-energy gamma-ray band increased from the 6 EGRET pulsars
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Figure 6.1: Gamma-ray luminosity, Lγ, as a function of the pulsar spindown, Ė,
from the second Fermi-LAT pulsar catalog. Figure taken and adapted from Abdo
et al. (2013).

in the nineties (Nolan et al. 1996) to 117 in the second Fermi-LAT catalog in 2013
(Abdo et al. 2013), becoming the largest number of identi�ed sources in the Galaxy,
and this number continues to increase with more exposure time and better data-
analysis techniques. As of April 16, 2020, this number has more than doubled since
2013 with 253 pulsars1. The relevant observational features can be summarized as
follow:

� Gamma-ray pulsars are all rotation-powered (as opposed to magnetars where
the main source of energy is of magnetic origin). They can be divided into
two well-separated populations in the P − Ṗ diagram: (i) old, low-�eld
(B? ∼ 109G) millisecond pulsars whose rotation period was spun up by
accretion, (ii) young, high-�eld (B? ∼ 1012G) isolated pulsars whose rotation
period is of order P ∼ 100ms.

� The gamma-ray luminosity above 100 MeV represents about 1 − 10% of
the total energy budget, i.e., the pulsar spindown (Figure 6.1). We can
therefore assert, in a model independent way, that pulsars are extremely
e�cient particle accelerators. This number also gives a lower limit to the
amount of dissipation within the magnetosphere.

1https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+

Gamma-Ray+Pulsars
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Figure 6.2: Sample of 16 pulsar gamma-ray pulse pro�les reported by the Fermi-
LAT collaboration. Two rotation periods are shown per pulsar. Figure taken from
Abdo et al. (2009).

� The phase-averaged gamma-ray spectrum is well-modelled by a hard power-
law at low energies followed by an exponential cut o� at a few GeV.

� The pulse pro�le presents in most cases (with a ∼ 75% probability) two well-
separated peaks per rotation period, sometimes with signi�cant emission in
between them that is often referred to as the �bridge emission� (Figure 6.2).
The peaks are not necessarily symmetric, but they are often separated by
about 0.5 in phase, suggesting that the emission pattern is composed of two
oppositely directed beams. This is very di�erent than in radio where most
pulsars present a single pulse per period, which is consistent with a single
beam pointing away from the polar cap (with the notable exception of the
Crab pulsar and millisecond pulsars).

� Gamma-ray pulses are usually not aligned with the radio pulses, suggesting
that two distinct regions of the magnetosphere are involved in the emission
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mechanisms (here again with the notable exception of the Crab pulsar and
millisecond pulsars).

� The detection of > GeV photons, and even TeV photons in the Crab and
Vela pulsars (Ansoldi et al. 2016, Arache Djannati-Ataï 2019 private com-
munications), rules out a polar-cap origin for the pulsed emission because
these photons would be absorbed by the strong magnetic �eld near the star.
Thus, the outer-parts of the magnetosphere are favored.

� Statistically and for a given sensitivity, more pulsars are detected in gamma
rays than in radio (except for millisecond pulsars where the radio emission
is systematically observed), suggesting that the gamma-ray beam is wider
than the radio beam.

All of these robust features give precious clues on the origin of the pulsed
emission. The shape of pulses is usually interpreted as the result of geometrical
e�ects. In principle, this information should su�ce to constrain the loci of the
emitting regions, but in practice lightcurve �tting is often insu�cient to disentangle
between models (degeneracy of solutions). Current lightcurve modelling in the
context of, e.g., the outer-gap (Cheng et al. 1986; Romani & Yadigaroglu 1995),
the slot gap (Arons 1983; Muslimov & Harding 2003) or the two-pole caustics
models (Dyks & Rudak 2003), are based on a vacuum inclined dipolar �eld. In
these models, the emitting zones are put by hand. Today, we know that the vacuum
dipole is not a correct model for the magnetosphere. Bai & Spitkovsky (2010a)
made one step further using the force-free �elds to model pulsar light curves (see
also Kalapotharakos et al. 2012a; Li et al. 2012). But here again, the emitting
zones must be prescribed since force-free MHD simulations cannot capture particle
acceleration, and therefore the origin of the high-energy pulsed emission remained
still highly uncertain. The next logical step to make further progress is to use a
self-consistent approach that PIC simulations can o�er.

6.2 3D setup and radiation

6.2.1 Initial �elds

To reach this goal, I transformed Zeltron into a full 3D spherical grid, i.e., by
including the azimuthal direction, φ. The initial setup is the same as for the 2D
axisymmetric model: a rotating dipolar �eld anchored onto the surface of the star
with a high plasma supply from the surface of the star. The initial magnetic �eld
is given by the usual dipole formula,

B(t) =
3 (er · µ) er − µ

r3
, (6.1)
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Figure 6.3: 3D electron trajectory moving along a circular magnetic �eld line
contained within the xy-plane, with a curvature-drift motion along the z-direction.

or more explicitly as

Br =
2µ

r3
[sinχ sin θ cos (Ωt− φ) + cosχ cos θ] (6.2)

Bθ =
µ

r3
[− sinχ cos θ cos (Ωt− φ) + cosχ sin θ] (6.3)

Bφ = − µ
r3

sinχ sin (Ωt− φ) , (6.4)

where χ is the magnetic obliquity angle, χ = arccos(Ω · µ/Ωµ). The corotation
electric �eld is enforced at the inner boundary to set the �eld lines into a solid
rotation.

6.2.2 Synchrotron and curvature cooling

To obtain meaningful results in terms of radiative output, radiative cooling must
be turned on. In Zeltron , cooling is self-consistently captured via the radiation
reaction force �rst introduced in Chapter 2. As a reminder, the radiation reaction
force is composed of two terms, a non-relativistic term and a relativistic term
(Eq. 2.32). The relativistic term, which scales as γ2, is clearly dominant in this
context where γ � 1. This being said, I realized back then that the non-relativistic
term was necessary to capture the correct curvature radiation cooling rate, even
in the ultra-relativistic regime.

To see this, we consider the test case of a single particle trajectory initially
moving along a circular magnetic �eld line in the xy-plane, such that v×B = 0 and
with no electric �eld, E = 0. This con�guration is known to lead to a curvature-
drift motion of the particle perpendicular to the magnetic loop, i.e., along the
z-direction (Figure 6.3). The curvature-drift velocity normalized by the speed of
light is given by the ratio of the particle Larmor radius over the radius of curvature
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Figure 6.4: Power losses as function of γ for an initial γ0 = 95 with (left) and
without (right) the non-relativistic term in the radiation reaction force, gNR. The
red dashed line is the analytical Pcurv ∝ γ4 curvature losses law (Eq. 6.10).

of the magnetic �eld line,

βcd =
γmec

2

eB0Rc
=
RL

Rc
. (6.5)

From this expression, we can see that the curvature motion has a meaning as long
as the particle Larmor radius is small in comparison with the radius of curvature,
i.e., βcd < 1. In pulsars, we have RL � Rc so that the curvature-drift motion
is non-relativistic, βcd � 1. Therefore, along the z-direction the non-relativistic
term of the radiation reaction force should dominate. Indeed, the z-component of
the radiation reaction force is

gNR
z =

2

3
r2

e [(E + β ×B)×B + (β · E) E] · ez = −2

3
r2

eβcdB
2
0 , (6.6)

for the non-relativistic term, and

gUR
z = −2

3
r2

eγ
2
[
(E + β ×B)2 − (β · E)2

]
β · ez = −2

3
r2

eγ
2β3

cdB
2
0 , (6.7)

for the relativistic term. The ratio of the two yields

gNR
z

gUR
z

=
1

γ2β2
cd

. (6.8)

The non-relativistic term dominates if

γ <

√
Rc

R0
= 7.6× 104R

1/2
c,8 B

1/2
0,5 , (6.9)

where R0 = mec
2/eB0, Rc,8 = Rc/108cm, and B0,5 = B0/105G. Thus, for typical

conditions at the light cylinder of gamma-ray pulsars, the non-relativistic term is
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dominant even in the ultra-relativistic limit, γ � 1. If this term is not included,
the velocity equilibrium will be incorrect and therefore the ultra-relativistic term
will be in turn incorrect. Without the non-relativistic term, the cooling rate is
inconsistent with the expected curvature radiation losses (Figure 6.4), Pcurv, which
can be derived as

Pcurv = −g · v =
2

3
r2

ecB
2
0β

2
cd

(
1 + γ2β2

)
=

2

3
e2c

γ4

R2
c

. (6.10)

Note that the non-relativistic term can be neglected in the pure synchrotron regime.
To summarize, including the full expression of the radiation reaction force captures
both synchrotron and curvature cooling.

The presence of strong cooling in the magnetosphere sets a new energy scale
in the system: the radiation-reaction-limited particle energy, γrad, which can be
estimated at the light cylinder as (see Chapter 1)

γLC
rad ∼

√
3eR3

LC

2r2
eB?R3

?

≈ 9.5× 104B
−1/2
?,12 R

−3/2
?,6 R

3/2
LC,8. (6.11)

In simulations, the magnetic �eld strength is lower than realistic values by orders
of magnitude due to numerical limitations, and therefore radiative cooling should
be negligible in simulations if nothing is done. In practice, we rescale γrad to much
lower energies by arti�cially magnifying the e�ect of radiative losses by a numerical
factor κrad � 1, so that γLC

rad is of the same order as the plasma magnetization at
the light cylinder, σLC ∼ 100 in simulations, i.e., as in nature.

6.2.3 Synchrotron and curvature spectrum

Within the framework of classical electrodynamics, the radiation power spectrum
emitted by a single charged particle is given by the classical synchrotron formula
(Blumenthal & Gould 1970),

dE

dtdν
=

√
3e3B̃⊥
mec2

(
ν

νc

) ˆ +∞

ν/νc

K5/3(x)dx, (6.12)

whereK5/3 is the modi�ed Bessel function of 5/3 order, ν is the radiation frequency,
B̃⊥ is the e�ective perpendicular magnetic �eld, and

νc =
3eB̃⊥γ

2

4πmec
(6.13)

is the critical frequency. In the usual synchrotron formula where there is no external
electric �eld, we simply have B̃⊥ = B sinα, where α is the angle between the
particle velocity and the magnetic �eld vectors. In an arbitrary situation, the
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e�ective perpendicular magnetic �eld can be derived as follows. The equation of
motion of a single particle is

dγmev

dt
= q (E + β ×B) (6.14)

dγmec
2

dt

β

c
+ γmec

dβ

dt
= q (E + β ×B) . (6.15)

Noticing that
dγmec

2

dt
= qE · v, (6.16)

yields
dβ

dt
=

q

γmec
[E + β ×B− (β · E)β] . (6.17)

In the usual synchrotron regime (no cooling, no electric �eld), we would only have

dβ

dt
=
q (β ×B)

γmec
, (6.18)

and therefore, we interpret

B̃⊥ = E + β ×B− (β · E)β, (6.19)

as the e�ective perpendicular magnetic �eld in the general case. In the pure cur-
vature radiation regime, the radius of curvature is fully determined by the �elds
as (Kelner et al. 2015)

Rc =
γmec

2

eB̃⊥
. (6.20)

This result is particularly well-suited for numerical purposes because the radiation
power, whether this is synchrotron or curvature radiation, is solely determined by
local quantities (the �elds felt at the particle position), therefore there is no need
to reconstruct the curvature of �eld lines from the global �eld topology as this is
usually done.

6.2.4 Reconstruction of light curves

We reconstruct the emission pattern projected on a screen located at r = rmax

for any distant observers looking at an arbitrary viewing angle α, de�ned with
respect to the star rotation axis, and phase ω de�ned with respect to the �xed
(xyz)-coordinate system as shown in �gure 6.5. The unit vector along the line of
sight is

eobs = (sinα cosω, sinα sinω, cosα)x,y,z . (6.21)
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Figure 6.5: Relevant geometrical quantities referred in the text to reconstruct light
curves.

A photon emitted at the point P (r, θ) along the observer's line of sight will arrive
with a time delay, td, due to its �nite time of �ight to reach the screen S. This
time delay is given by

td =
PS · eobs

c
, (6.22)

where
PS · eobs = rmax − r [sinα sin θ cos (ω − φ) + cosα cos θ] . (6.23)

Folded onto the pulsar rotation phase, Φp ∈ [0, 1], gives

Φp =
1

2π
Modulo [ω − Ωtd, 2π] , (6.24)

where the origin of phases, Φp = 0, is de�ned by the plane containing µ and Ω.
We assume that photons go along straight lines and that they are not absorbed

along their path to the observer (optically thin), except if they are eclipsed by the
star. Thus, photons do not need to be evolved by the code which saves on comput-
ing time. Instead, we sample the radiative output of the simulation regularly by
producing a �macrophoton� per macroparticle focused along the direction of the
emitting particle due to the strong relativistic beaming for γ � 1. A macrophoton
represents a large collection of physical photons of di�erent energies that compose
the spectrum given in Eq. (6.12). Knowing the initial positions and directions are
su�cient to reproduce the full emission pattern on the sky, or simply referred to
as �skymap� in the following.
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Figure 6.6: Mean particle Lorentz factor (left) and photon frequency (right) for a
pulsar obliquity χ = 30o. Frequencies are normalized to ν0 = 3eB?/4πmec.

6.3 Inclined magnetospheres and synthetic light

curves

Similarly to the 2D axisymmetric model, the magnetosphere quickly settles into
a quasi-steady, quasi-force-free state after a few spin periods. The magnetosphere
presents all of the expected features: a corotating magnetosphere inside the light
cylinder and an undulating current sheet beyond, geometrically contained within
a spherical wedge between θ = π/2 − χ and θ = π/2 + χ. As for the aligned
rotator, the current sheet is the main site of particle acceleration (see Figure 6.6,
left panel). Here again, the energy gained by the particles is set by the upstream
plasma magnetization at the light cylinder, γ ∼ σLC ≈ 50. As a result of this, the
equatorial current sheet is also the main source of high-energy synchrotron emis-
sion (see Figure 6.6, right panel). The asymmetry between both species remains
in the oblique solution, with precipitating high-energy electrons and high-energy
positrons being pushed outwards (Figure 6.7), but this asymmetry decreases with
increasing obliquity angle and disappears entirely for the orthogonal rotator by
symmetry.

Figure 6.8 (left) is a 3D rendering of the total high-energy radiation �ux, de�ned
above the �ducial synchrotron frequency ν0 = 3eB?/4πmec, shining at all phases
irrespective of the observer's viewing angle. It is clearly visible from this �gure that
the emission originates exclusively from outside the light cylinder, in contrast to
classical models. The nature of the emission is synchrotron radiation produced by
the particles trapped within the sheet and following Speiser orbits. The emission
is spatially extended but the �ux peaks at the base of the sheet, near the light
cylinder where particles are most e�ciently accelerated and where the �elds are
strongest.
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Figure 6.7: Typical high-energy positron (left) and electron (right) trajectories ac-
celerated in the equatorial current sheet via relativistic reconnection. Trajectories
are shown in the corotating frame so that the current sheet appears as static in
this frame. The grey regions show where the high-energy radiation �ux (integrated
over all angles) originates in the simulation (Figure 6.8).

Figure 6.8: Total high-energy radiation �ux for χ = 30o (left panel) as opposed
to the �ux received by an observer looking along the direction shown by the black
arrow (right panel, region in color).
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Figure 6.9: Evolution of the caustic of emission as a function of the pulsar phase
for an observer looking along the equatorial plane (α = 90o), and formation of the
light curve (inset curve) for χ = 30o.

Due to relativistic beaming and retardation e�ects, a distant observer sees
photons emitted from a narrow strip of the sheet, as shown in Figure 6.8 (right
panel). At a given phase, the observer receives all the photons emitted by the
particles moving (nearly radially) towards the observer, which is the accumulation
of photons emitted at di�erent times and locations but arriving in phase at the
observer. This phenomenon is known as the �caustic e�ect�. Figure 6.9 shows
how the caustic pattern changes as the pulsar performs a full spin. It also shows
how much �ux is received by the observer as a function of pulsar phase, i.e., how
the light curve forms. The caustic e�ect leads to the formation of bright pulses
of synchrotron radiation each time the observer's line of sight crosses the current
layer. In other words, the light curve is shaped by the geometry of the equatorial
current sheet. In most cases, it happens twice per period, but it can also happen
only once at small viewing angles. Our simulations provide a robust and natural
explanation to the observed features of Fermi pulsar light cuves.

Figure 6.10 shows the full skymap of emission for χ = 45o. From this �gure, we
can reconstruct a synthetic light curve for any observer (line of constant α) as de-
picted in the right panel. For an observer looking along the equatorial plane, both
pulses of emission are nearly identical and separated by 0.5 in phase. The symme-
try breaks at smaller viewing angles, so that the more general solution is two peaks
of di�erent amplitudes, but their separation is not smaller than 0.4. This is very
di�erent from semi-analytical models which assumes a constant emissivity with
latitude. We predict that the emitted power is concentrated within the equatorial
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Figure 6.10: Left: High-energy synchrotron emission pattern projected on the
sky for an obliquity angle χ = 45o. Right: Resulting synthetic light curves as a
function of the viewing angles. Figure taken from Cerutti (2018).

regions where the Poynting power is the highest, even for the orthogonal rotator
where the current sheet is present at all latitudes. The gamma-ray beam generally
covers a wide solid angle on the sky, of order 1 steradian. This result �ts well with
the scenario of a broad gamma-ray beam misaligned with a thinner radio beam.
Assuming a polar-cap origin for the radio emission yields a radio pulse near phase
ΦP = 0, meaning that it is always shifted & 0.2 in phase from the gamma-ray
pulse. The radiative e�ciency is also very high. With a typical dissipation rate
comprised between 10−20% within 3RLC, the high-energy synchrotron power car-
ries between 2% (orthogonal rotator) and up to 9% (aligned rotator) of the total
spindown power. These numbers are consistent with the observed levels (1− 10%,
Sect. 6.1).

While the comparison with gamma-ray observations has remained rather qual-
itative so far, it is already possible to perform lightcurve �tting thanks to the
library of synthetic skymaps performed for all magnetic obliquities. With the help
of Aloïs de Valon during his Master 1 internship in 2017, we aimed at compar-
ing simulated light curves with the second Fermi-LAT pulsar catalog (Abdo et al.
2013) using a simple χ-squared �tting method. The results of his analysis suggest
that (i) millisecond pulsars are on average more aligned than young pulsars, (ii)
there is a hint of an alignment of the magnetic axis on a 105 − 106 yrs timescale,
which is consistent with what is reported in radio (Young et al. 2010), and with the
theoretical prediction proposed in Philippov et al. (2014), and (iii) the magnetic
axis is nearly randomly distributed for very young pulsars, suggesting that there
may be no preferential orientation at birth.

Although very promising and interesting, we are not fully con�dent that these
results are robust given the large uncertainties in the exact shape of the theoretical
light curves. These uncertainties are largely due to the intrinsic variability within
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Figure 6.11: Left: Synchrotron lightcurve reconstructed after each pulsar rotation
period. Right: Average lightcurve after stacking all individual lightcurves from the
left panel. Figure taken from Cerutti & Philippov (2017).

a lightcurve associated with the tearing and the kink modes developing in the
current layer. These plasma instabilities produces secondary peaks and troughs
in the lightcurve, which may well be physical although most likely exaggerated
in simulations due to the small separation between scales. In constrast, Fermi
lightcurves are folded over months of exposure to collect enough photons, meaning
that the reported lightcurves represent a time average pulse pro�le over a very
large number of rotation period. The way to go to make further progress on this
would be to integrate 3D simulations for several rotation periods, at least 10, and
make a time average to smooth them out before making a direct comparison with
the Fermi catalog. Figure 6.11 illustrates the intra-pulse variability induced by the
formation of plasmoids in the current layer, and it shows how lightcurve stacking
helps at recovering a smooth average pulse pro�le. This has been achieved with
2D PIC simulations of an orthogonal rotator in the equatorial plane (more details
in Sect. 6.5 below).

Our �ndings were con�rmed by two other studies, by Philippov & Spitkovsky
(2018) and Kalapotharakos et al. (2018) using di�erent PIC codes and di�erent
prescriptions for the plasma supply.

6.4 Polarization

Another diagnostic that can readily be simulated from �rst principles is polariza-
tion. This diagnostic is very promising at disentangling between models because
it is very sensitive to the magnetic �eld topology where synchrotron (or curvature)
photons are being produced. Unfortunately, it is not yet possible to measure it
in the gamma-ray band (however, see Giomi et al. 2017), but future missions like
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HARPO aim at �lling this gap (Gros et al. 2018). Polarization is observed in
the radio band for a long time, it is generally consistent with a �S�-shape pattern
which is the signature of an emitting zone located at the polar cap of the star
(Radhakrishnan & Cooke 1969). As far as the incoherent emission is concerned,
like the synchrotron radiation process, it can be detected today in the optical band.
Unfortunately, pulsars are very dim in this band and therefore polarization can be
measured for a few targets only.

The best polarimetric measurement available today is from the Crab pulsar
with phase-resolved data in the optical and UV bands (Smith et al. 1988; Graham-
Smith et al. 1996; Sªowikowska et al. 2009). The data show an abrupt swing of the
polarization angle correlated with each pulse of emission. This result cannot be
reproduced in the framework of classical magnetospheric models (polar cap, outer
gap, slot gap). However, it does make a lot of sense if each pulse of light is produced
when the line of sight crosses the current sheet, because this is a location where
the magnetic �eld naturally changes its polarity and thus, where the polarization
angle should swing by 180o (Pétri & Kirk 2005). In some sense, the data were
speaking for themselves for all this time. Another important element to notice is
that the optical pulse pro�le is nearly identical to the gamma-ray pro�le in the
Crab, suggesting that they have a common origin, and therefore that we may use
the optical data as a proxy for the gamma-ray polarization properties.

In 2016, I hired Jérémy Mortier for his Master 1 summer project to model
the expected phase-resolved polarization signal directly from the 3D PIC simula-
tion data. Synchrotron radiation emitted by a single particle is highly polarized.
The degree of linear polarization reaches about 75%. For an ensemble of particles
with a broad energy and angular distribution, the degree of polarization is usual
much smaller. The circular component is suppressed for ultrarelativistic particles
(Ginzburg & Syrovatskii 1965), it will not be discussed in this section. To com-
pute the degree of linear polarization, Jérémy began by reconstructing the Stokes
parameters, I, Q, and U , by summing over the contribution from all the particles
pointing towards the observer at a given pulsar phase, Nobs,

I =

Nobs∑
i=1

wiF (ξi) (6.25)

Q =

Nobs∑
i=1

wiG (ξi) cos (2PAi) (6.26)

U =

Nobs∑
i=1

wiG (ξi) sin (2PAi) , (6.27)

where F (ξ) = ξ
´ +∞
ξ K5/3(ξ

′)dξ′ and G(ξ) = ξK2/3(ξ) are the usual synchrotron
functions, and w is the particle weight. PA is the polarization angle de�ned be-
tween the rotation axis and the e�ective perpendicular magnetic �eld direction, B̃⊥
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Figure 6.12: Vector diagram measured in the optical (left, Sªowikowska et al.
2009) and vector diagram simulated from the PIC model (right panel, Cerutti
et al. 2016a). Inset curves show the pulse pro�le.

(Eq. 6.19), projected onto the plane of the sky. The degree of linear polarization
from this ensemble of particles is then given by

Π =

√
Q2 + U 2

I
, (6.28)

and the angle of polarization is given by

tan 2PA =
U

Q
. (6.29)

Jérémy generated a synthetic library of vector diagrams, U(Q), for any viewing
angle α and magnetic obliquity angle χ. The vector diagram is an e�ective way to
visualize swings of the polarization angle. We found that wherever there is a pulse
of emission, there is a full loop in the vector diagram, i.e., PA swings by 180o. In
the general case where lightcurves have two pulses, there are two loops in the vector
diagram meaning that the direction of the magnetic �eld rotates by 180o after the
�rst crossing of the layer, followed by another rotation by 180o after the second
crossing of the layer, which brings us back to the initial magnetic polarity. The size
and the orientation of the loops change as a function of the viewing and obliquity
angles. The observed pattern in the Crab pulsar is a small loop nested inside a
bigger loop, both pointing in the (Q < 0, U < 0) quadrant (Figure 6.12, left panel).
We found that there is a unique set of parameters which can explain this pattern,
it corresponds to a viewing angle α ∼ 130o and a magnetic obliquity χ ∼ 60o

(Figure 6.12, right panel). This is a new and independent way to constrain the
Crab pulsar geometrical parameters. This result is also consistent with the usual
estimate based on the X-ray morphology of the nebula (Weisskopf et al. 2012).

We predict a high degree of polarization in the gamma-ray band, similar to
what is reported in optical. Figure 6.13 shows how Π varies with χ, and more
importantly, it shows a signi�cant di�erence between on-pulse and o�-pulse polar-
ization. On-pulse emission is always weaker than the o�-pulse emission by a factor
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Figure 6.13: Predicted linear degree of polarization in the gamma-ray band on-
and o�-pulse.

∼ 2 (on: Π ∼ 10 − 20%, o�: Π ∼ 20 − 40%). Depolarization in the pulse is the
result of the caustic e�ect (Dyks et al. 2004; Cerutti et al. 2016b), i.e., because of
the superposition of photons emitted at di�erent locations where the orientation of
the �eld is di�erent. From 1−2RLC where most of the synchrotron emission comes
from, the orientation of the �eld changes rapidly: from a poloidal- to a toroidal-
dominated magnetic structure. This anticorrelation between �ux and degree of
polarization is also observed in the Crab pulsar.

The study of polarization is a very powerful diagnostic, which combined with
pulse pro�le modeling could really make a di�erence at disentangling between
models and constrains pulsar parameters. The high degree of polarisation predicted
in the gamma-ray band makes pulsars one of the best targets for future polarimetric
missions.

6.5 Dissipation of the striped wind

6.5.1 Context and motivations

In this last section, I report on my latest study which aims at studying the large-
scale dynamics of pulsar winds, with an emphasis on dissipation of the striped wind
structure and particle acceleration. A long standing problem in pulsar wind theory
is the fate of the equatorial current sheet: does it survive or not on its way to the
nebula? So far, this issue has led to contradictory conclusions. With the hope
to solve the �sigma-problem�2, Coroniti (1990) proposed that the layer thickness

2The puzzle is to understand why the plasma in the nebula is weakly magnetized while the pulsar wind itself
is strongly magnetized. Porth et al. (2013) showed that the nebula is most likely magnetized, meaning that there
is in fact no sigma-problem.
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should increase with radius so that the striped wind should disappear once the layer
thickness becomes comparable to the distance between two consecutive stripes,
i.e., the striped wind half wavelength, πRLC. More formally, the above condition
translates into the following condition:

∆ ≡ δ

πRLC
= 1, (6.30)

where δ is the layer thickness, and ∆ is the �lling factor of the current layer. Using
a simple reconnection scenario, Coroniti (1990) predicted that the striped wind
should fully dissipate far upstream the pulsar wind termination radius. Lyubarsky
& Kirk (2001) and later Kirk & Skjæraasen (2003) argued that the release of
magnetic energy should lead to a net work applied on the wind, leading to an
e�ective acceleration of the wind and a decrease of the dissipation rate due to
relativistic time dilation e�ects. They came to the conclusion that pulsar winds
should not have enough time to dissipate, unless the current layer is �lled with an
unusually high plasma supply.

These early scenarios are based on simplistic models of magnetic reconnection,
and to some extent on a simple model of pulsar magnetospheres and winds. I felt
it was the good moment to revisit this issue in light of what we have learnt over the
last 5 years on relativistic reconnection and pulsar magnetospheres. My objective
was to reconcile dissipation at small scales with a realistic model of reconnection
and pulsar winds within the same global PIC model. PIC simulations described
above focused on the closest parts to the star: the magnetosphere and the base of
the wind up to a few light cylinder radii. Thus, the radial extent is too limited
to draw solid conclusions on the fate of the wind at large scales. To this end,
I obtained a 27 million CPU-hours time allocation on the Irene supercomputer
at TGCC in CEA via PRACE in 2018 to perform 3D PIC simulations from the
stellar surface up to 50 light cylinders away. I summarize below what represented
a strenuous work, perhaps the most challenging project I have undertaken so far,
which has just come to an end in the summer 2020. This work is also the logical
followup of a similar attempt limited to 2D simulations in the equatorial plane of
an orthogonal rotator (Cerutti & Philippov 2017).

6.5.2 Results

For this study, I chose a split-monopole con�guration for the �elds (Michel 1973b;
Bogovalov 1999) because it is a good model of the striped wind structure. The
region inside the light cylinder where the �eld should signi�cantly depart from the
monopolar structure is of little interest for this study, and for this reason the light
cylinder is brought as close as possible to the stellar surface, RLC = 3R?. Three
inclinations are considered: χ = 30o, 60o and 85o. A dense neutral pair plasma is
injected from the stellar surface at all times so that the magnetosphere is close to
the force-free regime. Figure 6.14 shows density isosurfaces of the �nal state of the
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Figure 6.14: Density isosurfaces of a pulsar wind with χ = 60o. Left: Global view
of the simulation box, rmax = 50RLC. A quarter of the upper hemisphere has
been removed to highlight the internal structure of the wind (Cerutti et al. 2020).
Right: Zoomed-in view on the inner regions, only the lower hemisphere is shown
for clarity.

simulation, reached after about 10 spin periods. The overall structure is consistent
with the split-monopole prediction (Bogovalov 1999): an undulating current layer
geometrically con�ned within π/2 − χ < θ < π/2 + χ. At higher latitudes, the
wind is smooth and consistent with a single monopole solution (Michel 1973b).
The current layer is highly unstable to kink modes, and more importantly to the
relativistic tearing mode. The layer breaks up into a dynamical chain of magnetic
�ux ropes forming near the light cylinder and merging to form bigger structures,
well visible on the zoomed-in view in Figure 6.14 (right panel). These structures
are reminiscent of 3D studies of plane-parallel reconnection (Chapter 3). This
dynamical behavior proceeds up to ∼ 10RLC beyond which the expansion of the
wind freezes substructures in the layer.

Figure 6.15 shows that dissipation of the Poynting �ux proceeds at all radii,
without any sign of saturation, and reaches about 50% at 50RLC. This power is
channeled to particle kinetic energy �ux which continuously increases with radius.
The spectrum of particles leaving the box can be schematically decomposed into
two components:

(i) A narrow, low-energy component in the polar regions, outside the stripes,
whose energy-scale is set by the wind bulk Lorentz factor, Γ. The increase in the
particle energy is associated with the bulk acceleration of the wind via ideal MHD
processes.

(ii) A broad hard power-law tail in the striped wind, with a low-energy break
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Figure 6.15: Left: Radial evolution of the Poynting and particle kinetic energy �ux
for χ = 60o. The green dashed curve is the analytical toy model with βrec ≈ 0.12.
Right: Outgoing particle spectrum at r = 50RLC as a function of latitude (top)
and for all three magnetic inclination (bottom). Figures adapted from Cerutti
et al. (2020).

set by the bulk Lorentz factor of the wind Γ, and a high-energy break set by the
magnetization parameter at the light cylinder σLC. The hard power-law index is
consistent with e�cient particle acceleration via relativistic reconnection in the
high-σ regime, i.e., dN/dγ ∝ γ−1. Thus, the spectrum is the result of non-thermal
particle acceleration in the wind co-moving frame.

In the inner regions, the wind Lorentz factor grows nearly linearly with radius
as expected (Eq. 4.26). Past the fast magnetosonic point, located in the simula-
tions at r ∼ 4RLC, it saturates to about γ∞ ≈ 10, while dissipation continues to
operate further away. This is evidence that dissipation does not lead to a signi�-
cant acceleration of the wind. Instead, the energy is dissipated in the form of hot
particles con�ned within magnetic islands. This is a very di�erent picture than
the one drawn by Lyubarsky & Kirk (2001) and Kirk & Skjæraasen (2003).

6.5.3 A toy model for dissipation

To extrapolate the results to realistic scales, I proposed a simple 1D spherical
model inspired from simulations. In the steady state, dissipation of the Poynting
�ux is governed by Joule's term. In its integral form, the Poynting �ux theorem
yields

L(r)− L0 = −
ˆ r

RLC

ˆ π

0

ˆ 2π

0

(J · E) r2 sin θdrdθdφ. (6.31)
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To a very good accuracy, simulations show that J · E ≈ JθEθ. The current being
localized within X-points, we can interpret the electric �eld aligned with the cur-
rent as the reconnection electric �eld, usually parametrized as (Lyubarskii 1996;
Uzdensky & Spitkovsky 2014)

Erec = βrecB
up
φ , (6.32)

where βrec is the dimensionless reconnection rate, andBup
φ is the local magnetic �eld

strength above the current layer. To a very good accuracy, simulations indicate
that the latter is very close to the ideal Michel �eld solution, meaning that the
layer is fed with fresh unreconnected �eld, so that

Bup
φ ≈

R

RLC
B?

(r?
r

)2

. (6.33)

The relation between the current and the �eld is given by Ampère's law, as (Cerutti
& Philippov 2017)

4π

c
Jθδ = 2Bup

φ . (6.34)

Putting everything together, and assuming for the φ-integral that Joule's term is
non-zero only in the sheet of angular size ∆φ ∼ δ/r, we obtain the remarkably
simple result

L(r)

L0
= 1− βrec ln

(
r

RLC

)
, (6.35)

where a constant numerical factor of order unity has been integrated into βrec to
simplify the expression. This model is a good �t to the radial evolution of the
Poynting �ux for a reconnection rate βrec ≈ 0.12, which is consistent with plane-
parallel studies of reconnection.

6.5.4 Implications

PIC simulations of the striped wind suggest that reconnection proceeds at a similar
rate at all radii. It is independant of the layer thickness and solely governed by
the reconnection rate as long as the magnetosphere is in the force-free regime,
i.e., if there are no vacuum gaps which is appropriate for describing pair producing
pulsars, the regime of interest. In the ultrarelativistic regime (σ � 1), reconnection
studies show that this rate weakly depends on the system size, layer thickness or
plasma magnetization (Werner et al. 2018), as reported here. This result leads to
the rather extraordinary conclusion that all pair producing pulsars should dissipate
at approximatively the same rate. Using Eq. (6.35), there is a universal dissipation
radius given by

Rdiss = RLC exp
(
β−1

rec

)
∼ 102 − 104RLC, (6.36)

for βrec = 0.1− 0.2, meaning that the striped wind should be fully dissipated well
before entering the nebula in isolated systems where Rnebula/RLC ∼ 109 � Rdiss.
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This work also suggests that the wind bulk Lorentz factor is much less relativistic
than previously thought. In the classical models (Rees & Gunn 1974; Wilson &
Rees 1978; Kennel & Coroniti 1984), the wind is perfectly cold, monoenergetic
with Γ ∼ 104 − 106. We �nd instead that the wind is composed of hot pairs with
a broad energy spectrum con�ned within magnetic islands, themselves moving
relativistically along with the wind bulk Lorentz factor approximately given by,

Γ∞ ∼ µ
1/3
M . 100, (6.37)

where µM ≡ B2/4πnmec
2 is Michel magnetization parameter. Last, we �nd that

dissipation leads to non-thermal particle acceleration in the striped wind. The
predicted particle distribution is a broad power law limited by γmin ∼ Γ∞ ∼ µ

1/3
M

at low energies, and limited by µM at high energies, with a spectral index close
to dN/dγ ∝ γ−1. Scaled to the Crab pulsar parameters with µM ∼ 105 gives
50 . γ . 105. Injected at the shock front, these energetic pairs could well be at
the origin of the mysterious radio emission in the Crab Nebula (Meyer et al. 2010).
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This last part focuses on my recent e�orts to develop a fully kinetic model
of black hole magnetospheres, motivated by a particularly exciting observational
context that I describe in the �rst chapter (Chapter 7). To this end, general
relativistic e�ects must be implemented in Zeltron . This work began in the
Spring 2017 with Jérémy Mortier Master 2 thesis project aimed at developing the
Maxwell solver in curved spacetime. Sasha Philippov and Kyle Parfrey then joined
this e�ort in the Fall 2017 and thanks to their strong commitment, a �rst version
of the code in 2D was completed by the end of 2017. In parallel to this work,
Amir Levinson, professor at the University of Tel Aviv and expert in the �eld of
black hole electrodynamics, joined IPAG for 5 months as a University Grenoble
Alpes' visiting professor to work with me on a 1D PIC model combined with a
Monte-Carlo model for the radiative transfer, based on a 1D spherical version of
Zeltron . Thanks to these new implementations that I describe in Chapter 8,
Zeltron became the �rst general relativistic radiative PIC code (GRRPIC) in the
world, opening up new perspectives.

In the last chapter, I will describe the �rst applications of the code focused
on the case studies of a Kerr black hole immersed in a uniform or a monopolar
magnetic �eld con�guration. These studies lead to two publications in the presti-
gious Physical Review Letters journal (Parfrey et al. 2019; Crinquand et al. 2020),
the former even made the cover of the journal and led to a signi�cant coverage by
scienti�c magazines3. Today, the study of black-hole magnetospheres has become
my main research project, and it will continue to be at the center of my activity
for the next 5 years at least, thanks to the ERC-funded project SPAWN, which
will be described in more details in Part IV.

3APS Viewpoint, Nature, La Recherche
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Context and the need for a
kinetic description

This chapter is adapted from the narrative part of the SPAWN ERC proposal.

7.1 Context and motivations

Black holes are often regarded as the simplest astrophysical objects because they
are fully characterized by their mass, their spin and electric charge. Whether they
are supermassive or of stellar-mass, black holes are involved in some of the most
energetic astrophysical phenomena in the Universe such as active galactic nuclei
(AGN), microquasars and gamma-ray bursts. Their activity often results in the
presence of a disk gas and dust as well as a relativistic plasma jet. This phenomenon
of accretion-ejection is accompanied by an e�cient acceleration of particles which
translates into a powerful non-thermal radiation at all wavelengths, predominantly
in the radio, X-ray and gamma-ray bands. How and where are these particles
accelerated near black holes is still a mystery.

Today, this issue is strongly motivated by the release in April 2019 of the �rst
image of the shadow of the supermassive black hole M87? by the Event Horizon
Telescope (EHT, Event Horizon Telescope Collaboration 2019a). This image rep-
resents the imprint on the sky of the black hole event horizon itself (Figure 7.1,
left panel). The surrounding radiation is most likely of synchrotron origin emitted
by relativistic electrons immersed in a strong magnetic �eld carried by the plasma
orbiting the black hole, bringing direct evidence for e�cient particle acceleration
near black holes. The relativistic jet of M87 itself has been imaged for years with
increasing angular resolution down to a few Schwarzschild radii (Blandford et al.
2019) (Figure 7.1, right panel). Hence, there is a tantalizing connection between
horizon-scale processes and the formation of relativistic jets, although it is still
unclear how the image of the jet connects with the image of the shadow. The
supermassive black hole SgrA? at the Galactic Center has not been imaged yet
by the EHT collaboration (the source is too variable). Nonetheless, the Gravity
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Figure 7.1: Left: Shadow of the M87? black hole (Event Horizon Telescope Col-
laboration 2019a). Right: M87 relativistic jet width as a function of the distance
to the black hole, �gure taken from Blandford et al. (2019).

Figure 7.2: Left: Gravity observation of a �hotspot� circling around the Galactic
supermassive black hole SgrA?, and the best-�t orbital solution of radius r = 7
gravitational radii (blue circle). Right: Orbital modulation of polarization. Plots
taken from Gravity Collaboration (2018).
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Figure 7.3: Sub-horizon scale gamma-ray variability above 200 GeV reported dur-
ing an exceptional falre detected by HESS from the blazar PKS 2155− 304 (Aha-
ronian et al. 2007).

collaboration observing in the IR band with the VLTI has recently reported the
detection of a hotspot lying at the inner-most stable orbit during IR �ares, also
of synchrotron origin (Gravity Collaboration 2018) (Figure 7.2, left panel). In ad-
dition, they argue that polarization measurements strongly support that the hole
is immersed in a large-scale poloidal magnetic �eld (Figure 7.2, right panel). This
discovery suggests that a global episode of magnetic reconnection is triggered near
the black hole, very much like a magnetic storm within the Earth magnetosphere.

On the other extreme of the electromagnetic spectrum, ultra-rapid gamma-ray
�ares detected in several AGN indicate e�cient particle acceleration on timescales
sometimes even shorter than the horizon-light-crossing time (e.g., Aharonian et al.
2007; Albert et al. 2007; Aleksi¢ et al. 2014, Figure 7.3). To come back to the
case of M87, Gamma-ray observations combined with VLBA radio imaging show
that the short gamma-ray �ares are correlated with a signi�cant radio brightening
of the core (Acciari et al. 2009), bringing additional evidence that there is a tight
connection between particle acceleration and jet formation in the close vicinity of
black holes. This broad array of horizon-scale observations allows us, for the �rst
time, to probe physics in curved spacetime. To this end, it is of prime importance
to have an accurate model of the plasma in the closest environment of black holes,
simply referred to as the �magnetosphere� in the following, to decipher these ob-
servations. This region is external to the hole and is characterized by complex
general relativistic electrodynamics where electron-positron pair creation, particle
acceleration and non-thermal radiation take place (Figure 7.4). In contrast to their
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Figure 7.4: This diagram sketches the magnetosphere of a rotating black hole
embedded in a hot under-dense plasma and threaded by external magnetic �eld
lines. Field lines passing through the �ergosphere� (magenta regions) are forced
into rotation and an electrostatic gap forms at the hole polar caps (yellow regions).
Photon-photon annihilation injects electron-positron pairs in the gap regions and
leads to the discharge of the polar cap associated with particle acceleration and
the emission of high-energy radiation. This process results in the formation of an
out�ow at the base of the jet.

closest analog that are pulsar magnetospheres, black holes cannot hold strong mag-
netic �eld nor inject charges because they do not possess a solid material surface.
Thus, a black-hole magnetosphere can exist only in the presence of an external
source of plasma and magnetic �eld. It is commonly accepted that the source is
the accretion �ow whose properties depend on the environment.

Theoretically, particle acceleration and jet formation can be both understood
in the context of a rapidly rotating black hole (or Kerr black hole) embedded in
a low-density plasma and with a large-scale magnetic �eld. The rotation of the
black hole drags spacetime within a few gravitational radii (the Lense-Thirring
e�ect). This general relativistic e�ect forces the magnetic �eld lines to rotate
and hence induces a strong electric �eld at the black-hole poles. Particles can
then be electrostatically accelerated in a similar fashion as in a pulsar polar-cap
gap (Chapter 4, Figure 7.4). The energy reservoir is the black hole spin that is
electromagnetically extracted in the form of a Poynting-�ux-dominated jet via the
Blandford-Znajek mechanism (Blandford & Znajek 1977). To test this scenario,
an accurate description of black hole electrodynamics is required.
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7.2 State-of-the-art and the need to go beyond the

magnetohydrodynamic approach

Solving for the structure of the magnetosphere is a challenging problem. It can be
solved analytically only for a few cases and under ideal conditions, as for instance
for a monopolar, i.e., purely radial magnetic �eld as in the Blandford-Znajek so-
lution. For more realistic con�gurations, equations must be solved numerically.
Current state-of-the-art simulations have been performed within the framework of
general relativistic magnetohydrodynamics (GRMHD). These simulations can cap-
ture the overall structure of the magnetosphere, currents and �elds for a given ge-
ometry (Koide et al. 2002; Komissarov 2005; McKinney 2006a), but no constraints
about particle acceleration and non-thermal radiation can be inferred. This is an
intrinsic limitation of the method because the dynamics of individual particles is
not taken into account. Particle momenta are averaged out and therefore any
information about the particle energy spectrum is lost.

At best, recent radiative GRMHD simulations with ray-tracing can be done and
generate synthetic maps as it was done extensively in support of the EHT image of
M87? (Event Horizon Telescope Collaboration 2019b; Porth et al. 2019), but this
is applicable to the thermal radiation only. Even then, however, the electron tem-
perature as well as the energy partition between electrons (which radiate) and ions
(which carry the momentum) must be prescribed. These fundamental parameters
are still poorly constrained and motivate strong theoretical and modeling e�orts
(Kawazura et al. 2019). It depends essentially on how collisionless magnetized
plasmas dissipate their energy on the microscopic scales which cannot be captured
by an MHD model. The current situation is even more critical if one realizes that
the plasma loading within the innermost parts of the jet produced in GRMHD
simulations is solely controlled by the minimum density �oor required for numer-
ical stability reasons, and not by physics. Instead, the jet may be loaded with
relativistic electron-positron pairs created by the annihilation of photons within
low-density, nearly vacuum regions (gaps) within the magnetosphere (Figure 7.4)
which is by no means describable by a �uid approach.

Therefore, the MHD approach is not able to generate reliable observables which
in turn does not allow one to connect the model to observations. There is an
urgent need to revisit black hole magnetospheres in light of new and more adequate
numerical methods to uncover where and how particle acceleration and radiation
take place around black holes. GRPIC simulations come as a natural response to
this call for help, which motivated me to dive into the development of Zeltron in
curved spacetime.
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Numerical developments in
Zeltron: 3+1 implementation

This chapter focuses on the numerical developments done in Zeltron to capture
electrodynamics, particle motion and radiative transfer in curved space time for an
arbitrary metric. The more speci�c case of the Kerr metric will be discussed in the
next chapter when dealing with applications to black hole magnetospheres. In this
chapter and for the rest of this memoir, we will use the (−,+,+,+) signature for
the metric, use Greek indices for the full 4D tensors components and Latin indices
for the spatial components. Except in the radiative transfer section (Sect. 8.4), we
will further assume that c = G = M = 1, where M is the mass of the black hole,
and G is the gravitational constant. Last, we will consider stationnary metrics
only.

8.1 The 3+1 description of general relativity

Solving equations in the context of general relativity implies that one must ma-
nipulate 4-dimensional objects. The spirit of the �3+1 formalism� is to slice the
full spacetime by purely space-like 3-dimensional hypersurfaces, or referred to as
the �absolute space�, parametrized by a universal �absolute� time (Thorne et al.
1986; Gourgoulhon 2007). This decomposition serves essentially two purposes for
us here: (i) it allows to rewrite all equations into a familiar �at-spacetime way and
therefore gives an easier physical intuition, and (ii) it is well-suited for numerical
methods where there is a single time parameter and time step everywhere in the
simulation and a rigid numerical grid. Thus, this approach allows one to preserve
the overall architecture of a code initially designed in �at spacetime like Zeltron
. This method is commonly used by the numerical relativity community to solve
Einstein and GRMHD equations.

If xi are the spatial coordinate in the �xed 3D-space characterized by the spatial
metric γij, and t is the time coordinate, it is convenient to write the spacetime
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interval in the ADM form (Arnowitt et al. 1962),

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
(8.1)

ds2 =
(
β2 − α2

)
dt2 + 2βidx

idt+ γijdx
idxj, (8.2)

so that the full 4D-metric, gµν, can be written as

gµν =

(
β2 − α2 βj
βi γij

)
. (8.3)

Thus, there is a direct correspondance between the 3-metric and the spatial part of
the 4-metric, γij = gij. The inverse metric, gµν, is obtained with the usual identity
relation gµνgνσ = δσµ, such that

gµν =

(
− 1
α2

βj

α2

βi

α2 γij − βiβj

α2

)
, (8.4)

and therefore γij 6= gij. The determinant of the spatial metric is γ ≡ det(γij) (we
will use a di�erent notation for the Lorentz factor in the following).

The parameter α is known as the �lapse function�. Physically, this quantity
relates the coordinate time t to the proper time τ measured locally by ��ducial
observers� (FIDO) at rest with respect to the absolute 3D-space

dτ = αdt. (8.5)

It can also be understood as the gravitational redshift experienced by the FIDO.
The 4-velocity vector of these FIDO is given by

nµ = (−α, 0, 0, 0) . (8.6)

The �shift vector�, βi, represents the velocity of the spatial grid, meaning that in
the general case where βi 6= 0 the coordinate grid is moving with respect to the
FIDO. This can be seen by looking at the coordinate velocity component of the
FIDO,

nµ = gµνnν =
1

α

(
1,−βi

)
. (8.7)

All of the expressions given in this section are general, we will see in the next
chapter the speci�c case of the Kerr metric expressed in a spherical Kerr-Schild
coordinate system.
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8.2 Maxwell solver in curved spacetime

8.2.1 Maxwell's equation in 3+1

Within the �3+1� framework and following Komissarov (2004), Maxwell's equations
can be rewritten into a familiar �at spacetime form as

∇ ·D = 4πρ, (8.8)
1
√
γ

∂

∂t
(
√
γD) = ∇×H− 4πJ, (8.9)

∇ ·B = 0, (8.10)
1
√
γ

∂

∂t
(
√
γB) = −∇× E. (8.11)

For a stationary metric ∂
√
γ/∂t = 0, we end up with even simpler expressions

∇ ·D = 4πρ (8.12)
∂D

∂t
= ∇×H− 4πJ (8.13)

∇ ·B = 0 (8.14)
∂B

∂t
= −∇× E. (8.15)

One immediately sees that instead of two �elds in �at spacetime, we now have four
�elds E, D, B and H. D and B are the electric and magnetic �elds measured by
the FIDO, while the E and H are auxiliary �elds related to the former �elds via

E = αD + β ×B, (8.16)
H = αB− β ×D. (8.17)

E and H can be interpreted as the �elds seen from the grid, where α and β give
the transformation of the FIDO measured �elds due to the motion of the grid. In
the �at spacetime limit where α = 1, βi = 0, one can easily check that E = D
and H = B as it should. Maxwell's equations written in the 3+1 form recall those
written for an electromagnetic active medium as opposed to their expression in
vacuum, but here this role is played by the curvature of spacetime.

The current density appearing in Eq. (8.13) is coordinate based. It is related
to current measured by the FIDO, j, as follows

J = αj− ρβ, (8.18)

where the second term is due to the motion of the grid with respect to the FIDO,
and ρ is the FIDO-measured charge density.
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8.2.2 Numerical implementation

The form of the time-dependent Maxwell equations being formally identical to
�at spacetime, the main architecture of the Maxwell solver, which involves the
second-order accurate Yee algorithm, can be preserved (see Chapter 2). The �eld
components are staggered in space and in time: E, D and J are de�ned along the
cell edges at full time steps, while B, H are de�ned at the cell faces at half time
steps. The code manipulates all 6 components for each �eld (3 covariant and 3
contravariant), i.e., 24 components.

The curl of a vector A written in components is de�ned as

(∇×A)i =
1
√
γ
εijk∂jAk, (8.19)

where εijk is the Levi-Civita symbol. Eqs. (8.13), (8.15) therefore become

∂tD
i =

1
√
γ
εijk∂jHk − 4πJ i, (8.20)

∂tB
i = − 1

√
γ
εijk∂jEk, (8.21)

and Eqs. (8.16)-(8.17) become

Ei = αDi +
√
γεijkβ

jBk, (8.22)

Hi = αBi −
√
γεijkβ

jDk. (8.23)

This apparent simplicity hides important numerical subtleties, which are inherent
to the Yee lattice and the coupling between components living in di�erent places
via the �elds E and H.

To see this, and for illustrative purposes only, we shall consider only the radial
component of Eq. (8.21) and assume axisymmetry for simplicity (∂φ = 0). On the
Yee lattice, this equation can be written in a �nite-di�erence and time-centered
way as

Brn+1/2
ir,iθ+1/2 −B

rn−1/2
ir,iθ+1/2

∆t
= − 1
√
γ∆θ

(
Eφ

n
ir,iθ+1 − Eφ

n
ir,iθ

)
, (8.24)

where (ir, iθ) are the cell indices, and n is the coordinate time index. To solve this
equation, we need

Eφir,iθ = αDφir,iθ +
√
γ
(
βrBθ

ir,iθ − βθBr
ir,iθ

)
. (8.25)

In this equation, we are calling Bθ and Br which are not located in (ir, iθ). To
preserve second-order accuracy, we need to make sure all quantities are centered
in space and in time. In this speci�c example, we chose for the following solution
(shown for Bθ only for conciseness)

Bθ
ir,iθ =

(√
γBθ

)
ir+1/2,iθ

+
(√

γBθ
)
ir−1/2,iθ√

γ
ir+1/2,iθ

+
√
γ
ir−1/2,iθ

. (8.26)
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The
√
γ weighting is here in order to do a fair weighting between the two con-

tributions. Another complication is that the Ei components involve the covariant
components Di that must be computed from Di, which is the component evolved
by the code, using

Di = γijD
j. (8.27)

This apparently harmless operation leads in fact to the same issue as the one raised
above: it calls for other components de�ned in di�erent places on the Yee lattice.
Thus, here again all components must be carefully centered in space in a similar
way as Bθ above, otherwise the second-order accuracy is lost.

In summary, the Yee solver can be preserved in the full general relativistic
extension, but the mixing between di�erent �eld components signi�cantly com-
plicates the original algorithm. Spatial and time centering should be done with
extreme care.

8.2.3 Poisson solver

Like in the �at spacetime version of Zeltron , we chose a charge and current
deposition technique that does not satisfy charge conservation to machine roundo�
precision (volume weighting technique, see Chapter 2), and therefore a divergence
cleaning must be applied. We did not change the numerical method either, Poisson
equation is solved using the iterative 5-point stencil Gauss-Seidel method. In 3+1,
Poisson equation is written as

∇2δφ = − (4πρ−∇ ·D) , (8.28)

or in components as

1
√
γ
∂i
(√

γγij∂jδφ
)

= −
(

4πρ− 1
√
γ
∂i
(√

γDi
))

. (8.29)

8.3 Particle pusher

8.3.1 Equation of motion in 3+1

In the 3+1 formalism, the equations of motion in the presence of electromagnetic
�elds are given by (Parfrey et al. 2019)

dxi

dt
= vi = α

γijuj
Γ
− βi, (8.30)

dui
dt

= −Γ∂iα+ uj∂iβ
j − α

2Γ
∂i
(
γjk
)
ujuk + α

q

m

(
Di +

√
γεijk

γjlul
Γ

Bk

)
, (8.31)

where vi are the particle coordinate 3-velocity components, ui the particle 4-
velocity components, and Γ =

√
1 + γijuiuj is the particle Lorentz factor as mea-

sured by the FIDO. The last term in Eq. (8.31) represents the Lorentz force, the
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other terms are metric-induced forces. The term ∂iα can be interpreted as the
classical gravitational acceleration felt by the FIDO.

8.3.2 Tetrads and Boris push

Here again, our philosophy was to preserve as much as possible the architecture
of the �at spacetime version, and the advantageous features of the Boris pusher,
as far as the equation of motion is concerned. However, because of the non-linear
term ∝ ∂i

(
γjk
)
ujuk in Eq. (8.31), the Boris push cannot be directly applied.

The solver that we designed split the equation of motion into two components
(Strang splitting): the �rst one includes all the metric-induced terms, and the
second includes the Lorentz force. The �rst step is to perform a Lorentz boost
into a locally �at spacetime of the FIDO where the metric-induced terms vanish,
so that the usual Boris push can be applied. To this end, we make use of the
tetrad formalism to transform all physical quantities in and out of this frame
(Takahashi 2007). As for the metric-induced terms, we use an iterative implicit
midpoint algorithm. This part of the code has been mostly Kyle Parfrey's and
Sasha Philippov's work.

8.4 Monte-Carlo implementation of radiative trans-

fer

To model radiative transfer in a self-consistent way, photons must be included in
the code as a separate population of discrete particles, like charged particles. Inter-
actions between photons and charged particles are modeled using a Monte-Carlo
approach, i.e., based on probabilities of interaction. This probabilistic approach
is perfectly-suited to PIC simulations. Our method relies on the use of cumula-
tive distribution functions to generate all the desired distributions. To speed up
the computation of radiative transfer, we searched for approximate but accurate
analytical expressions that we give below. I then compare the results to known
solutions.

In the following, we will consider inverse Compton scattering and γ-γ pair
production, which are thought to be the main processes of interest for producing
high-energy gamma-ray emission and for generating pairs in black hole magneto-
spheres. Calculations are derived in �at spacetime, so that all physical quantities
should be understood as measured by the FIDO in the context of general relativity.
The speed of light c reappears in this section as this is more familiar in the �eld of
radiative transfer, and the particle Lorentz factor will be written again as γ also
to match the usual notations in the �eld. The energy of gamma-ray photons is ε1
and the energy of the target soft radiation is ε0, both in units of mec

2.
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8.4.1 Inverse Compton

In this section, we consider a single electron upscattering a soft photon arriving
with a pitch angle to the particle's direction of motion θ0, and angle φ0 in the
perpendicular plane. The photon is scattered with the angles θ1 and φ1. The scat-
tering rate per photon energy per solid angle in the electron's rest frame (marked
with primes) is

dN

dt′dε′1dΩ′1
=

ˆ
ε′

ˆ
Ω′
δ (ε′ − ε′0) δ (Ω′ − Ω′0) c

dσ

dε′1dΩ′1
dε′dΩ′, (8.32)

where

dσ

dε′1dΩ′1
=
r2

e

2

(
ε′1
ε′0

)2(
ε′1
ε′0

+
ε′0
ε′1
− sin2 Θ′

)
δ

(
ε′1 −

ε′0
1 + ε′0 (1− cos Θ′)

)
. (8.33)

The total scattered photon energy distribution is given by

dN

dt′dε′1
∝
ˆ

Ω′
1

dσ

dε′1dΩ′1
dΩ′1. (8.34)

Rearranging the delta function as

δ

(
ε′1 −

ε′0
1 + ε′0 (1− cos Θ′)

)
=

1

ε′21
δ

(
cos Θ′ − 1− 1

ε′0
+

1

ε′1

)
, (8.35)

gives
dN

dt′dε′1
∝ 1

ε′20

[
ε′1
ε′0

+
ε′0
ε′1

+

(
1

ε′0
− 1

ε′1

)2

+ 2

(
1

ε′0
− 1

ε′1

)]
. (8.36)

The scattered photon energy's range is limited by the natural bounds of the cosine

− 1 ≤ cos Θ′ ≤ 1, (8.37)

so that
1

1 + 2ε′0
≤
(
ε′1
ε′0

)
≤ 1. (8.38)

If one de�nes x = ε′1/ε
′
0, we have

dN

dt′dε′1
∝ f (x) = x+

1

x
+

1

ε′0
2

(
1− 2

x
+

1

x2

)
+

2

ε′0

(
1− 1

x

)
. (8.39)

Please note that constant multiplicative factors are dropped because we will nor-
malize the �nal cumulative distribution to 1. A primitive of f is

F (x) = − 1

xε′0
2 + x

(
1

ε′0
2 +

2

ε′0

)
+
x2

2
+

(
1− 2

ε′0
− 2

ε′0
2

)
lnx. (8.40)
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Figure 8.1: Exact (solid lines) and approximate (dashed line, Eq. 8.41) cumulative
distribution functions, P(x), for ε′0 = 0.1, 1, 10.

This formula is exact and valid in all regimes (i.e., Thomson and Klein-Nishina).
However, the form of this equation is not practical because it is not analytically
invertible. In the limit where x � 1, f ≈ 1/x. We will see later that this
approximation is rather good even if x ∼ 1 (in any case x is always less than 1 due
to the kinematics). In this case, a primitive is simply F (x) = ln x, and therefore
the normalized cumulative distribution is

P (x) =

´ ε′1/ε′0
1/1+2ε′0

f (x) dx´ 1

1/1+2ε′0
f (x) dx

= 1 +
lnx

ln (1 + 2ε′0)
. (8.41)

This function is shown in Figure 8.1 along with the exact formula for comparison.
To invert this distribution, we choose a random number uniformly distributed
between 0 and 1,R, that will probe the values of P (see also Chapter 3). Therefore,
the scattered photon energy in the electron's rest frame is

ε′1 = ε′0 exp [− (1−R) ln (1 + 2ε′0)] . (8.42)

In Figure 8.2 (left panel) shows the reconstructed scattering energy distribution
obtained with a sample of 100,000 target photons for various values of ε′0.

The second step is to compute the scattering angle Θ′. It is related to the
photon angles via

cos Θ′ = µ′1µ
′
0 +

√
1− µ′1

2
√

1− µ′0
2 cos (φ1 − φ0) , (8.43)

where µ′0,1 = cos θ′0,1. Rigorously speaking, one should �rst pick the angle φ1 as a
random number uniformly distributed between 0 and 2π and then deduce µ′1 from
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Figure 8.2: Scattered photon energy (left) and angular (right) distributions in the
electron's frame reconstructed from a sample of 100,000 target photons for γ = 100
and ε′0 = 0.1, 1, 10.

the scattered photon angular distribution knowing its energy. In practice this is not
necessary because the electrons we are considering will always be ultrarelativistic,
if not, inverse Compton scattering would thus be irrelevant. Hence, if γ � 1,
the incoming radiation is beamed within a cone of aperture angle 1/γ � 1 in the
electron's frame (this is the usual �head-on collision approximation�), and therefore
a very good approximation is to set µ′0 ≈ −1 so that

cos Θ′ ≈ −µ′1. (8.44)

Since cos Θ′ is given by Eq. (8.35), we have

µ′1 =
1

ε′1
− 1

ε′0
− 1 . (8.45)

Note that the angle φ1 is not needed anymore. Figure 8.2 (right panel) shows the
recovered angular distribution obtained with a sample of 100,000 target photons
for various values of ε′0.

Once we know ε′1 and µ
′
1, we can then reconstruct the scattered photon energy

in the FIDO frame using the usual relativistic Doppler shift transformation,

ε1 = γ (1 + βµ′1) ε
′
1 . (8.46)

Conservation of energy gives us the energy of the electron after the scattering

γ ← γ + ε0 − ε1 . (8.47)

In the end, only four simple analytical expressions are needed in the code, those
that are encapsulated in boxes.
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Figure 8.3: Left: Scattered photon spectra in the lab's frame reconstructed from a
sample of 400,000 target photons isotropically distributed for γ = 100 and γε0 =
0.01, 1, 10 (solid lines). Jones kernel is overplotted for comparison (dotted lines).
Right: Spectral energy distribution of the scattered photons on 100,000 electrons
distributed with a power-law of index p = 2, with γmin = 102 and γmax = 104,
and 100 target photons per electron, with an energy ε0 = 10−6 (blue solid line).
Comparison with the numerically integrated solution of the Thomson kernel (red
dashed line) and the asymptotic power-law solution (red dotted line).

Test 1: Isotropic target photons

Jones (1968) derived an analytical expression for the scattered photon spectrum
from a single electron in an isotropic and monoenergetic distribution of soft pho-
tons. His solution is both valid in the Thomson and in the Klein-Nishina regimes,
and it is therefore ideal to compare with our solution. Jones' kernel is proportional
to the following function

fJones (q) = 2q ln q + (1 + 2q) (1− q) +
1

2

(Γε0q)
2

1 + Γε0q
(1− q) , (8.48)

where
Γε0 = 4ε0γ, (8.49)

q =
ε1

Γε0 (γ − ε1)
. (8.50)

Kinematics gives the following energy range

ε0 ≤ ε1 ≤ γ
Γε0

1 + Γε0
. (8.51)

De�ning X = ε1/4γ
2ε0, it gives

1

4γ2
≤ X ≤ 1

1 + 4γε0
. (8.52)
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For direct comparison, we generate a sample of 400, 000 soft photons isotropically
distributed. To do so, we �rst generate a random number uniformly distributed
between −1 and 1 to pick a value for µ0 and we compute the target photon energy
in the electron's frame

ε′0 = γ (1− βµ0) ε0. (8.53)

Using Eqs. (8.42, 8.45, 8.46), we can reconstruct the resulting scattered photon
spectrum in the lab frame. Results are shown in Figure 8.3 (left panel) in the
Thomson and in the Klein-Nishina regimes. Overall, the agreement is good in all
regimes.

Test 2: Electrons with a power-law distribution

Another simple and visual test, is to compute the scattered photon spectrum for
a single target photon energy, ε0, and a power-law energy distribution for the
electrons,

dN

dγ
∝ γ−p, γmin ≤ γ ≤ γmax. (8.54)

In the Thomson regime and assuming that γmin � γ � γmax, the photon spectrum
is a power-law

dN

dtdε1
∝ ε

−(p+1
2 )

1 . (8.55)

Our test compares the distribution reconstructed from a sample of 100, 000 elec-
trons for which we have drawn 100 target photons per electron, with the numeri-
cally integrated Thomson kernel spectrum and the expected analytical power-law
solution (see Figure 8.3, right panel). The agreement is nearly perfect. Note that
the distribution recovered from the Monte-Carlo is also valid in the Klein-Nishina
regime.

8.4.2 γ-γ pair production

We follow here the same strategy as for the inverse Compton scattering. We
consider a single gamma-ray photon annihilating with a soft photon arriving with
a pitch angle θ0 and azimuth angle φ0 with respect to the gamma-ray photon
direction of propagation. The interaction leads to the destruction of the photons
and the creation of an electron-positron pair, γ + γ → e+ + e−. We assume that
the gamma-ray photon energy is much larger than the low-energy photon, ε1 � ε0.

We begin by �rst de�ning the relativistic invariant

s =
ε0ε1
2

(1− cos θ0) . (8.56)

The threshold for pair production is

s = m2
ec

4 = 1. (8.57)
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The Lorentz factor and 3-velocity of the created pair in the center-of-mass frame
are

γ′ =
√
s, (8.58)

β′ =

√
1− 1

s
. (8.59)

In the limit where ε1 � ε0, the Lorentz factor and 3-velocity of the center-of-mass
frame are given by

γCM ≈
ε1

2
√
s
, (8.60)

βCM ≈ 1− 2s

ε21
. (8.61)

The angular distribution of the electron (positron) produced in the center-of-mass
frame is given by the di�erential cross section as (Bonometto & Rees 1971)

dσγγ
dµ′1

=
πr2

e

2
β′
(

1− β′2
)1− (β′µ′1)

4 + 2
(

1− β′2
) [
β′2 − (β′µ′1)

2
]

(
1− (β′µ′1)

2
)2

 , (8.62)

where µ′1 = cos θ′1, θ
′
1 is the angle between the velocity of the pair produced

with respect to the gamma-ray direction in the center-of-mass frame. After a
few rearrangements, this distribution can be rewritten in the following and more
convenient form (x = µ′1)

dσγγ
dµ′1

∝ f (x) = 1 +
2β′2

1− β′2x2
−

2β′4
(
1− x2

)2(
1− β′2x2

)2 . (8.63)

Assuming that β′ � 1 where the cross section is maximum, we can safely neglect
the last term, i.e.,

f (x) ≈ 1 +
2β′2

1− β′2x2
. (8.64)

After performing a partial fraction decomposition, we obtain the following primi-
tive

F (x) = x+ 2β′ tanh−1 (β′x) . (8.65)

Unfortunately, this expression is still not suitable for our purpose since it cannot
be analytically inverted. A solution is to remove the contribution of x and keep
only the second term. The reason it is safe to do so is that for x ∼ 0 where
it most contributes, the second term expands as ∝ β′2x and therefore the main
features of F are conserved. We will see later on that this is indeed a very good
approximation, and therefore a good primitive of f is

F (x) ≈ 2β′ tanh−1 (β′x) . (8.66)
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Figure 8.4: Exact (solid lines) and approximate (dashed line, Eq. 8.68) cumulative
distribution functions, P(x), for β′ = 0.3, 0.9, 0.99.

Then, the cumulative distribution function is

P (x) =

´ x
−1 f(x)dx´ +1

−1 f(x)dx
=
F (x)− F (−1)

F (1)− F (−1)
(8.67)

P (x) =
1

2

[
tanh−1 (β′x)

tanh−1 β′
+ 1

]
. (8.68)

This solution is compared with the exact, numerically integrated cumulative dis-
tribution in Figure 8.4 for several values of β′. One sees that the match is nearly
perfect for small β′ as expected from our expansion, but surprisingly our solution
is also a good �t for β′ ≈ 1.

To invert the distribution, we choose a random number uniformly distributed
between 0 and 1, R, that will probe the value of P . Therefore, the cosine of the
electron (positron) angle with respect to the gamma-ray direction in the center-of-
mass frame is

µ′1 =
1

β′
tanh

[
(2R− 1) tanh−1 β′

]
, (8.69)

or

µ′1 =
1

β′
tanh [(2R− 1) ln (γ′ (1 + β′))] . (8.70)

Figure 8.5 (left panel) presents the results of a test where the electron (positron)
angular distribution is reconstructed from a sample of 100, 000 electrons using
Eq. (8.70). The distributions approach well the exact solutions (dashed lines,
Eq. 8.63) for all values of β′.
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Figure 8.5: Left: Reconstructed electron (positron) angular distribution in the
center-of-mass frame (solid histograms) using a sample of 100, 000 electrons and
Eq. (8.70), and comparison with the exact distribution (dashed lines) for β′ =
0.3, 0.7, 0.9. Right: Reconstructed electron (positron) energy distribution in the
lab frame (solid histograms) using a sample of 500, 000 electrons and Eq. (8.71),
and comparison with the exact distribution (dashed lines) for s = 1.005, 1.5, 10.

All quantities are now known in the center-of-mass frame. Therefore, the last
step is to perform a Lorentz boost to recover the energy of the created pair in the
lab (FIDO) frame, such that

γ− = γCM

(√
s+ βCM

√
s− 1µ′1

)
. (8.71)

We arbitrarily chose to pick �rst the electron energy but given the symmetry
of the energy distribution (see below), this choice does not arti�cially create any
asymmetry between both species. Conservation of energy gives the positron energy
as

γ+ = ε1 + ε0 − γ− . (8.72)

Comparison with the exact solution

The �nal test is to compare the electron energy distribution with the exact spec-
trum in the lab frame (see my PhD thesis, Chapter 6, Eq. 44.239, or the appendix
in Cerutti et al. 2009). Using a sample of 500, 000 electrons with ε0 = 10−2 and
µ0 = 0, we reconstruct the energy distribution for several values of ε1, i.e., close and
far to threshold (see Figure 8.5, right panel). Here again, the agreement between
the exact solution and the reconstructed distribution is very good in all regimes,
and we now feel con�dent that our approximate formulae can be safely used in
Zeltron . For pair production, only three analytical expressions are needed in the
code (equations encapsulated in boxes).

Page 134



Chapter 9

2D axisymmetric model

This last chapter focuses on the �rst applications of the code to black hole mag-
netospheres, in the framework of the Kerr metric. We begin with a brief overview
of the main features of this metric in Sect. 9.1. We then turn our attention to
the ideal case of a Kerr black hole immersed into a uniform magnetic �eld aligned
with the black-hole spin axis. We proceed in two stages: (i) �rst, we explore the
vacuum regime and compare our numerical solution to the analytical Wald (1974)
solution (Sect. 9.2), and (ii) in a second stage, we explore the plasma-�lled, quasi-
force-free regime using an ad-hoc pair creation prescription (Sect. 9.4). We close
this chapter with simulations including self-consistent pair creation in both 1D and
2D (Sect. 9.5).

9.1 The Kerr metric

Spacetime around a stationary rotating black hole is described by the Kerr metric
(Kerr 1963). Using spherical Kerr-Schild coordinates, the Kerr metric is given by
(Komissarov 2004)

gµν =


z − 1 z 0 −za sin2 θ
z 1 + z 0 −a sin2 θ (1 + z)
0 0 ρ2 0

−za sin2 θ −a sin2 θ (1 + z) 0 Σ sin2 θ/ρ2

 , (9.1)

where

ρ2 = r2 + a2 cos2 θ, (9.2)

z =
2r

ρ2
, (9.3)

Σ =
(
r2 + a2

)2 − a2∆ sin2 θ, (9.4)

∆ = r2 + a2 − 2r. (9.5)
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The lapse function and the shift-vector in Kerr-Schild coordinates are

α =
1√

1 + z
, (9.6)

βi =

(
z

1 + z
, 0, 0

)
, (9.7)

meaning that the grid is moving towards the black hole. This motion of the grid
removes the well-known coordinate singularity at the event horizon present in the
more widely used Boyer-Lindquist coordinates. This is a very convenient feature for
numerical purposes, hence the choice of the Kerr-Schild coordinates. This choice
comes at the cost of a non-diagonal form of the spatial metric in these coordinates,
as opposed to Boyer-Lindquist. The a parameter is the dimensionless spin of the
black hole, ranging from a = 0 for a Schwarzschild hole, to (asymptotically) a = 1
for a maximally rotating hole.

A Kerr black hole has several critical surfaces of interest here, shown in Fig-
ure 9.1:

(i) The event horizon is a spherical surface of radius, rH, given by the condition
∆ = 0. The largest of the two roots gives

rH = 1 +
√

1− a2, (9.8)

where rH should be understood in units of the gravitational radius rg = GM/c2. It
varies from rH = 2 for a = 0, down to rH = 1 for a = 1. Inside this surface, an ob-
server cannot be stationary with respect to in�nity, it is necessarily dragged inward.

(ii) The ergosphere is the volume enclosed inside the critical surface de�ned by
gtt = 0. The largest of the two roots gives

rerg = 1 +
√

1− a2 cos2 θ. (9.9)

This surface is not spherical (except if a = 0), it varies from rerg = rH at the poles
to rerg = 2 ≥ rH. Inside the ergosphere, an observer cannot be stationary with
respect to a distant observer, it is necessarily dragged by the rotation of spacetime.
Unlike inside the event horizon, an object is still capable of moving in or out of
the ergosphere.

(iii) Light surfaces are the analog of the light cylinder in pulsars. They mark
the limit where rigid corotation is possible. In black-hole magnetospheres, there are
two of such surfaces: the inner one and the outer one. To obtain these surfaces,
one should consider a particle at a �xed radius r and �xed latitude θ, moving
around the black hole at a �xed angular velocity Ω = dφ/dt. Then, the relativistic
interval simpli�es into (Komissarov 2004)

ds2

dt2
= f = gtt + 2gtφΩ + gφφΩ

2. (9.10)
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Figure 9.1: Map of the light-surface function f (Eq. 9.10) for a black-hole spin
a = 0.9999 and an angular velocity Ω = ΩH/2. Light surfaces are shown as black
solid lines where f = 0. In the blue region (f < 0) corotation is possible, while in
the red region (f>1) corotation become superluminal. The outer-boundary of the
ergosphere is shown by the black dashed line (Eq. 9.9), and the black disk is the
volume enclosed inside the event horizon (Eq. 9.8).

If f < 0, then the rotation is time-like, i.e., subluminal and solid rotation is pos-
sible. If f > 0, it becomes space-like, i.e., superluminal and solid rotation is
impossible. Hence, light surfaces are given by the condition f = 0. In the fol-
lowing, Ω will refer to the angular velocity of the magnetic �eld lines, which will
be compared with the angular velocity of the hole de�ned as ΩH = a/2rH. The
inner light surface is located inside the ergosphere, but outside the event horizon.
The outer light surface is always outside the ergosphere. Figure 9.1 shows the
light surfaces in the case of a maximally rotating hole for Ω = ΩH/2. Subluminal
rotation is possible only in between the two light surfaces.

9.2 Uniform �eld: Vacuum solution

The �rst test we performed with the code was to recover the solution of a Kerr
black hole immersed into a uniform magnetic �eld aligned with the rotation axis
of the hole and without plasma. Assuming that the energy density in the �eld is
small so that it does not signi�cantly change the Kerr metric (i.e., a test �eld),

Page 137



Chapter 9

Wald (1974) derived an exact solution to this problem. Using the fact that the
solution must be stationary and axisymmetric, and converge to the �at space time
solution at in�nity, he obtained a unique solution given by

Aµ =
B0

2
(mµ + 2akµ) , (9.11)

where B0 is the �at spacetime magnetic �eld strength, and

mµ = ∂φ = (0, 0, 0, 1), (9.12)

and
kµ = ∂t = (1, 0, 0, 0), (9.13)

are the Killing vectors along the φ- and the time coordinates respectively, which
translate the stationarity and the axisymmetry of the solution. The components
are given by

At = aB0 (9.14)
Ar = 0 (9.15)
Aθ = 0 (9.16)

Aφ =
B0

2
, (9.17)

or in the more useful covariant form,

At =
B0

2
(gtφ + 2agtt) (9.18)

Ar =
B0

2
(grφ + 2agrt) (9.19)

Aθ = 0 (9.20)

Aφ =
B0

2
(gφφ + 2agtφ) . (9.21)

From the vector potential, the B and E �elds can be reconstructed using the usual
formulae

Bi =
1
√
γ
εijk∂jAk, (9.22)

Ei = −∂iAt − ∂tAi. (9.23)

To test Wald prediction, we immersed the black hole into a uniform �eld valid
for a Schwarzschild black hole and let the system evolve. After a (long) transient,
the numerical solution indeed converges towards the Wald con�guration. Figure 9.2
shows the result obtained by Zeltron at time t = 102rg/c for a black-hole spin
a = 0.999. The solution is characterized by the expulsion of the magnetic �eld
lines away from the horizon. This phenomenon is often called the �Meissner e�ect�
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Figure 9.2: Wald con�guration simulated with Zeltron for a = 0.999. Black solid
contours show magnetic �eld lines (they are isocontours of the potential vector
Aφ). In color is the magnitude of the electric �eld parallel to the magnetic �eld,
D ·B/B2

0 . The green solid line shows the maximal radial extent of the ergosphere.

in analogy with the perfect diamagnetic behavior of a superconducting material.
Using Eq. (9.21), we can easily show that the magnetic �ux of Wald solution though
one hemisphere at the horizon1 (say the upper one) is given by (King et al. 1975)

ΨBH =

ˆ π/2

0

ˆ 2π

0

√
γBrdθdφ = 2πAφ(rH, π/2), (9.24)

ΨBH = πr2
HB0

(
1− a4

r4
H

)
. (9.25)

Thus, we can see that for a maximally rotating black hole, as the one simulated
here (a→ 1), ΨBH → 0.

9.3 The plasma supply problem

Wald solution has another feature that is of even greater importance for our pur-
pose here. The rotation of the hole induces a strong unscreened electric �eld par-
allel to the magnetic �eld, D‖ = D ·B/B0 . B0 (color-coded in Figure 9.2), near
the hole. The electric �eld is distributed according to a quadrupolar-like angular
distribution with maxima at the poles, meaning that a charge injected there will

1Of course, the �ux through the whole horizon is zero in virtue of ∇ ·B = 0.
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be quickly accelerated to high energies and possibly leading to pair creation and
plasma screening, akin to what happens in pulsar magnetospheres (Chapter 4).
Therefore, it is natural to expect that the vacuum solution is not a good model for
active black holes surrounded by plasma.

Like in pulsars, the issue of plasma supply in black-hole magnetospheres is a
long standing problem. However, in some respects, the problem is even more open
that in the case of pulsars, because there is no primary beam of charges extracted
from the surface that we can rely on to initiate a cascade. As we will see in the
following, the main di�culty is to load open �eld lines passing through the horizon,
i.e., the relativistic jet, which are disconnected from the rest of the magnetosphere.
Even in the presence of an accretion disk, plasma feeding from the disk to the jet
cannot be realized unless one invokes non-ideal e�ects to allow the particles to go
across �eld lines. This means that the plasma must be created in-situ.

One of the most promising scenario involves γ-γ annihilation into electron-
positron pairs, where the source of gamma rays originates from the innermost parts
of the accretion �ow. If the density of gamma rays provided by the accretion �ow
(or any other external source) is su�cient to screen the vacuum electric �eld, then
a quasi force-free magnetosphere is established. In the next section (Sect. 9.4), we
will assume that pair production is vigorous throughout the magnetosphere using
an ad-hoc prescription for plasma injection. However, if the density of external
gamma rays is too low to screen the �eld, then charges experience a large fraction
of the vacuum potential drop and initiate a pair cascade leading again to (partial)
plasma screening. In Sect. 9.5, the full radiative transfer will be considered and
the transition from the vacuum to the force-free regimes will be investigated.

9.4 Uniform �eld: Plasma-�lled solution

9.4.1 Setup and magnetospheric features

The next logical step after the vacuumWald con�guration was to simulate a plasma
�eld con�guration, assuming the same asymptotically uniform magnetic �eld struc-
ture. We initialize the simulation with the exact Wald �elds given in Eq. (9.11), but
with no charges. Then, pairs are injected everywhere in the box at every timestep,
and at a rate proportional to the local value of the parallel electric �eld in the cell,
similar in spirit to Belyaev (2015) in the context of pulsar magnetospheres. The
injected pair density as measured by FIDO, δninj, is then parameterized by

δninj =
1

8πe

|D ·B|
B

, if |D ·B| /B2 > εD·B, (9.26)

δninj = 0, otherwise, (9.27)

where εD·B < 1 is a �xed injection threshold, whose role is to control the strength of
pair production. We performed two realizations: a `high-plasma supply' simulation
with εD·B = 10−3, and a `low-plasma supply' simulation with εD·B = 10−2.
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Figure 9.3: Left: Magnetic structure of a plasma �lled magnetosphere for an
asymptotically uniform magnetic �eld. Right: Electric current structure. Figure
taken from Parfrey et al. (2019).

The inner boundary lies inside the horizon at rmin = 0.985rH (thanks to Kerr-
Schild coordinates), while the outer boundary is located at rmax = 8rg. The grid is
equally spaced in log r and cos θ and contains 1280×1280 cells. The plasma scales
are �xed by the magnetic �eld strength which cannot be arbitrarily large due to
numerical limitations. In dimensionless units, the �ducial magnetic �eld strength
is

B̃0 =
eB0rg

mec2
=
rg

rL
, (9.28)

i.e., it gives the ratio between the horizon scale and the �ducial particle Larmor
scale, or in other words the ratio between the �ducial macroscopic and microscopic
scales. In this work, it is �xed at B̃0 = 103 (rL = 10−3rg), that is the maximum
scale separation we can a�ord with ∼ 103 grid cells. Then, the �ducial Goldreich-
Julian plasma density is given by n0 = ΩHB0/2πec and plasma magnetization
σ0 = B2

0/4πn0mec
2 = 2000, using a black-hole spin a = 0.999.

The �rst lesson we have learned from black-hole simulations is that a steady
state regime is established after a much longer dynamical time than in pulsars.
While a few pulsar rotation periods is usually su�cient to reach a steady state
solution, at least & 40rg/c is needed for black-hole magnetospheres. Figure 9.3
(left panel) shows a snapshot of the magnetic structure reached at time t = 40rg/c.
The result is very close to the force-free solution (Komissarov 2004, 2005). It is
composed of a series of �eld lines passing through the ergosphere dragged and
twisted by the rotation of space time, with a signi�cant fraction passing through
the horizon in sharp contrast to the vacuum solution. We call this region the `jet'.
These �eld lines are also characterized by a strong toroidal component due to �eld
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line winding (see Hφ color-coded in Figure 9.3).
A current sheet forms within the ergosphere along the equatorial plane, which

sustains the reversal in the magnetic �eld orientation. Passed the outer edge of the
ergosphere, the current splits into two vertical layers along the magnetic separatri-
ces, which separate �eld lines passing through the ergosphere and in rotation with
the hole, and static �eld lines outside (Figure 9.3, right panel). These current lay-
ers are the analog of the separatrix current layers located inside the light cylinder
in pulsars, located at the interface between open and closed �eld lines. The current
then closes through the polar cap of the hole via the jet, the analog of polar-cap
open �eld lines in pulsars. This is the establishment of these strong currents that
dramatically changes the structure of the magnetosphere, from a perfectly expelled
magnetic �eld con�guration in vacuum to an approximately split-monopole con�g-
uration near the horizon (Komissarov & McKinney 2007). It is also interesting to
note that the current density is space-like everywhere, meaning that both species
must carry the current, and therefore that pair production is necessary to reach
this state. Like in all other situations we have encountered in this memoir, the
equatorial current layer is here again unstable to kink and tearing modes, which in
return facilitate fast magnetic reconnection. Islands form and merge before they
are eventually swallowed by the black hole.

9.4.2 Energy extraction: Blandford-Znajek versus Penrose

process

The toroidal �eld in the jet carries electromagnetic power away from the hole in
the form of a Poynting-�ux-dominated out�ow as predicted by Blandford & Znajek
(1977). This is the �rst ab-initio demonstration that this mechanism is viable. The
free energy is the black-hole spin which is electromagnetically extracted at in�nity
by the plasma jet. The Poynting �ux through a spherical surface as measured from
in�nity is

L∞EM =

¨
T r
t α
√
γdθdφ =

¨
Sr
√
γdθdφ, (9.29)

where T µν is the energy-momentum tensor, and

Si =
1

4π

1
√
γ
εijkEjHk, (9.30)

is the Poynting vector measured at in�nity. Thus,

L∞EM =
1

2

ˆ π

0

(EθHφ − EφHθ) dθ. (9.31)

In Boyer-Lindquist coordinates, Blandford & Znajek (1977) showed that

T r
t α
√
γ =

1

4π
Ω (ΩH − Ω) (∂θAφ)

2 r
2 + a2

ρ2
sin θ, (9.32)
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Figure 9.4: Radial pro�le of the electromagnetic and particle kinetic energy �ux
through a spherical surface of radius r. Inset: Time evolution of the extracted
power measured at the black-hole event horizon. Powers are normalized to the
ideal force-free value.

and that therefore energy extraction is maximum if the �eld-line angular velocity
equals half the angular velocity of the horizon, Ω = ΩH/2. The measure of Ω =
−Eθ/

√
γBr in the simulation indicates that Ω ≈ ΩH/2 is a natural outcome of

these plasma-�lled solutions. Figure 9.4 shows the radial and temporal pro�les of
the Poynting �ux. It is normalized to the power measured in a force-free MHD
simulation performed by Kyle with his code PHAEDRA (Parfrey et al. 2012). The
same amount is extracted in the PIC simulation, meaning that a quasi force-free
state has indeed been successfully reached.

The electromagnetic component represents the majority of the energy �ux ex-
tracted at in�nity, but this is not all. To our great surprise, the plasma contained
in magnetic islands are plunging towards the hole with a net negative energy at
in�nity, de�ned as

e∞ = −ut. (9.33)

The ingestion of negative energy particles by the black hole e�ectively extracts
energy to in�nity and slows down the hole. This mechanism was imagined by
Penrose (1969); Penrose & Floyd (1971). In its original form, Penrose imagined an
object entering and splitting in the ergosphere into two fragments, one entering the
hole with an apparent negative energy seen from in�nity while the other leaves the
ergosphere with a net energy gain. In this operation, the second body has taken
away some of the rotational energy from the hole. In simulations, we can measure
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the total energy �ux carried away by the particles as

L∞kin =

¨
e∞v

rn
√
γdθdφ. (9.34)

Figure 9.4 shows that the Penrose process can be temporarily as important as the
Blandford-Znajek process at the black hole horizon when a large magnetic island
dives into the hole.

Another key new result from these kinetic simulations is evidence for particle
acceleration in the ergospheric current sheet. The particle spectrum extends all
the way to the maximum potential drop, Γmax ∼ aB̃0 ≈ 103.

9.5 Pair producting solution

While this �rst global model is a key milestone in our understanding of black
hole electrodynamics, it is not yet fully consistent because of the use of an ad-hoc
prescription for pair creation. In this section, I present our �rst attempts to model
the dynamics of the magnetosphere with full radiative transfer for a �xed, isotropic
and homogeneous external radiation �eld. Only inverse Compton scattering and
γ�γ annihilation will be considered in the following.

9.5.1 Setup and scales

Simulations are initialized with a single monopolar magnetic �eld con�guration.
At this stage, this con�guration is preferred to the �more realistic� split-monopole
con�guration, in order to capture the dynamics of the polar-cap discharge without
any interference from the reconnecting equatorial current sheet. In the low-spin
limit2, the �eld is given by

Aφ = B0 (1− cos θ) , (9.35)

so that

Br =
B0 sin θ
√
γ

. (9.36)

The hole is initially immersed into an isotropic cloud of mono-energetic gamma
rays, of dimensionless energy ε1. The latter is chosen above the threshold for pair
production, ε1 ∼ ε−1

0 where ε0 is the dimensionless background photon energy, so
that they can trigger pair creation in the simulation. The density of the target
radiation �eld is n0, so that the �ducial optical depth of the medium is

τ0 = n0σTrg. (9.37)

Choosing τ0, B̃0 and ε0 is the complete set of parameters of the problem under the
assumption made here. In particular, they set all the relevant energy scales of the
problem:

2The exact expression for the vacuum monopole solution is given in the Appendix in Crinquand et al. (2020).

Page 144



Chapter 9

� The maximum (vacuum) particle energy Γmax ∼ aeB0rg/mec
2 = aB̃0.

� The energy scale of created pairs is Γpp ∼ ε−1
0 , because the γ�γ cross section

peaks near the threshold for pair production.

� The Klein-Nishina break energy scale ΓKN ∼ ε−1
0 ∼ Γpp.

� The radiation-reaction-limited energy scale, Γrad, given by the balance be-
tween acceleration and inverse Compton cooling,

eB0 = Pic/c, (9.38)

where Pic is the inverse Compton cooling power. In the Klein-Nishina regime,
which is of main interest here since ΓKN ∼ Γpp, losses are given by (Blumen-
thal & Gould 1970)

Pic ≈
3

8
σT

ˆ
n

ε

(
ln 4εΓ− 11

6

)
dε. (9.39)

For a monoenergetic photon �eld, n = n0δ (ε− ε0), we have

Pic ≈
3

8

τ0

ε0

(
ln 4ε0Γ−

11

6

)
. (9.40)

Thus,

Γrad =
1

4ε0
exp

(
8B0ε0

3τ0
+

11

6

)
. (9.41)

In the following, we will consider the following hierarchy of scales:

1� Γpp � Γmax � Γrad. (9.42)

9.5.2 1D model

In collaboration with Amir Levinson, we tackled this problem in 1D in the co-
rotating frame and along a single �eld line inclined at an angle θ0 = 30o from the
black-hole spin axis. As a matter of fact, I began this work before the global model
presented in the previous section. Equations in 1D are much simpler to solve, in
particular the equation of motion because we assumed a truly 1D motion of the
particles, i.e., inwards or outwards along the �eld line. Another advantage of this
approach is that we can a�ord a much larger, more realistic separation of scales. In
this work, we chose a = 0.9, Γpp ∼ ε0 = 108, Γmax ∼ B̃0 ≈ 1014. These parameters
are close to those inferred in the core of the M87 AGN.

The domain is composed of 65, 536 cells and is ranging from rmin = rH to
rmax = 4rg. We studied the e�ect of the optical depth on the development of
the cascade, τ0 = 1, 5, 10. We observed that for τ0 < 5, the cascade cannot be
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Figure 9.5: Time evolution (from left to right) of the plasma and photon densities
(top), electric �eld (middle) and current densities (bottom) in the 1D black-hole
gap for τ0 = 10.

self-sustained after the initial transient burst of pairs and the magnetosphere is
cleared out of plasma after t ∼ 10rg/c. At higher optical depth, pair creation is
su�ciently e�cient to screen the large initial gap and the solution seems stable
over the duration of the simulation. The �ow is composed of a multi-Goldreich-
Julian pair plasma (κ ∼ 5 for τ0 = 10). Figure 9.5 shows the overall time evolution
of the solution, from the initial vacuum state to the force-free regime.

From this run, we infer the gamma-ray power emerging from the black-hole gap
to be of order 10−4 − 10−5 of the Blandford-Znajek power. This power is of the
same order, although a bit smaller than the observed quiescent TeV gamma-ray
�ux (Aharonian et al. 2006; Albert et al. 2008), assuming that the jet power is
provided by the Blandford-Znajek mechanism. A puzzle remained though after
these �rst numerical experiments: the �nal state of the simulation appears to be
very stable, with no sign of intrinsic variability contrary to what one would expect
from a spark gap. We realized later that this is partially due to the too short
integration time of the simulation (Kisaka et al. 2020). As we discuss next, the
other fundamental element is the multi-dimensional aspect and the presence of the
light surfaces, which are absent in this 1D model.
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Figure 9.6: Left: Unscreened electric �eld (blue solid line) and phase-space diagram
for pairs (black and red dots) along the θ = 45o direction. Right: Plasma density
map in the high optical depth regime, τ0 = 30. Figures taken from Crinquand
et al. (2020).

9.5.3 2D model

The extension of the pair producing solutions to full 2D axisymmetric simulations
was performed by my student Benjamin Crinquand during the �rst year of his PhD
thesis. The 2D grid is uniform in θ and in log r. It ranges from rmin = 0.9rH to
rmax = 15rg and θ ∈ [0, π], and contains 2000 × 1152 cells. The black-hole spin
is again very high, a = 0.99. This choice is not motivated by observations since
there is no robust or well-constrained measures yet. Instead, our purpose here is to
have the largest spatial extent of the ergosphere to maximize all related physical
e�ects. The magnetic �eld strength is set to B̃0 = 5 × 105 and ε0 = 5 × 10−3, so
that Γmax/Γpp = aB̃0ε0 ≈ 2500� 1.

After the initial transient burst of pair creation, a steady state is established
within 50-100rg/c which consists of a �ow of pairs carrying the negative (positive)
poloidal current in the upper (lower) hemisphere where Ω · B > 0 (Ω · B <
0). At low optical depth (τ0 . 10), a large steady gap forms near the horizon.
Particle are accelerated close to the vacuum potential drop, pushing the particles
deep into the Klein-Nishina regime (Γmax � ΓKN). This leads to a drop in the
inverse Compton cross section and therefore pair production occurs outside the
gap. The dynamic of the gap and pair production are thus decoupled. The size
of the gap shrinks with increasing optical depth, from macroscopic scales to sub-
horizon, although not microscopic, scales governed by the inverse Compton mean
free path, ∼ rg/τ0 ≈ 0.06rg for τ0 = 30. In the high optical depth regime, pair
production and the evolution of the gap are tightly connected leading to quasi-
periodic screening/re-opening of the gap and the generation of discrete bursts of
pairs. This intermittency is well visible in Figure 9.6 (left panel), which shows the
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radial evolution of the parallel electric �eld and the phase-space diagram of pairs.
In the poloidal plane, thin shells of pairs form near the horizon (Figure 9.6, right

panel). These shells propage inwards or outwards depending on where pair produc-
tion occurs, meaning that a critical surface where the �ow velocity vanishes must
exist in the magnetosphere. This surface is often called the �stagnation surface�.
While the existence of this surface is predicted by most models, its precise loca-
tion is still a matter of debate in the community (e.g., Broderick & Tchekhovskoy
2015; Chen & Yuan 2020). A detailed analysis shows that such a surface indeed
exists and that this role is unambiguously played by the inner light surface. This is
where the gap forms, other critical surfaces such as the null- or the magnetohydro-
dynamic stagnation surfaces are irrelevant for the discharge. We believe that this
important result should be robust against any magnetic con�guration since the
�eld structure always approches a split monopole near the horizon in the force-free
regime (Komissarov & McKinney 2007).

Another robust feature of the work is the self-consistent modeling of the activa-
tion of the Blandford-Znajek process. The Blandford-Znajek prediction is (Bland-
ford & Znajek 1977),

LBZ =

¨
T r
t α
√
γdθdφ. (9.43)

For a monopole, ∂θAφ = B0 sin θ, Eq. (9.32) becomes

LBZ =
1

2
B2

0

ˆ π

0

Ω (ΩH − Ω)
r2 + a2

ρ2
sin3 θdθ. (9.44)

Estimated at the horizon, and assuming Ω = ΩH/2, and using a second-order
low-spin expansion gives

LBZ =
B2

0Ω2
H

6
. (9.45)

Numerically, we indeed found that L∞EM ≈ LBZ at the horizon. This result is valid
for all optical depth explored in this work at the horizon. A sizeable amount is
dissipated to accelerate particles which is eventually radiated away in the form of
optically thin gamma-ray emission. For τ0 = 30, the radiative e�ciency represents
about 3% of the total Blandford-Znajek power, making the spark-gap scenario
promising for explaining fast gamma-ray �ares in AGN. More work is needed to
fully caracterize the expected radiative signatures, this is one of the important
direction of research we will develop next in the context of the ERC project, which
is described in more details in the following.
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The results on the kinetic modeling of black-hole magnetospheres is opening up
a wide array of exciting future investigations. Thanks to the ERC-funded project
SPAWN, we will be able to fully deploy our new and unique numerical capabilities
in the context of black-hole astrophysics in the next 5 years and beyond. The time
is now ripe to explore in more details plasma generation, particle acceleration and
non-thermal radiation near black holes. The objectives of this project are summa-
rized by the following key scienti�c questions:

- What is the basic structure of a black hole magnetosphere?
- How and where are particles accelerated in the magnetosphere?
- How and where is the plasma generated around black holes?
- What are the expected observational signatures of particle acceleration near black
holes?

We will address these fundamental questions in light of the most recent and
future observations of SgrA? and M87? by Gravity and the EHT, ultra-rapid GeV-
TeV gamma-ray �ares in the Fermi and CTA era, as well as active black holes in
binary systems and their implications in electromagnetic counterparts of gravita-
tional waves events in the era of advanced LIGO-VIRGO, and more generally of
multi-messenger astronomy. The SPAWN project will explore 4 main axes of re-
search, which are described below and graphically summarized in Figure 9.7. The
description of each axis is taken and adapted from the narrative part (B2) of the
ERC proposal.

9.6 Pair production and jet loading. Application

to EHT observations & ultra-rapid AGN gamma-

ray �ares

The most immediate objective is to connect our simulations with observations.
To this end, one important aspect to develop further is the initial magnetic con-
�guration. While it was important to begin with a monopolar con�guration as
reported in Crinquand et al. (2020), it is time to consider more realistic con�g-
urations and in particular to evaluate the role of reconnection in the ergospheric
current sheet in the pair production process. As we have shown in this previous
study, pair creation is intermittent and it is natural to expect that bursts of pairs
are accompanied by high-energy gamma rays, which may well be at the origin of
gamma-ray �ares routinely observed in the gamma-ray domain. Other radiative
processes (i.e., other than inverse Compton and gamma-gamma pair production)
such as synchrotron and curvature photons will also be integrated into the code to
probe the low-energy part of the emission spectrum.

Therefore, the main objective of this project will be to compute the radia-
tive signatures from the discharge and reconnection in the magnetosphere. More
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Figure 9.7: Graphical summary of all projects and their objectives.

speci�cally, gamma-ray lightcurves will be reconstructed as seen by an observer at
in�nity. The Zeltron code also has the capability to compute polarization signa-
tures of the emission for any observer's viewing angle (see Sect. 6.4), this feature
must be adapted in full general relativity. These synthetic observables will be com-
pared with the properties of �aring AGN observed in the GeV domain with the
Fermi-LAT and in the TeV domain today with HESS, MAGIC and VERITAS, and
tomorrow with CTA. Flares are often associated with changes in the polarization
properties of the radio emission, which can also be directly compared with our
simulations.

The last key objective will be to reconstruct synthetic synchrotron images as
seen by an observer at in�nity, and to compare them with EHT images of the
black hole shadow and jet of M87?. This work is Benjamin's main project for the
last year of his PhD. With these diagnostics at hand, we will be able to test the
magnetospheric contribution to the image, which is currently out of reach of the
standard GRMHD models.

9.7 Black-hole-disk interaction. Application to

Gravity observations of SgrA?

Active black holes are surrounded by a hot accretion �ow. The accretion disk
plays two important roles for keeping the black hole active: (i) it is a reservoir
of a large supply of plasma, and (ii) it can maintain and even generate a large-
scale magnetic �eld that is brought in towards the black hole by accretion. The
black hole can then be magnetically connected to the disk, in an analog way to
the more familiar con�guration of a young star-disk interaction. The �eld lines
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connecting the horizon to the inner parts of the accretion disk are expected to
be highly twisted by the di�erential rotation between the Keplerian disk velocity
pro�le and the rotation of the hole.

Previous studies have shown that the region of the disk that remains magnet-
ically connected to the hole is con�ned within the inner-most regions, i.e., close
to the inner stable circular orbit (ISCO) (Uzdensky 2005). The magnetic link-
age between the disk and the hole can be momentarily disrupted by reconnection
episodes within the boundary layer (separatrix) between the closed �eld lines con-
nected to the hole and the open �eld lines of the disk. Such events could result
in e�cient bursts of energetic particles �owing along newly reconnected �eld lines.
This mechanism could be compared with the canonical model of solar �ares in
which a magnetic arch of plasma reconnects leading on one side to the ejection of
hot plasma in the interplanetary medium, and to the bombardment of the solar
surface by energetic particles and leading to hotspots at the base of the magnetic
footprints. In the black hole case, part of the �ow of particles is swallowed by
the hole while the other part bombards the innermost regions of the accretion
�ow, resulting in a localized hot spot at the ISCO (as depicted in Fig. 9.7, panel
Project II).

The recent ground-breaking discovery of a hot spot orbiting at the ISCO of
SgrA? by Gravity (Gravity Collaboration 2018) brings a very compelling case for
exploring this scenario more closely. Polarization measurements also supports the
idea of a large-scale poloidal �eld being present in the system. The goal of this
project will be to model the time evolution of the black-hole-disk magnetic linkage
and capture the cycle of magnetic reconnection events, �rst using 2D axisymmetric
GRPIC simulations. The numerical setup will be similar to the one introduced by
Uzdensky (2005); Yuan et al. (2019), i.e., the dynamics of the disk will not be
self-consistently modeled but instead it will be set as a �xed perfectly conducting,
in�nitely thin disk rotating at the Keplerian velocity and truncated at the ISCO.
The �ux of energetic particles bombarding the disk will be used as a proxy to
model the expected thermal emission. Lightcurves as well as polarization of the
emission will be reconstructed from the simulations and directly compared with
Gravity observations. Our objective will also be to predict the duty cycle of the
observed �ares by integrating the simulations on long time scales.

The last stage of this project will be to extend the setup to full 3D, i.e., by
adding the azimuthal direction. Indeed, it is very unlikely that the problem will
remain perfectly axisymmetric. We expect that plasma instabilities such as the
king modes will break the axisymmetry, and therefore result in a single or multiple
hotspots on the disk rather than a perfect ring.
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9.8 Binary black hole-neutron star interaction. Ap-

plication to LIGO-VIRGO

As argued above, the presence of an external magnetic �eld treading the black-hole
horizon, and therefore the presence of a plasma holding the �eld in place is needed
to extract the black-hole rotational energy and to accelerate particles. Shortly
after the discovery of the �rst gravitational wave signals associated with binary
black-hole mergers (Abbott et al. 2016), one of the crucial astrophysical question
was whether such a system could result in an electromagnetic counterpart, both
before and after the merger. Up to now, the answer is negative which suggests that
the system has cleared the plasma out of its closest environment over its evolution.

The situation is very much di�erent in the case of a black-hole-neutron star bi-
nary system, yet to be discovered by LIGO-VIRGO (although the event S190814bv
detected in August 2019 is a good candidate). In this case, the neutron star pro-
vides the strong external �eld to seed particle acceleration and pair creation around
the black hole, in a similar fashion as described in Sect. 9.5. The neutron star does
not even need to be electrodynamically active in the sense of plasma generation and
pair creation within its own magnetosphere as long as the black hole companion
is rotating. It is therefore possible to expect a strong non-thermal electromag-
netic signal during the inspiral phase from such a system. The �ux should become
brighter as both stars get closer together since the �eld strength on the black hole
horizon will increase as one over the distance cubed, if one assumes a dipolar �eld
for the neutron star.

Our objective will be to predict what the expected electromagnetic signal
should be in the inspiral phase, by modeling a black hole magnetosphere embed-
ded in an external dipolar �eld. The presence of the neutron star will �rst be felt
as an outer boundary conditions for the �elds evolving in time (approaching the
hole). The second step will be to include the neutron star self-consistent within
the box. Both stars will be approaching each other at a velocity consistent with
the energy losses due to the emission of gravitational waves (not modeled here, but
prescribed). Various parameters for the neutron star will be explored, high/low
surface �eld, rotating/non-rotating, and for several black hole masses. Predicting
the expected signatures throughout the electromagnetic spectrum prior the merger
and the forthcoming gamma-ray burst will be key to localize such events in the
sky in synergy with LIGO-VIRGO detections, and also to identify some of the
multiple transients that will be seen on a daily basis with future grounded-based
sky surveys such as the LSST in optical, SKA in radio, and CTA in the gamma-ray
band.
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9.9 The need to scale simulations up: Hybrid PIC-

force-free simulations

A major limitation of the PIC approach is the unrealistically small separation of
scales that can be simulated because the code must resolve both the microscopic
scales (particle Larmor radius) and the macroscopic, system-size scales (horizon
scale), i.e., the B̃0 parameter introduced in Eq. (9.28). It is then a fair question to
ask whether our numerical experiments are astrophysically relevant. The goal of
this last project will be to explore new numerical methods to scale our simulations
up to a realistic dynamical range. After all, when one looks at our �rst PIC
simulation of the black hole magnetosphere (Fig. 9.3), the solution is extremely
close to the force-free MHD (FFMHD) solution almost everywhere except in small
non-ideal regions, namely the equatorial current sheet and close to the polar caps of
the hole, where dissipation, particle acceleration and pair production occur. Hence,
a large amount of computing power is �wasted� in simulating FFMHD regions with
the full PIC machinery.

What I propose instead is to combine the PIC approach with the FFMHD
formalism, which does not need particles, in the same code. FFMHD is also much
cheaper than regular MHD simulations because the equation of motion to solve is
simply given by the force-free condition,

FµνJ
ν = 0. (9.46)

The goal will be to implement a switch in the code that will choose whether
particles are needed or not in a given region, and therefore con�ne the full PIC
power where it is really needed. In more practical terms, the simulation will
�rst begin in the ideal force-free regime everywhere. What is usually done in
FFMHD codes is that any component of the electric �eld parallel to the B �eld
is removed at every time step to ensure that the force-free condition, D · B = 0,
does not break down and the code with it. The electric �eld is also renormalized if
D2 > B2 (Spitkovsky 2006; Parfrey et al. 2012). Instead, our goal will be to de�ne
a threshold of minimum D ·B allowed before switching to the kinetic description.
As the simulation goes, the code will �nd the non-ideal locations in a dynamical
way, where the PIC approach is most needed.

The objective will be to revisit the simulations performed in at least Projects
I and II with this new approach using much larger numerical box to validate
whether these results can be extrapolated to larger, more relevant astrophysical
scales. This project will also allow us to perform more realistic predictions for the
particle and photon energy spectra. Astrophysical applications of this code can
also be extended, but not limited to pulsar magnetospheres.
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9.10 Project impact

This ambitious project relies almost entirely on the newest version of the Zeltron
code, which includes all general relativistic corrections. This is currently the only
PIC code in the world that has this capability and therefore we are determined
to maintain and fructify our leadership to explore the urgent question of particle
acceleration near black holes. The SPAWN project will also pave the road towards
an ab-initio modeling of relativistic binary systems and their potential electromag-
netic counterparts to gravitational waves events. This project will bring a strong
theoretical support to current and future major instruments such as Gravity in
infrared, Fermi and the Cherenkov Telescope Array in gamma rays, the Event
Horizon Telescope in radio, where Europe is strongly involved. The last project is
more exploratory and is meant to prepare for the next generation of astrophysi-
cal numerical code: multi-approaches for multi-scale, multi-physics, and therefore
more realistic simulations.
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9.11 Curriculum Vitae

9.11.1 Personal information

Family name, First name: CERUTTI, Benoît
ORCID Number: http://orcid.org/0000-0001-6295-596X
Date of birth: 26 April 1984
Nationality: French
URL for web site: http://ipag.osug.fr/~ceruttbe/
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2010: PhD in astrophysics at the Laboratoire d'Astrophysique de Grenoble (LAOG),
Université de Grenoble, France. Supervisor: Guillaume Dubus.

2007: Master in particle physics and astroparticles, Physics Department, Univer-
sité Joseph Fourier, France.

2007: Master in physical engineering, Grenoble Institute of Technology (ENSPG),
France.
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2013-2015: Lyman P. Spitzer Jr Postdoctoral Fellow, Department of Astrophysi-
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9.11.5 Supervision of graduate students and Postdoctoral

fellows

2020-: ERC-SPAWN postoc Ileyk El Mellah.

2020-2023: Co-supervision of Ibrahim Ceyhun Andaç co-tutelle PhD thesis, joint
between the Université Grenoble Alpes and Istanbul Technical University, French
government scholarship, �Ab-initio modeling of pulsar-disk interaction: applica-
tions to transitional millisecond pulsars and fallback disks�.

2018-2021: Co-supervision of Benjamin Crinquand PhD thesis, ENS fellowship,
�Ab-initio modeling of a rotating black hole magnetosphere.�

4 Master thesis projects: Jérémy Mortier (M1: 2016, M2: 2017), Aloïs de
Valon (M1: 2017), B. Crinquand (M2: 2018). 1 License project: Sarkis Rastikian
(L2: 2009).

9.11.6 Teaching activities

2015-2020: Invited lecturer at the PhD schools: Cargèse 2016 , Les Houches 2017
& 2019, and Astrosim 2017 & 2020.

2010: Plasma Physics class, two lectures of 75 minutes each, University of Col-
orado.

2007-2010: Graduate Teaching Assistant (Moniteur) in introductory electromag-
netism for undergraduate students (∼ 50 students, 64 hrs per year), Université
Joseph Fourier, France.

9.11.7 Outreach activities

2007-Today: Regular host of public night observations at IPAG (2-3 nights per
year), group of 20 attendees per night.

2012: General public talk �Latest news from the high-energy Universe� at the
Alliance Française de Denver.

2009: General public conference �Gamma-ray astronomy and the violent Uni-
verse�, 100 Hours of Astronomy.
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9.11.8 Organisation of scienti�c meetings

2019: Chair of the organizing committee of Les Houches school in plasma physics,
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Grenoble Alpes, France (∼ 30 colloquia per year, ∼50 attendees).

2014: Co-organizer of the weekly Astrophysics colloquium, Princeton University,
USA (∼ 100 attendees).

2011-2013: Organizer of the weekly plasma physics seminars, CIPS, University
of Colorado, USA (∼ 15 attendees).

2009-2010: Organizer of the public observation nights program, Grenoble Obser-
vatory, France (7 nights per year and 20 participants per night).

9.11.10 Reviewing activities

2010-: Referee for A&A, MNRAS, ApJ, Journal of Plasma Physics, PRL, Nature,
about 5 per year.
2018-: Review panel member of the French national supercomputer facility (GENCI,
CT4 committee: Astrophysics & Geophysics).
2017-: Examiner PhD thesis committee: G. Brambilla (University of Milan, 2017),
G. Voisin (LUTH-Observatoire de Paris, 2017), C. Guépin (IAP-Observatoire de
Paris, 2019).
2020: External referee and panel member for a lecturer position (maître de con-
férences) at Paris-Sorbonne Université.
2014-: Review panel member for the NASA's Astrophysics Theory Program
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2018-: Reviewer for the NASA Theoretical and Computational Astrophysics Net-
works Program (TCAN).
2017-: Reviewer for PRACE.
2017-: Reviewer for the DIM ACAV (research fund for astrophysics laboratories
in Paris).
2014-: Reviewer for the Polish National Science Centre.
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9.12 List of talks

9.12.1 Conferences

� Invited talk at the online mini-conference �Frontiers of Magnetic Recon-
nection Research in Heliophysical, Astrophysical, and Laboratory Plasmas�,
APS-DPP annual meeting 2020, Nov. 2020, USA.

� Invited talk at the �Workshop on Relativistic Plasma Astrophysics�, May
2020, Purdue University, USA. Postponed to 2021.

� Invited talk at the PHAROS conference 2020 �The multi-messenger physics
and astrophysics of neutron stars�, April 2020, Patras, Greece - Canceled due
to the Covid-19 pandemic.

� Invited talk at workshop �Simulating the evolution and emission of rela-
tivistic out�ows�, November 2019, Meudon, France.

� Contributed talk at the �IRAM-France day�, Jan. 2019, Paris, France.

� Invited talk at the 46th European Physical Society Conference on Plasma
Physics (EPS 2019), July 2019, Milan, Italy.

� Invited talk at the High Energy Phenomena in Relativistic Out�ows (HE-
PRO VII) conference, July 2019, Barcelona, Spain.

� Lecturer at Les Houches school of Physics, May 2019, Les Houches, France.

� Invited talk at the Astrosim workshop: �Highlights and prospects for nu-
merical astrophysics in France�, October 2018, Lyon, France.

� Invited talk at the PNHE workshop: �Journées théories� , October 2018,
Paris, France.

� Invited talk at the �Workshop on Relativistic Plasma Astrophysics�, May
2018, Purdue University, USA.

� Invited talk at the PHAROS Cost action workshop �Neutron stars: towards
a global view�, March 2018, Rome, Italy.

� Invited talk at the AGILE Symposium �A decade of AGILE: Results, chal-
lenges and prospects of gamma-ray astrophysics�, December 2017, Rome,
Italy.

� Invited talk at the Nordita workshop �Exascale thinking of particle ener-
gization problems�, August 2017, Stockholm, Swenden.
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� Invited lecturer at Astrosim: École numérique pour l'astrophysique, June
2017, Lyon, France.

� Invited lecturer at Les Houches school of Physics, May 2017, Les Houches,
France.

� Invited talk at the �TPCMeV polarimetry� workshop, April 2017, Palaiseau,
France.

� Invited talk at the conference on �Cosmic Ray Origin � beyond the standard
models�, September 2016, San Vito di Cadore, Italy.

� Invited talk at the workshop on �Beyond a PeV�, September 2016, Paris,
France.

� Invited talk at the workshop on �Modelling Nebulae�, June 2016, Sant
Cugat, Spain.

� Invited lecturer at the Cargèse school 2016 �Astrophysical jets�, May 2016,
Cargèse, France. 3 hrs lecture for about 50 graduate students.

� Contributed talk at the �Texas Symposium 2015�, Dec. 2015, Geneva,
Switzerland.

� Invited talk at the French meeting on �Particle acceleration processes�, Dec.
2015, Grenoble, France.

� Invited talk at the �Relativistic Laboratory Astrophysics� workshop, Nov.
2015, Harnack-Haus, Berlin, Germany.

� Invited talk at the ISSI workshop on �Jets and Winds in Pulsar Wind Neb-
ulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release�,
Nov. 2015, Bern, Switzerland.

� Contributed talk at the conference �Magnetic �elds from the sun to black
holes, in memory of Jean Heyvaerts�, Nov. 2014, Paris, France.

� Invited talk at the �High Energy processes around compact objects�, June
2014, Florence, Italy.

� Invited talk at the �Workshop on Relativistic Plasma Astrophysics�, May
2014, Purdue University, USA.

� Invited talk at the ISSI workshop on �The Strongest Magnetic Fields in
the Universe�, Feb. 2014, Bern, Switzerland.

� Invited talk at the 55th Annual Meeting of the APS Division of Plasma
Physics, Nov. 2013, Denver, USA.
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� Contributed talk at the �Max-Planck/Princeton Center for Plasma Physics
meeting�, Oct. 2013, Princeton, USA.

� Contributed talk at the international workshop �From Black Holes to Cos-
mic Rays : when plasmas go wild�, Oct. 2013, Les Houches, France.

� Invited talk at the �Variable Galactic gamma-ray sources� workshop, Apr.
2013, Barcelona, Spain.

� Contributed talk at the 2012 JSI workshop �Nature's particle accelerators�,
Oct. 2012, Annapolis, USA.

� Invited talk at the French meeting on �Particle acceleration processes�,
Sept. 2012, Paris, France.

� Contributed talk at the �French workshop on magnetic reconnection�,
Sept. 2012, Paris, France.

� Contributed talk at the �5th International Symposium on High-Energy
Gamma-Ray Astronomy�, July 2012, Heidelberg, Germany.

� Invited talk at the �The Flaring Crab: Surprise and Impact�, July 2012,
Frascati, Italy.

� Invited talk at the international workshop on �Particles and Radiation from
Cosmic Accelerators CA2012�, Feb. 2012, Chiba University, Japan.

� Contributed talk at the �219th AAS Meeting�, Jan. 2012, Austin, USA.

� Invited talk at the �Texas Symposium 2010�, Dec. 2010, Heidelberg, Ger-
many.

� Invited talk at the �Variable Galactic gamma-ray sources� workshop, Nov.
2010, Heidelberg, Germany.

� Contributed talk at the French Society of Astronomy meeting, June 2010,
Marseille, France.

� Contributed talk at the ICREA Workshop on �The High-Energy Emission
from Pulsars and their Systems�, Apr. 2010, Sant Cugat, Spain.

� Contributed talk at �The 2009 Fermi Symposium�, Nov. 2009, Washington
D.C., USA.

� Invited talk at �The GeV-TeV sky� workshop, Sept. 2009, Palaiseau,
France.

� Contributed talk at the French Society of Astronomy meeting, July 2009,
Besançon, France.
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� Contributed talk at �High-energy phenomena in massive stars�, Feb. 2009,
Jaén, Spain.

� Contributed talk at �Simbol-X Second International Symposium�, Dec.
2008, Paris, France.

� Contributed talk at the French Society of Astronomy meeting, July 2008,
Paris, France.

� Contributed talk at the French Society of Astronomy meeting, July 2007,
Grenoble, France.

9.12.2 Seminars

� Online Astrophysics Colloquium, University of Amsterdam, November
2020, Amsterdam, Netherlands.

� Online Astrophysics Colloquium, Radboud University, November 2020,
Nejmegen, Netherlands.

� DAMTP astrophysics seminar, DAMTP, February 2020, Cambridge,
England.

� CAMK Colloquium, CAMK, June 2019, Warsaw, Poland.

� Astrophysics Colloquium, IAP, Jan. 2018, Paris, France.

� Colloquium at Columbia University, Department of Astronomy, Nov.
2017, New-York City, USA.

� Seminar at CEA/DAM/DIF, Sept. 2017, Bruyères-Le-Châtel, France.

� Astronomy and Astrophysics Seminar, Tel Aviv University, June 2017,
Tel Aviv, Israel.

� Astrophysics and Cosmology Seminar, Ben Gurion University of the
Negev, June 2017, Beer-Sheva, Israel.

� Astrophysics seminar, The Racah Institute de Physics, June 2017, Jerusalem,
Israel.

� LUTh seminar, Dec. 2016, Meudon, France.

� AHE seminar at APC, Apr. 2016, Paris, France.

� Saclay SAp Seminar, Feb. 2016, Saclay, France.

� CASA/JILA Astrophysics Lunch Seminar, Jan. 2015, Boulder, USA.
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� Thunch talk, Princeton University, Dec. 2014, Princeton, USA.

� CITA seminar, CITA, Sept. 2014, Toronto, Canada.

� Astroplasmas Seminar, Princeton University, Sept. 2014, Princeton,
USA.

� Seminar at DESY, DESY Zeuthen, Feb. 2014, Zeuthen, Germany.

� CIPS Seminar, University of Colorado, Nov. 2013, Boulder, USA.

� Séminaire IRAP, Institut de recherche en astrophysique et planétologie,
Oct. 2013, Toulouse, France.

� Astroplasmas Seminar, Princeton University, July 2013, Princeton, USA.

� Séminaire LUPM, Laboratoire Univers et Particules de Montpellier, March
2013, Montpellier, France.

� CIPS Seminar, University of Colorado, Feb. 2013, Boulder, USA.

� Séminaire IPAG, Institut de Planétologie et d'Astrophysique de Grenoble,
Sept. 2012, Grenoble, France.

� KIPAC Tea Talk, Stanford University, Aug. 2012, Palo Alto, USA.

� Séminaire GReCO, Institut d'Astrophysique de Paris, March 2012, Paris,
France.

� KIPAC Tea Talk, Stanford University, Dec. 2011, Palo Alto, USA.

� CIPS Seminar, University of Colorado, Oct. 2011, Boulder, USA.

� CASA/JILA Astrophysics Lunch Seminar, University of Colorado,
May 2011, Boulder, USA.

� Fermi lunch Talk, KIPAC, Stanford University, March 2011, Menlo Park,
USA.

� Astronomical Observatory, Jagiellonian University, Nov. 2010, Kraków,
Poland.

� CIPS Seminar, University of Colorado, Oct. 2010, Boulder, USA.
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