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Abstract

CMB anisotropy data could put powerful constraints on theories of the evolution of our Universe. Using the observations of
the large number of CMB experiments, many studies have put constraints on cosmological parameters assuming different
frameworks. Assuming for example inflationary paradigm, one can compute the confidence intervals on the different
components of the energy densities, or the age of the Universe, inferred by the current set of CMB observations. The aim
of this Note is to present some of the available methods to derive the cosmological parameters with their confidence intervals
from the CMB data, as well as some practical issues to investigate large number of parafoeiézshisarticle: M. Douspis,

C. R. Physique 4 (2003).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Estimation des parameétres cosmologiques : des méthodégs observations des anisotropies du fond diffus cosmologique
(FDC) peuvent placer de fortes contraintes sur les théories d’évolution de notre Univers. Lutilisation de telles données a
permis de contraindre differents paramétres de différents cadres théoriques : I'age de I'Univers, son contenu baryonique, etc.
Le but de cette contribution est de présenter differentes méthodes possibles pour extraire les paramétres cosmologiques et leurs
intervalles de confiance des données du FDC. Des questions pratiques sur I'utilisation de grands nombres de paramétres sont
aussi abordée®our citer cet article: M. Douspis, C. R. Physique 4 (2003).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The extraction of information from cosmic microwave background (CMB) anisotropies is a classic problem of model testing
and parameter estimation, the goals being to constrain the parameters of an assumed model and to ddmdéfit thedel
(parameter values) is indeed a good description of the data. Maximum likelihood is often used as the method of parameter
estimations. Within the context of the class of models to be examined, the probability distribution of the data is maximized as
a function of the model parameters, given the actual, observed dat®see found, the best model must then be judged on
its ability to account for the data, which requires the constructionsihisticquantifying thegoodness-of-fiiGoF). Finally,
if the model is retained as a good fit, one definesfidencentervals on the parameter estimation. The exact meaning of these
confidence intervals depends heavily on the method used to construct them, but the desire is always the same — one wishes
to quantify the ‘ability’ of other parameters to explain the data (or not) as well as the best fit values. Given the quality of the
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current data, and the aim of the analysis — precise determination of the cosmological parameters — much attention should be
put on the robustness and accuracy (unbiased techniques) of the methods used. | review the different ways of estimating the
likelihood function of the parameters focusing on the use of the angular power spe€yisin Then, some methods to compute

the goodness of fit and the confidence intervals will be discussed. Finally, some practical issues for such computations will be
addressed. In this review, | take the temperature fluctuations as the observed quantity. The same approaches could be applied
for the polarisation signal of the CMB.

2. Likelihood

Data on the CMB consists of sky brightness measurements, usually given in terms of equivalent temperature in pixels.
The likelihood function is to be constructed using these pixel vaiudgndard Inflationary scenarios pred@hussiansky
fluctuations, which implies that the pixels should be modeled as random variables following a multivariate normal distribution,
with covariance matrix given as a function of the model parameters (in addition to a noise term). It is important to note that,
since the parameters enter through the covariance matrix in a non-linear way, the likelihood fénistioot a linear function
of the (cosmological) parameters.

Although it would seem straightforward to estimate model parameters directly with the likelihood function from the maps
(full analysig, in practice the procedure is considerably complicated by the complexity of the model calculations and by the
size of the data sets [1-4]. Maps consisting of several hundreds of thousands of pixels (the present situation) are extremely
cumbersome to manipulate, and the million-pixel maps expected from Planck cannot be analyzed by this method in any practical
way. An alternative is to first estimate the angular power spectrum from the pixel data and then work with this reduced set of
numbers. For Gaussian fluctuations, there is in principle no loss of information. Because of the large reduction of the data
ensemble to be manipulated, the tactic has been referred to as ‘radical compression’ [2]. The power spectrum has in fact
become the standard way of reporting CMB results; it is the best visual way to understand the data, and in any case it is what
is actually calculated in the models. The first part of this section describes briefly the full analysis procedure. Then, the second
part will focus on the power spectrum as starting point for cosmological parameters estimation. In the latter case, due to the
non-Gaussian behavior of tlig's, elaborated approximations should be used.

2.1. Full analysis

Temperature fluctuations of the CMB are described by a random field in two dimengi¢is= (57/T)(n), whereT
refers to the temperature of the background sl a unit vector on the sphere. It is usual to expand this field using spherical
harmonics:

A = Z agmYom (),  {agm az/m/)ens= CederSynm - (1)
tm
Theay,,’s are randomly selected from the probability distribution characterizing the process generating the perturbations. In the
Inflation framework, which we consider here, thg,’s areGaussian random variablesith zero mean and covariar?tgiven
in Eq. (1). TheC,’s then represent thengular power spectrumie may express the observed (or beam smeared) correlation
between two points separated on the sky by an ahgle

1
Cp(®) ={Ap (A1) Ap(A2))gns= 75— D (2L + DC¢BEPu(w). @
4

where P, is the Legendre polynomial of ordér u = cosfd = njq - rip and By is the harmonic coefficient of the beam
decompositiorf. The statistical isotropy of the perturbations demands that the correlation function depend only on separation,
0, which is in fact what permits such an expansion.

Given these relations and a CMB map, it is now straightforward to construct the likelihood function, whose role is to relate
the Npix observed sky temperatures, which we arrangedata vectorwith elementsd; = A, (72;), to the model parameters,

represented by parameter vector. For Gaussiarfluctuations (with Gaussian noise) this is simply a multivariate Gaussian:

2 - 1 _Llitc g
L(6) = Prol(d|@) = (27,)Npix/2\c|1/2e 3 . 3)

2 The term pixel will be understood to also include temperature differences.

3 The indicated averages are to be taken over the theoretical ensemble of all possible anisotropy fields, of which our observed CMB sky is
but one realization.

4 Note that this expansion pre-supposes axial symmetry for the beam.
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The first equality reminds us that the likelihood function is the probability of obtaining the data vector given the model as
defined by its set of parameters. In this expressibis, the pixel covariance matrix:

Cij =(didj)ens=Tij + Nij, 4

where the expectation value is understood to be over the theoretical ensemble of all possible universes realizable with the
same parameter vector. The second equality separates the model's pixel covdtidnme, the noise induced covariang¥,

According to Eq. (2)T;; = Cp(6;;) = 1/(4w) 3 ¢(2¢ + 1)C, W;;(¢) where W, the window matrix, contains the beam and
strategy effects (direct measure, differences). The parameters may be either the individoalband-powers, discussed
below), or the fundamental cosmological constaf®s,H,, etc. In the latter situation, the parameter dependence enters through
detailed relations of the kind,g[(:)], specified by the adopted model (e.g., inflation).

For cosmological parameters estimations, one has to compute the likelihood value of Eq. (3) for a family of models
investigated. For each set of paramet@rsthe computational time for the likelihood goes liRé&. , unless geometrical
symmetries in the observational strategy allows to use faster algorithm for invértingestigating one handful of parameters
with reasonable steps and ranges (typicadégrametergwith amap of few thousands of pixels becomes extremely cumbersome.
Only few studies has been done in such a way [5-8]. Such a computation with second generation experiments is thus prohibitive
(except for some particular symmetries, [9]).

2.2. Using the angular power spectrum

In order to avoid the problem of computational cost of the full analysis, an alternative consists in first estimating the angular
power spectrum from the pixel data and then work with the latter to estimate the cosmological parameters. The critical issue is
then how to correctly use the power spectrum for an unbiased parameter estimation and model evaluation. The angular power
spectrum can be evaluated with different techniques (see Hamilton, this issue, [10]). Again, a likelihood analysis from the maps
can be made by inserting a spectral form into the definitioff ofFor example, the commonly uséét band-power T, (or
Cp, = 8Tf2b over a certain range if), actually represents the equivalent logarithmic power integrated over the band, which
simplify the correlation matrix as follows:

2041

1
Co=27[8TF, /(e +D)], T= Eanﬁzmww. (5)
L

In this way, we may write Eq. (3) in terms of the band-power and treat the latter as a parameter to be estimated. This then
becomes the band-power likelihood functi@(§ Ty,). Fig. 1 shows the latest band power estimates of the CMB fluctuations.
Some of the points have been obtained by maximizing this likelihood function; the errors are typically found by in a Bayesian
approach, by integration i@, over £ with a uniform prior (e.g., DASI [16], VSA [17], CBI [18], ACBAR [19]). Other band
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Fig. 1. Angular power spectrum estimates of the CMB anisotropies in September 2003 [11-19]. Notice the good agreement between
band-powers coming from different experiments (different detectors, technology, scanning strategy .-y 660l
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powers and errors are estimated by using Monte Carlo based methods (see [20,21]) like the WMAP [11], BOOMERANG [14],
MAXIMA [15] and Archeops [13] ones. Notice that the variance due to the finite sample size (i.e., the sample variance, including
the cosmic variance due to our observation of one realization of the sky) is fully incorporated into the analyses.

Given a set of band-powers how should one proceed to constrain the fundamental cosmologlcal parameters, denoted
in thIS subsection b)O’> If we_ had an expression fodi(zSbe) for our set of band- powerSbe, then we could write
[l(zSbe) Prob(d|<Sbe) Prob(d|<Sbe[O]) = [Z(O) Thus, our problem is reduced to finding an expressmrﬁ(dﬂ"fb) but,
as we have seen, this is a complicated functloam requiring use of all the measured pixel values and the full covariance
matrix with noise — the very thing we are trying to avoid. Our task then is to find an approxmatlmﬂéfﬁq))

2.2.1. x2 minimization
The most obvious way of finding ‘the best model’ given a set of points and errors is the tradjtfonainimization. This
means that we assume a Gaussian shape for the likelihood function of the kind:

c(a—’rfb)) _ e7X2<@)/2 _ eﬁ(dobsidmodeb,M—l,(dobsidmodeb/z’ (6)

where M is the correlation matrix between the different flat band estimates. The main problem with this approach is that it
deals with the flat band-power estimates as Gaussian distributed data which they are not (obeying the statistics of the square of
a Gaussian). Then, it has been shown that such a procedure gives a biased estimation of the cosmological parameters and bad
estimates of the confidence intervals [2,22], leading to the search of more accurate approximation of the likelihood function.

2.2.2. More elaborate approximations

Different studies have been made to reconstruct better analytical approximations directly from the form of the flat band
likelihood function [2,22,23]. This section will focus on two of them. One is derived from the likelihood function in a particular
case, for which it is actually exact [22]. The other, mostly used during the last years, offers the advantage of being really close to
a x2 minimization by changing variables in the appropriate way [2]. Both approximations need a small amount of information
and aim to be used directly from the spectrum given in the liter&ture.

BDBL approximation. The Bartlett, Douspis, Blanchard and Le Dour approximation is based on the analytical form of the
likelihood in an ‘ideal’ experiment, where all the pixel¥/jx) are independent random variables (uncorrelated) and the noise

is uncorrelated and unifornarf,). In that particular case, one can write the exact likelihood function as follows:

3717 + 5%
6Tpl2+ 2

wheref = o andv = Npjx. The approximation comes from the fact that the authors keep the same likelihood form for real
experiments, whereas the noise is no longer uniform and uncorrelated, and the pixels are not independent. To take into account
these differences, one letsand 8 behave as free parameters and fixes them by fitting the 68% and 95% confidence intervals
(published or inferred from the true likelihood function). Fig. 2 shows the comparison between this approximation and true
likelihood functions obtained for TOCO data [24,25].

The advantage of this approximation is that the better the behavior of the experiment (less correlations, more uniform
noise,...), the better the approximation; being exact for the ideal case. It is also unbiased at the maximum of the likelihood and
allows one to recover the full shape of the likelihood function. The inconvenient of this approximation is that it is defined only
for uncorrelated flat band powers. The possible correlatlons between bands are not taken into account, as the full likelihood is
given by the product of all individual likelihood functlonSJ(zSbe) = ]_[E(anb)

L(GTw) o XV/2e X2 X[8Tpl= )

BJK approximation. Inthe second case, also referred as the Bond, Jaffe and Knox approximation, the motivation is driven by
the need to work with Gaussian distributed variables for whictythis no longer biased. Writing the likelihood in the spherical
harmonic space for the same ideal experiment as above, and const@igeng£ +1)C,/(2r) = STKZ, Ne=L({+1)Ny/(2r)

whereNy = (|ngy, 12) is the noise power spectrum in spherical harmonics, one can show that the curvature matrix evaluated at
the maximum is proportional t&, +Ng/B£2)*28U/. If one defineZ, = In(C, + x¢) where in this particular ‘ideal experiment’

X :/\Q/Bl?, the curvature matrix expressed in termais then constant. The BJK approximation to the likelihood is then

5 As we will see these approximations need one more information than the rasiinimization in order to take into account the non-
Gaussian behavior of the likelihood. The authors have been asking that this information be provided in addition to the band powers estimates
and errors. Recent experiments have published the necessary information in their papers.
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Fig. 2. Comparison to the TOCO97 likelihood function for all approximation described in this section. The black solid line shows the full
likelihood function computed from the map. The red dot-dashed and blue dashed lines show the BDBL and BJK approximation respectively.
The 2-wings Gaussian and WMAP-type approximation are plotted in dotted green and dot-dot-dashed yellow lines.

to take Z,, (determined in a band) as normally distributed in realistic experiments (by finding the good expression of the
corresponding;,). From the previous statements, one can then express the likelihood by:

LG3T) =eZM120/2 \yherez; — IN(8T% (i) + x (i) evaluated in a band (8)

The absolute value of Eq. (8) gives also an estimate of the goodness of fit. As we will see below, this approximation is slightly
biased at the maximum of the likelihood but has been shown to be a reliable approximation (see Fig. 2) and is available online
through the RADPACK package of [26].

The WMAP team [27] adopted an hybrid approximationZla- % In Lgausst % In Lk motivated by an expansion of the
true likelihood around the maximufhThis formulation has the advantage to be unbiased around the maximum but has not been
tested against the real likelihood function in the wings.

Once the likelihood functiort(aﬂ) is known, one is able to compu®(®) for a family of models. As we have seen,
temperatures on the sky are random Gaussian variables and then the ‘radical compression’ is thus valid and induces no loss
of information. The latter is true only if all the spectrum (in the limit of sensitivity of the experiment; the window function)
is specified. Whereas, for different reasons (partial sky coverage, noise correlation,...) only the sipelotnudis recovered:
the spectrum is approximated by step<irSuch description induces a loss of information which may have some effect on
the cosmological parameter estimation (bias and degeneracies). Douspis et al. [8] have shown that a better description of the
spectrum (power in banand slope in band) could decrease the bias. The second and third generation of experiments provide
(or will provide) better sensitivity, less correlated measurements which allows one to recover the spectrum with better resolution
in £ (see WMAP for example), decreasing therefore the bias. Most of the studies are nevertheless performed by using the set of
flat band estimates likelihood functions.

3. Goodness of fit

Once the (approximated) likelihood values of the models investigated are computed, one should find the best model
(maximum) and evaluate the quality of the fit before constructing the parameter constraints. As a general rule, one must judge
the quality of the fit before any serious consideration of the confidence intervals on parameters. This requires the application of
aGoodness of fifGOF) statistic. The latter is usually a function of both the model and the data, which reaches a maximum (or
minimum) when the data is generated from the theory. The ‘significance’ may then be defined as the probability of obtaining
gof > gofypg On this basis, it permits a quantitative evaluation of the quality of the best model’s fit to the data: if the probability
of obtaining the observed value of the GOF statistic (from the actual data set) is low (low significance), then the model should
be rejected. Without such a statistic, one does not know if the best model is a good model, or simply the ‘least bad’ of the family.

In the full likelihood analysis method, the best model (set of parameters) could be obtained by maximizing the likelihood
function of Eq. (3) and is defined Wpestin the following. One can easily note the Gaussian form of Eq. (3) in the data victor

Given the best model, the most obvious GOF statistic is then clgafly: d’- E'_l -d whereC = C((:)best) is the correlation

6 WhereLgauss= exp(—x2/2).
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matrix evaluated at the best model. For the Gaussian fluctuations we have assumed, this quantity fdlldisgriution, with
a number of degrees-of-freedom (DOF) approximately equal to the number of pixels minus the number of pafameters.

The use ofy2 method (ind Ty or any change of variables like in BJK approximation) makes even easier the computation of
the GOF. The obvious GOF statistics would just be one number, the value,of theluated at the minimungof = Xz(ébesﬂ-

It is of course true that if the number of contributing effective DOF is large, a power estimate will closely follow a Gaussian;
this, however, is never the case on the largest scales probed by a survey. Douspis et al. [28], have shown for exampi@ that the
approach leads to quantitatively different results than other, more appropriate GOF statistics.

When more elaborated approximations are used, the goodness of fit computation is less obvious. One should first reconstruct
the distribution of the estimators. This could be a natural output when Monte Carlo based methods are used fer the
extraction [20,21], but it is mostly unknown when one applies traditional methods. Douspis et al. [28] have proposed an
approximation which allows to one reconstruct the distribution from the shape of the flat-band likelihood findétiven
the latter is known, one should build a GOF statistique in order to compute to data probability given the best model (see [28]
for examples).

Knowing that the best model is indeed a good fit to the data, or that the data have a good chance to be generated from this
model, one should proceed by estimating the confidence intervals on the investigated parameters.

4, Confidence intervals

The estimation of confidence intervals is mostly a question of definition. Most of CMB analyses have been done in the
Bayesian framework and are thus dependent on the priors assumed. Some frequentist attempts have been performed in order to
eliminate such dependencies. The reader can read more about the comparison between the two methods in [29].

Typically, the frequentist analyses are related to the goodness-of-fit statistics and the probability distribution of data for
a given model (set of parameters). In the Bayesian approach, one reconstructs the conditional (posterior) probability density
function (pdf), P(Otrue|dobs) for the unknown®srue given the observatlodobs from the pdf (which dependency i@ is
known) for observingd using Bayes theorem. The latter evaluated/g¥s is known as Likelihood function? (dopd @) =
L(dobs ®).

P(@true|dobs) = L(dobd @true)P(étrue)/P(dobs)- ©)

The denominator is just a normalization factor, and thus one of the issues is what to use for thRa((é[iQé). If one knows
the likelihood and fixes the prior (usually taken as uniform in terms of the parameters) then one knows the posterior probability
distribution. A Bayesian credible region (interval) for a parameter is the range of parameter values that encloses a fixed amount
of such probability. As the questions asked in the two approaches are quite different, one does not expect necessarily the intervals
computed in the two methods to be similar.

| will described in the following two ways of estimating the confidence intervals referred as marginalisation and
maximization. These two approaches are usually presented in opposition. In the limit of a Gaussian shaped likelihood with
linear dependencies in the parameters, the two technigues are equivalent (see demonstration in [30]). Unfortunately, this is not
the case in cosmological parameter estimation. Both techniques consist in two steps: first one reduces the number of parameters
in order to visualize the likelihood (or pdf) function (or surface in 2 dimensions). One then computes the confidence intervals
for each parameter.

4.1. Marginalisation

In CMB analyses, a® is usually a vector of 5 to 10 parameters, it is quite hard to visualize the posterior (or likelihood)
distribution. It is common then to retrieve one-dimensional probability by using an integration method (marginalisation). This
technique is mostly used in Bayesian approaches to parameter estimation. Let us assine thay, ..., z) and we are
interested in plotting the likelihood and finding the 68% confidence intervals, amhere the other parameters have been
marginalised over. One usually computes:

7 This recipe does not strictly apply in the present case, because the parameters are non-linear functions of the data; it is nevertheless standard
practice. In any case, the number of pixels is in practice much larger than the number of parameters. The numbers of degrees of freedom is
also less than the number of pixels because of the correlations between pixels (nondiagonal correlation matrix). Nevertheless, the matrices are
mainly diagonal and thgof is then mostly insensitive to the small reduction of the number of DOF.

8 This technique could be used both ways, allowing to reconstruct the likelihood when the distribution is known.

9 Inour problem dyps should be taken as a set of flat band powers.
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L(x) = / .../L(dobsj(x, Yooos))P(x,y, ..., 2)dyd - dz, (10)
Xm xX— x+

/ L(dopdx) dx = 0.5, / L(dopgx) dx = 0.16, / L(dopgx) dx = 0.84, 11
0 0 0

where we assume thatis a positive variablef is normalized to unity and is a uniform prior on the parametef2[x—, x+]

is then referred as the 68% confidence intervalxowith all the other parameters marginalised over apdis quoted as

the mean value (such computation of intervals in referred as EQT for ‘equi-probabilitylfailhis may be seem easy in

one dimension but could become cumbersome when dealing with 10 dimensional likelihood function (especially for the multi
dimensional integral of the marginalisation Eg. (10)). In order to be less and less dependent of all these effects, and to decrease
the computational time of this step, maximization technique is mostly used.

4.2. Maximization

For the maximization technique, one assumes also a uniform prior in terms of the parameters (tfgically. .., z) = 1)
but defines the pdf likelihood then) in one dimension as:

L(x)= ymaé[ﬁ(dobsj(x, Yoo D)) Py, .0 2) (12)

,,,,,

which means that for each value efone takes the maximum of the likelihood on all the other dimensions. Then, instead
of integrating the resulting one dimensional likelihood like in Eq. (10) for obtaining the confidence intervals, one considers

z <z>

Likelihood

Tl IS WSS 8 N I's
0 2000 4000 6000
Ir— x .o

Fig. 3. Comparison between marginalisation and maximization estimation of confidence intervals in an extreme case. The black solid curve is a
one-dimensional likelihood function. The blue vertical dashed lines mark the mean and boundaries of 68% CL interval computed by integration
([x—, x+1]). In that case the maximum of the likelihodd= 7580 is just outside the interval. The green dotted lines are obtained with the same
method but with takings = x2 as variable (see text). Finally the red solid vertical lines shows the interval computed by taking values of the
likelihood higher than ex@-Ax2/2) x Lmax Where hereLmax=1 andAx2=1.

10 The prior is usually taken as uniform i@t in order to show our ignorance on the true valuethfeven if there is no basis in Bayesian
theory. In that sense, the interval will depend on the choice of parameters. Assprsidf as parameters and thus a uniform priogimvill
resume in a different interval (see Fig. 3).

11 pye to the non-linear dependency of the likelihood against the parameters, the shape of the latter could be highly non Gaussian. In such
cases, it could occur that the maximum of the likelihood (described earlier as the best model) does not fall inside the 68% confidence interval
(see, for example, Fig. 3). In that case one should recompute the interval following the HPD (for ‘higher posterior distribution’) technique, by
fixing £(x—) = L£(x+) and [ L (dopgx) dx = 0.68.
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the values of the likelihood. For example, the boundaries of the 68% CL region are that where the likelihood has fallen by a
factor e /2 from its maximum,Cmax. As demonstrated in [30] this approximation becomes exact for multivariate Gaussian

forms. One can define different CL intervals by choosmg2 such asL(xy)/Lmax= e—AaXZ/2 wherea marks the confidence

level. In one dimensionAaX2 =1,4,9 for respectivelyxr = 68, 95, 99% CL. Fig. 3 shows an example in such a case. This
technigue does not give the real 68, 95 etc. confidence intervals, obtained only with Monte Carlo simulations by definition, but
it is independent of the choice of the paramenelverSUsz); the maximum of the likelihood is always inside every interval

by definition, and it is computationally not consuming. Arguments and discussion about the different techniques can be found
in [31].

5. Practical issues

We have seen in the previous sections some of the existing statistical tools needed to perform a proper cosmological
parameter estimation. As one would like to investigate a large number of parameters, and so a large number of models, some
practical issues may be taken in consideration. | will describe in the following two methods (and some techniques) which
correspond to the two actual ways of determining cosmological parameters from CMB anisotropies.

5.1. Cl's computations

The release of CMBFAST [32] has brought a major improvement in cosmological parameter estimations. The ability to
compute a theoretical power spectrum in less than one minute (instead of one hour precedently) has allowed different groups
to investigate many parameters in the same analysis. Different versions of the code have improved the first release by taking
into account many physical effects (neutrino, reionisation, isocurvature modes,...) and improved the computation by separating
small scales effects from large scales ones (‘k-splitting’). Derived from this initial code, CAMB [33] increased the speed of
computation by using FORTRAN 90 facilities. Finally, DASH [34] allows one to comgts spectra in few seconds, by
interpolating a precomputed grid of spectra in Fourier space. All these codes are more and more efficient and fast, and are being
adapted to be used in parallel computing.

5.2. Gridding

The gridding method consists in computing the likelihood values of different models following a periodical increment
for each selected parameter, resulting iVgaram dimensional matrix. Historically, the parameter estimation from CMB
anisotropies started with small grids of models, typically 3 or 4 free parameters with around 10 values each, the other ones
fixed to the supposed best value of the moment [35,36]. Then the number of parameters increased with the increasing speed of
computer processors and the development of faster codes to compuatgdie.g., CMBFAST).

One of the advantages of gridding is that one can compute a grid of models, store it and then compute the likelihood with
one’s set of data. If new data come out, one has just to compute the likelihood part again.

As the number of models investigated increases, the storage could become a problem [30]. Then, some compression
techniques, in combination with approximated interpolations, could be applied in order to store the necessary information
only. TheC,'s computation time may also become a problem. There again approximations based on the known behavior of the
C's with parameters have been developed [30].

One of the inconvenients of the gridding method is that the position of the maximum of the likelihood grid is highly
dependent of the grid itself. Namely, the maximum falls necessarily on one point of the grid. This effect is also recurrent
when one uses the maximization technique. In order to avoid this, spline interpolation techniques are used when looking for the
maximum along one or more parameters [30].

Finally, by definition, the gridding method is well adapted to multi-processors and data-grid method.

5.3. Monte Carlo Markov Chains

During the last few years, as an alternative to the gridding method, the Markov Chain Monte Carlo (MCMC) likelihood
analyses had become a powerful tool in cosmological parameter estimation. This method generates random draws from the
posterior distribution that is supposed to be a ‘realistic’ sample of the likelihood hypersurface. The mean, variance, confidence
levels can then be derived from this sample. Unlike the gridding method, scaling exponentially with the number of parameters,
the MCMC method scales linearly withiparamallowing one to explore a larger set of parameters or to do the analysis faster.

Two issues should be highlighted in this method. The first one is the step in the random sampling. Typically, the step is taken
as the standard deviation for each parameter. If it is too large, the chain can take a infinite time to converge and the acceptance
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rate is very low. If it is too small the chain will be highly correlated leading also to a slow convergence. A second issue is the
convergence of the chain. At the beginning the sampling of the likelihood is very correlated and is not a ‘fair’ representation of
the posterior distribution. After a ‘burning period’, the chain converges, the samples are independent and the likelihood function
could be retrieve. The criterium of convergence is not a well defined quantity.

More explanations and applications could be found in [37,38] and a FORTRAN 90 set of routines is available online [39].

6. Conclusions

In order to derive the cosmological parameters in a given framework from the temperature fluctuation of the CMB, many
steps are needed. When the observed power spectrum is derived, one could use different techniques to estimate successively
the (approximated) likelihood value of the family of models (parameters) investigated, the best model and its goodness of fit,
and finally the confidence intervals on each parameter. Each of these steps may be highly cpu and memory consuming. With
better and better observations, sensitivity and sky coverage, brute force maximum likelihood methods become impossible. Many
approximations and techniques have then been developed during the last years, allowing one to analyze more and more data
with increasing speed. When the appropriate method is used, this leads to an unbiased estimate of the cosmological parameters.
These developments have demonstrated that efficient methods could be developed to take full advantage of data at the Planck
accuracy and allow one to determine parameters of cosmological relevance to a remarkably high accuracy. This is opening the
golden road of precision cosmology.
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