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Abstract

We present a short review on cosmological isocurvature perturbations, which some early universe models predict in
to the standard adiabatic perturbation. After defining the isocurvature perturbations, we analyse their evolution w
framework of the standard perturbation theory. We then explain how these perturbations can be constrained by the C
We finally discuss some mechanisms that generate isocurvature perturbations.To cite this article: D. Langlois, C. R. Physique
4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Perturbations cosmologiques isocourbures et le CMB. Nous donnons une introduction aux perturbations cosmologi
isocourbures, qui sont prédites par certains modèles de cosmologie primordiale, en plus des perturbations ad
habituelles. Après avoir défini la notion de perturbations isocourbures, nous analysons leur évolution dans le cadre de
standard des perturbations cosmologiques. Nous expliquons ensuite comment ces perturbations peuvent être contra
observations du CMB. Finalement, nous présentons quelques mécanismes qui engendrent des perturbations isocourPour
citer cet article : D. Langlois, C. R. Physique 4 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

It is usually not emphasized enough that the CMB anisotropies are sensitive not only to the homogeneous matter c
the Universe, but also to the initial conditions for cosmological perturbations. CMB anisotropies thus represent an im
observational test for any early universe mechanism explaining the origin of cosmological fluctuations. With the inc
precision of the available CMB data, it becomes possible to refine the constraints on the ‘primordial fluctuations’,
investigate whether they deviate from the standard adiabatic assumption.

To be precise, ‘initial’ or ‘primordial’ perturbations are defined deep in the radiation era but at temperatures low e
i.e., typically after nucleosynthesis, so that the main cosmological components reduce to the usual photons, baryons
and cold dark matter (CDM). Moreover, only modes with wavelength larger than the Hubble radius in this primordial
be relevant today for CMB anisotropies.

The above various cosmological species can be characterized by their number density,nX, and their energy densityρX .
Linear perturbations of these quantities are defined as

δnX = nX − n̄X, δρX = ρX − ρ̄X, (1)

E-mail address:langlois@iap.fr (D. Langlois).
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where the bar corresponds to the homogeneous (unperturbed) quantity.
The adiabatic modeis defined as a perturbation affecting all the cosmological species such that the relative ratio

number densities remain unperturbed, i.e., such that

δ(nX/nY )= 0. (2)

It is associated with a curvature perturbation, via Einstein’s equations, since there is a global perturbation of the matte
This is why the adiabatic perturbation is also calledcurvatureperturbation. In terms of the energy density contrasts, define

δX ≡ δρX

ρX
, (3)

the adiabatic perturbation is characterized by the relations

1

4
δγ = 1

4
δν = 1

3
δb = 1

3
δc. (4)

They follow directly from the prescription (2), each coefficient depending on the equation of state of the particuler spe
Since there are several cosmological species, it is also possible to perturb the matter components without pertu

geometry. This corresponds toisocurvatureperturbations, characterized by variations in the particle number ratios but
vanishing curvature perturbation. The variation in the relative particle number densities between two species can be
by the so-calledentropy perturbation

SA,B ≡ δnA

nA
− δnB

nB
. (5)

When the equation of state for a given species is such thatw ≡ p/ρ = Const, then one can re-express the entropy perturba
in terms of the density contrast, in the form

SA,B ≡ δA

1+wA
− δB

1+wB
. (6)

It is convenient to choose a species of reference, for instance the photons, and to define the entropy perturbations o
species relative to it:

Sb ≡ δb − 3

4
δγ , (7)

Sc ≡ δc − 3

4
δγ , (8)

Sν ≡ 3

4
δν − 3

4
δγ , (9)

thus define respectively thebaryon isocurvature mode, theCDM isocurvature mode, and theneutrino isocurvature mode. In
terms of the entropy perturbations, the adiabatic mode is obviously characterized bySb = Sc = Sν = 0.

In summary, we can decompose a general perturbation, described by four density contrasts, into one adiabatic
three isocurvature modes. In fact, the problem is slightly more complicated because the evolution of cosmological pert
is governed by second order differential equations and a perturbed (perfect) fluid is described locally by its density
and by its velocity field. The ‘primordial’ perturbations are constrained by the requirement that the perturbations do no
when going backwards in time deep in the radiation era. With this prescription, there remains one arbitrary relative
between the species, which gives an additional mode, usually named theneutrino isocurvature velocityperturbation.

At this stage, it is worth warning the non-expert reader about the somewhat loose terminology used in the literat
usually refers to an isocurvature mode with the meaning that this mode was ‘initially’ an isocurvature mode, i.e.,
the radiation era. But this ‘primordial’ isocurvature mode, when considered at later times, for instance at last scat
today, can have an adiabatic component, because the decomposition between adiabatic and isocurvature is not tim
A ‘primordial’ pure isocurvature perturbation can generate later an adiabatic contribution if the energy densities of the
species evolve differently so that the balance that ensured an unpertubed total energy density is lost.

The CMB is a powerful way to study isocurvature perturbations because (primordial) adiabatic and isocu
perturbations produce very distinctive features on the CMB anisotropies. Whereas an adiabatic initial perturbation g
a cosine oscillatory mode in the photon–baryon fluid, leading to an acoustic peak at� � 220 (for a flat universe), a pur
isocurvature initial perturbation generates a sine oscillatory mode resulting in a first peak at�� 330.

The unambiguous observation of the first peak at� � 220 has eliminated the possibility of a dominant isocurvat
perturbation. The recent observation by WMAP of the CMB polarization has also confirmed that the initial perturb
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mainly an adiabatic mode. However, this does not exclude the presence of a subdominant isocurvature contributio
could be detected in future high-precision experiments such as Planck.

On the theoretical side, there has been recently a growing interest incorrelated mixtures of adiabatic and isocurvatu
perturbations, which can be generated for instance in multiple-field inflation. The detection of a (correlated or unco
isocurvature mode, if any, would be an invaluable clue to understand the physics of the early universe.

2. Theory of cosmological perturbations

2.1. Evolution equations

We now briefly recall the basic equations derived in the theory of cosmological perturbations (see, e.g., [1]), which a
to define precisely the primordial isocurvature perturbations and to follow their evolution during the history of the unive

Let us start with the scalar perturbations of the spacetime geometry, which can be described by two scalar potentiaΦ and
Ψ , so that the perturbed (flat) Friedmann–Lemaître–Robertson–Walker (FLRW) metric reads

ds2 = −a2(η)(1+ 2Φ)dη2 + a2(η)(1− 2Ψ )δij dxi dxj . (10)

This description corresponds to the so-called longitudinal gauge. We have introduced the conformal timeη rather than the
cosmic timet , the two being related by dt = a dη.

Instead of the energy density contrastsδA defined in the longitudinal gauge (10), it is convenient to introduce the slig
redefined energy density contrasts (defined in the flat-slicing gauge):

∆γ = δγ − 4Ψ, ∆ν = δν − 4Ψ, ∆b = δb − 3Ψ, ∆c = δc − 3Ψ. (11)

Let us now present the system of equations governing the evolution of the matter perturbations, which involve the
contrasts of the four cosmological species and their peculiar velocity potentials, denoted byVA. For convenience, we wor
directly in the Fourier space rather than in ordinary space, according to the definition

fk =
∫

d3x

(2π)3/2
e−ik·xf (x). (12)

To make the notation lighter, we will drop, in the following, the subscriptk for the various perturbations.
We first have four equations of conservation, one for each species, that can be written (in Fourier space):

∆̇ν = 4

3
kVν,

∆̇c = kVc,

∆̇γ = 4

3
kVbγ ,

∆̇b = kVbγ , (13)

where a dot denotes a derivative with respect to the conformal time. Since the baryon and photon fluids are strongly
via Thomson scattering before the decoupling, one can take a velocity,Vbγ , common to the baryon and photon fluids. After t
decoupling, the fluid description no longer applies and one must resort to the Boltzman equation to solve for the evo
the photon gas.

We then have three Euler equations, two for the independent fluids of CDM and neutrinos, and one for the baryon
fluid:

V̇ν = −k

[
∆ν

4
+Ψ +Φ − σν

]
,

V̇c = −HVc − kΦ,

V̇bγ = − 3Ωb

4Ωγ + 3Ωb
HVbγ − k

4Ωγ

4Ωγ + 3Ωb

[
∆γ

4
+Ψ

]
− kΦ, (14)

whereH is the comoving Hubble parameter defined byH ≡ a′/a. In the last equation, the coefficientsΩA are time dependen
since the ratio of the energy density of a given species with respect to the critical energy density, will change with time
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To close the above system of equations, one needs the Einstein equations, which express the metric perturbation
of the matter perturbations. Only two components of the Einstein equations are useful, the others being redundant, an
the Poisson equation

−
[
k2

H2
+ 9

2
(1+w)

]
Ψ = 3

2

∑
X

ΩX

[
∆X − 3H

k
(1+wX)VX

]
, (15)

and the anisotropic stress equation,

k2

H2
(Ψ −Φ)= 6Ωνσν, (16)

whereσν represents the anisotropic stress due to the neutrinos (which thus require a decription beyond the per
approximation). To get the evolution ofσν , one must use a higher moment of the Boltzmann equation, which gives

σ̇ν = − 4

15
kVν, (17)

where other terms on the right-hand side have been neglected.
The above equations govern (at least in the fluid approximation) the evolutions of the perturbations. Before using

define the primordial perturbations and study their subsequent evolution, it is instructive to discuss their statistical pro

2.2. Power spectra and correlations

In cosmology, perturbations are treated as homogeneous and isotropic random fields. Primordial perturbations a
assumed to be Gaussian, in which case their statistical properties can be summarized simply in terms of their power
defined for a quantityf by〈

fkf
∗
k′

〉 = 2π2k−3Pf (k)δ(k − k′). (18)

When primordial perturbations are described byseveral quantities, such as is the case with mixtures of adiabatic
isocurvature perturbations, one must also define, for any pair of random fieldsf andg, across-correlation spectrumPf,g(k)

by the following expression (see [2,3])

�〈
fkg

∗
k′

〉 = 2π2k−3Pf,g(k)δ(k − k′). (19)

By renormalizing the cross-correlation spectrum, one may define acorrelation coefficient, comprised between−1 and 1:

cos∆(k)= Cf,g(k)√
Pf (k)

√
Pg(k)

. (20)

The two extreme values cos∆= +1 and cos∆= −1 correspond respectively to full correlation and full anti-correlation.
Before the work [2], only independent mixtures of adiabatic and isocurvature modes, i.e., with vanishing correlatio

considered in the literature. This statistical independence means that the quantitiesΦ andS can be expressed as

Φ =P1/2
Φ e1, S =P1/2

S e2, (21)

wheree1 and e2 are independentnormalized centered Gaussian random fields (i.e., such that〈ei (k)〉 = 0, 〈ei (k)e∗j (k′)〉 =
δij δ(k − k′), for i, j = 1,2), and where the subscriptsk are implicit. With the assumption (21), one obtains immediate
vanishing correlation.

Clearly, if one takes into account all five possible initial modes, as mentioned in the introduction, the most general (G
perturbation random field must be described by a 5× 5 symmetric correlation matrix, as discussed in [4].

2.3. Long wavelength perturbations

As mentioned earlier, primordial perturbations are defined deep in the radiation era on super-Hubble wavelengths,
that k � aH . In order to characterize all primordial modes, one can expand the perturbative quantities in terms of th
parameterkη, so that

X =X(0) +X(1)kη+X(2)(kη)2 + · · · . (22)

One then substitutes these expansions in the equations governing the evolution of the perturbations. This allows us
all perturbations in terms of the primordial curvature perturbationΦ̂ and the three primordial entropy perturbations,Ŝb, Ŝc and
Ŝν (ignoring the neutrino isocurvature velocity mode).
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During most of their history, the relevant cosmological modes remain outside the Hubble radius (k � aH ). In order to study
easily the super-Hubble evolution of adiabatic and isocurvature perturbations, it is convenient to introduce the quantity

ζ = −Ψ −H
δρ

ρ̇
, (23)

defining the curvature perturbation on hypersurfaces of uniform (total) energy density. A similar quantity can be defined
individual fluid,

ζX = −Ψ −H
δρX

ρ̇X
. (24)

Using the evolution equations written above, one can show that the evolution ofζ on super-Hubble scales is given by

ζ̇ = − H

ρ + P

(
δP − c2

s δρ
)
, (25)

where the expression between parenthesis, involving thetotal fluid, can be interpreted as a non-adiabatic pressure. The
expression applies for each of the individual fluids as long as they are non-interacting. For each such individual fluζX is
conserved on super-Hubble scales, since the equation of state is barotropic. Moreover, since

SA,B = 3(ζA − ζB) (26)

one finds that the isocurvature perturbation between two non-interacting fluids is conserved on super-Hubble scales.
As for the globalζ , it is not conserved if there are isocurvature perturbations, which make the non adiabatic pressure

It is possible to compute explicitly the expression of the gravitational potential perturbation during thematter dominated erain
terms of the primordial perturbations [3]. For an illustrative purpose, we will discuss here only the case of CDM isocu
perturbations, which is the case the most studied in the literature. In the matter era, the gravitational potential pertu
given by

Φmatter= 3

10

(
3+ 4

5
ΩRD
ν

)
Φ̂ − 1

5
ΩMD
c Sc � Φ̂ − 1

5
Sc, (27)

whereΩRD
ν is the energy density fraction of neutrinos in the radiation era andΩMD

c is the energy density fraction of CDM i
the matter era.

Using these results, one can express the CMB anisotropies on large scales (i.e., on scales that are super-Hubble
of last scattering) explicitly in terms of the primordial perturbations. One finds(

*T

T

)
= 1

10

(
3+ 4

5
ΩRD
ν

)
Φ̂ − 2

5
ΩMD
c Sc � 1

3
Φ̂ − 2

5
Sc. (28)

By comparing the above expressions (27) and (28), one recovers the well-known results that*T/T � Φ/3 for pure adiabatic
initial conditions and*T/T � 2Φ for pure isocurvature perturbations.

3. CMB constraints on isocurvature modes

The first bounds on isocurvature perturbations assumed uncorrelated modes [6]. Recently, however, several w
analysed the CMB data looking for correlated adiabatic-isocurvature perturbations. Considering only the adiabatic m
oneisocurvature mode, the following spectra have been assumed:

PR(k)=A2
(
k

k0

)nad−1
,

PS(k)= B2
(
k

k0

)niso−1
, (29)

PRS(k)= AB cos*

(
k

k0

)(nad+niso)/2−1
, (30)

wherek0 is an arbitrary pivot scale and we have introduced, instead of the gravitational potential perturbationΦ, the curvature
perturbationR, often used in the literature, related toΦ during the radiation-dominated era by

R = 3
Φ. (31)
2
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Ignoring the overall amplitude of the fluctuations, the above parametrization means that the initial perturbati
characterized by four parameters: the adiabatic indexnad, the isocurvature indexniso, the isocurvature/adiabatic amplitude ra
B/A and the correlation parameter cos∆. This represents three more parameters than the usual description, which includ
the adiabatic indexnad.

Allowing for isocurvature perturbations in addition to adiabatic perturbations introduces additional degeneracies in
terpretation of the CMB data. In particular, analysing the CMB data with the prior assumption that primordial perturbat
purely adiabatic could lead to an incorrect determination of the cosmological parameters if the real universe contains a
vature contribution. To lift these degeneracies, the measurement of polarisation is crucial, as it was shown quantitativ

Several very recent papers [7–9] have considered the isocurvature modes in the light of the WMAP data, improvin
previous studies [10,11]. The present situation is that there is no significant improvement of the fit to the data, from w
can conclude that the present data do not require an isocurvature component as parametrized above. In a differen
positive perspective, this means that these analyses provides us with constraints on the maximal contribution of an iso
component to the CMB signal, which can be turned into constraints on the early universe models. Note that the cons
the CDM isocurvature mode are much more stringent than those on the other types of isocurvature modes.

4. Generation of isocurvature perturbations

Isocurvature perturbations have been invoked in many cosmological scenarios. Pure isocurvature initial conditi
even been proposed as an alternative to the standard adiabatic initial conditions, until the observation of the first aco
rules out this idea. Isocurvature perturbations can also play an important role in models inspired by particle physics
cosmological axions [12] and Affleck–Dine baryogenesis [13].

A point worth noticing, however, is that, in contrast with the adiabatic mode which can always be seen as a pert
of the geometry, the isocurvature modes can be erased during the thermal history of the universe. Indeed, if the micr
processes are such that all species are locally in a thermal equilibrium that depends only on the local temperatureT , then all the
number densities depend only onT , which excludes any isocurvature perturbation. Therefore, the existence and the ev
of the isocurvature modes are very sensitive to the microphysical processes that took place in the early universe.

Below, we discuss two types of mechanisms than can produce isocurvature perturbations and which have been exp
actively during the last few years.

4.1. Multiple-field inflation

In its simplest version, inflation is driven by a single scalar field, which generates an approximately scale-invariant G
curvature perturbations [14]. This single field then decays into ordinary matter and automatically gives primordial a
perturbations. However, current models describing high energy physics usually contain many scalar fields, which sug
possibility that several scalar fields play a significant role during inflation.

Multiple-field inflation can generate, in addition to the adiabatic component, an isocurvature contribution [15
appropriate conditions, multiple-inflation can even generatecorrelatedadiabatic and isocurvature perturbations [2,16,17]
the case of two uncoupled free massive scalar fields, one can show that the ‘primordial’ curvature and entropy pertu
i.e., deep in the radiation era, can be expressed as linear combinations of the scalar field fluctuations at Hubble radiu
i.e.,

Φ̂ =A1δφ1 +A2δφ2, Ŝ = B1δφ1 +B2δφ2. (32)

If the weights are such that, say,A2 �A1 andB1 � B2, then one obtains uncorrelated adiabatic and isocurvature perturba
This is the case for instance if inflation is driven byφ1 while φ2 is a very light scalar field and remains passive during
inflationary phase relevant for current cosmological scales. Then, essentially, the fluctuations ofφ1 generate the adiabat
component while the fluctuations ofφ2 give the isocurvature component. However, if our cosmological ‘window’ corresp
to a phase of double inflation when both scalar fields have a dynamical role, then the weights in (32) can be of the sa
of magnitude, which leads to strong correlations between the adiabatic and isocurvature perturbations.

It can also be convenient to define adiabatic and isocurvature modes during inflation [16]. Theseinstantaneous mode
can be defined in terms of the perturbations of the two scalar fields. The adiabatic and isocurvature perturbation
interpreted as the projections respectively along and orthogonal to the background trajectory. One must not conf
modes with the ‘primordial’ adiabatic and isocurvature modes, defined deep in the radiation era. Formally, they can b
by a transformation of the form [11](R̂rad

Ŝ

)
=

(
1 TRS
0 T

)(
R∗
S∗

)
, (33)
rad SS
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where the subscript∗ denotes horizon crossing during inflation.TRR = 1 since the curvature perturbation is conserv
for purely adiabatic perturbations whereasTSR = 0 because adiabatic perturbations cannot source entropy perturbatio
large scales. The other terms are model dependent. A potentially observable effect of some multi-field inflation mod
generation of a significant non-Gaussianity in the primordial perturbations, as recently discussed in [18], in contrast wi
field inflation [19].

4.2. Curvaton

Another scenario related to isocurvature perturbations has been recently explored: the curvaton scenario [20]. I
on the fact that a pure isocurvature primordial perturbation can generate a curvature perturbation at late times. The cσ
is a scalar field that is very light during inflation and acquires Gaussian fluctuations. These fluctuations will give isoc
fluctuations. When the Hubble parameter decreases below the curvaton mass, the curvaton oscillates and behaves as
matter. If it decays sufficiently late, it ends up dominating the matter content of the Universe. This is associated
transformation of the isocurvature perturbations into a curvature perturbation. One gets

R̂ = − r

4 + 3r
δσ , (34)

wherer is the ratioρσ /ρrad when the curvaton decays. In the simplest version, the curvaton perturbations are totally co
into adiabatic perturbations. One can, however, envisage scenarios where the scenario will also generate an is
component in addition to the curvature one [21]. If this is the case the adiabatic and isocurvature perturbations
correlated (or anti-correlated) since they are produced by the same field. The curvaton scenario can also produce
non-Gaussianities in the primordial perturbations.
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