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Abstract

We present a short review on cosmological isocurvature perturbations, which some early universe models predict in addition
to the standard adiabatic perturbation. After defining the isocurvature perturbations, we analyse their evolution within the
framework of the standard perturbation theory. We then explain how these perturbations can be constrained by the CMB data.
We finally discuss some mechanisms that generate isocurvature perturbetiortsthis article: D. Langlois, C. R. Physique
4 (2003).
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Résumé

Perturbations cosmologiques isocourbures et le CMB. Nous donnons une introduction aux perturbations cosmologiques
isocourbures, qui sont prédites par certains modéles de cosmologie primordiale, en plus des perturbations adiabatiques
habituelles. Aprés avoir défini la notion de perturbations isocourbures, nous analysons leur évolution dans le cadre de la théorie
standard des perturbations cosmologiques. Nous expliquons ensuite comment ces perturbations peuvent étre contraintes par les
observations du CMB. Finalement, nous présentons quelques mécanismes qui engendrent des perturbations isBoourbures.
citer cet article: D. Langlois, C. R. Physique 4 (2003).
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1. Introduction

It is usually not emphasized enough that the CMB anisotropies are sensitive not only to the homogeneous matter content of
the Universe, but also to the initial conditions for cosmological perturbations. CMB anisotropies thus represent an important
observational test for any early universe mechanism explaining the origin of cosmological fluctuations. With the increasing
precision of the available CMB data, it becomes possible to refine the constraints on the ‘primordial fluctuations’, and to
investigate whether they deviate from the standard adiabatic assumption.

To be precise, ‘initial’ or ‘primordial’ perturbations are defined deep in the radiation era but at temperatures low enough,
i.e., typically after nucleosynthesis, so that the main cosmological components reduce to the usual photons, baryons, neutrinos
and cold dark matter (CDM). Moreover, only modes with wavelength larger than the Hubble radius in this primordial era will
be relevant today for CMB anisotropies.

The above various cosmological species can be characterized by their number dgnsityd their energy densityy .

Linear perturbations of these quantities are defined as

Sny =nx —iy, Spx = px — PX» 1
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where the bar corresponds to the homogeneous (unperturbed) quantity.
The adiabatic modds defined as a perturbation affecting all the cosmological species such that the relative ratios in the
number densities remain unperturbed, i.e., such that

S(nx/ny) =0, @

Itis associated with a curvature perturbation, via Einstein’s equations, since there is a global perturbation of the matter content.
This is why the adiabatic perturbation is also calbedvatureperturbation. In terms of the energy density contrasts, defined by

Sy = ——, 3

the adiabatic perturbation is characterized by the relations

18 —15 —15 —15 4)
4% T3 T30 T 3%
They follow directly from the prescription (2), each coefficient depending on the equation of state of the particuler species.
Since there are several cosmological species, it is also possible to perturb the matter components without perturbing the
geometry. This corresponds &ocurvatureperturbations, characterized by variations in the particle number ratios but with
vanishing curvature perturbation. The variation in the relative particle number densities between two species can be quantified
by the so-calle@ntropy perturbation
dnyg énp
Sap=-—"———.
nA np
When the equation of state for a given species is suchutiatp/p = Const, then one can re-express the entropy perturbation
in terms of the density contrast, in the form

®)

3A 3p
1+wy 14+wp’
It is convenient to choose a species of reference, for instance the photons, and to define the entropy perturbations of the other
species relative to it:

(6)

SA.B=

3
S =% = 2% (7)
3
Se=bc = 38y, (8)
3. 3
Sv = Z(Sv — Z(Sy, (9)

thus define respectively thearyon isocurvature mogehe CDM isocurvature modeand theneutrino isocurvature modén
terms of the entropy perturbations, the adiabatic mode is obviously characterifga=hy, = S, =0.

In summary, we can decompose a general perturbation, described by four density contrasts, into one adiabatic mode and
three isocurvature modes. In fact, the problem is slightly more complicated because the evolution of cosmological perturbations
is governed by second order differential equations and a perturbed (perfect) fluid is described locally by its density contrast
and by its velocity field. The ‘primordial’ perturbations are constrained by the requirement that the perturbations do not diverge
when going backwards in time deep in the radiation era. With this prescription, there remains one arbitrary relative velocity
between the species, which gives an additional mode, usually namedutrao isocurvature velocitgerturbation.

At this stage, it is worth warning the non-expert reader about the somewhat loose terminology used in the literature. One
usually refers to an isocurvature mode with the meaning that this mode was ‘initially’ an isocurvature mode, i.e., deep in
the radiation era. But this ‘primordial’ isocurvature mode, when considered at later times, for instance at last scattering or
today, can have an adiabatic component, because the decomposition between adiabatic and isocurvature is not time-invariant.
A ‘primordial’ pure isocurvature perturbation can generate later an adiabatic contribution if the energy densities of the various
species evolve differently so that the balance that ensured an unpertubed total energy density is lost.

The CMB is a powerful way to study isocurvature perturbations because (primordial) adiabatic and isocurvature
perturbations produce very distinctive features on the CMB anisotropies. Whereas an adiabatic initial perturbation generates
a cosine oscillatory mode in the photon—baryon fluid, leading to an acoustic peéak a0 (for a flat universe), a pure
isocurvature initial perturbation generates a sine oscillatory mode resulting in a first feak380.

The unambiguous observation of the first peaké at 220 has eliminated the possibility of a dominant isocurvature
perturbation. The recent observation by WMAP of the CMB polarization has also confirmed that the initial perturbation is
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mainly an adiabatic mode. However, this does not exclude the presence of a subdominant isocurvature contribution, which
could be detected in future high-precision experiments such as Planck.

On the theoretical side, there has been recently a growing interestriglated mixtures of adiabatic and isocurvature
perturbations, which can be generated for instance in multiple-field inflation. The detection of a (correlated or uncorrelated)
isocurvature mode, if any, would be an invaluable clue to understand the physics of the early universe.

2. Theory of cosmological perturbations
2.1. Evolution equations

We now briefly recall the basic equations derived in the theory of cosmological perturbations (see, e.g., [1]), which are useful
to define precisely the primordial isocurvature perturbations and to follow their evolution during the history of the universe.

Let us start with the scalar perturbations of the spacetime geometry, which can be described by two scalar pbtandals,
¥, so that the perturbed (flat) Friedmann—Lemaitre—Robertson—Walker (FLRW) metric reads

ds? = —a?(n) (1 + 20) dn? + a?(n) (1 — 29)8;; dx’ dx/ . (10)

This description corresponds to the so-called longitudinal gauge. We have introduced the conformgatdtiner than the
cosmic timer, the two being related byrd= a dy.

Instead of the energy density contrasfsdefined in the longitudinal gauge (10), it is convenient to introduce the slightly
redefined energy density contrasts (defined in the flat-slicing gauge):

Ay =8, —4W, Ay,=8,—4W, Ap=05,—3¥, A.=8 -3V (11)

Let us now present the system of equations governing the evolution of the matter perturbations, which involve the density
contrasts of the four cosmological species and their peculiar velocity potentials, denoted Bgr convenience, we work
directly in the Fourier space rather than in ordinary space, according to the definition

d3 ,
fe= [ G 0o (12)

To make the notation lighter, we will drop, in the following, the subsdkifdr the various perturbations.
We first have four equations of conservation, one for each species, that can be written (in Fourier space):

. 4

Ay = éka

Ac =kVe,

. 4

Ay = ékay,

Ay =kVpy. (13)

where a dot denotes a derivative with respect to the conformal time. Since the baryon and photon fluids are strongly coupled
via Thomson scattering before the decoupling, one can take a velggjtycommon to the baryon and photon fluids. After the
decoupling, the fluid description no longer applies and one must resort to the Boltzman equation to solve for the evolution of
the photon gas.

We then have three Euler equations, two for the independent fluids of CDM and neutrinos, and one for the baryon—photon
fluid:

. Ay
Vv:—k T—FW—F@—()’V s

Ve=—HV. —k®,

: 392 42, Ay

Vby =—————HVpy, —k———| — + ¥ | —k®, 14
b= " aq, v as, b 49y+39b[ 2t (14

where’H is the comoving Hubble parameter definedHfy= a’/a. In the last equation, the coefficiens, are time dependent

since the ratio of the energy density of a given species with respect to the critical energy density, will change with time.
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To close the above system of equations, one needs the Einstein equations, which express the metric perturbations in terms
of the matter perturbations. Only two components of the Einstein equations are useful, the others being redundant, and they are
the Poisson equation

K 9 3 3H
- = +-@ v=2Y"2x|lax -=a 1
[H2+ 5( +w)] 5 Ex X|: x = ( +wx)Vx], (15)
and the anisotropic stress equation,
k2
¥~ ) =620, (16)

where o), represents the anisotropic stress due to the neutrinos (which thus require a decription beyond the perfect fluid
approximation). To get the evolution ef,, one must use a higher moment of the Boltzmann equation, which gives

. 4
Oy = _l_5kVVs (17)
where other terms on the right-hand side have been neglected.

The above equations govern (at least in the fluid approximation) the evolutions of the perturbations. Before using them to
define the primordial perturbations and study their subsequent evolution, it is instructive to discuss their statistical properties.

2.2. Power spectra and correlations

In cosmology, perturbations are treated as homogeneous and isotropic random fields. Primordial perturbations are usually
assumed to be Gaussian, in which case their statistical properties can be summarized simply in terms of their power spectrum,
defined for a quantity’ by

(&) =202 3P (s (k — K)). (18)

When primordial perturbations are described dBveral quantitiessuch as is the case with mixtures of adiabatic and
isocurvature perturbations, one must also define, for any pair of random fieddd g, a cross-correlation spectrur® s, , (k)
by the following expression (see [2,3])

N figp) = 202k 3P ()8 (k — K). (19)
By renormalizing the cross-correlation spectrum, one may defoweralation coefficientcomprised between 1 and 1:
Crok
COSA(k) = f.g®) (20)

VP k) /Pyk)

The two extreme values cas= +1 and cosA = —1 correspond respectively to full correlation and full anti-correlation.
Before the work [2], only independent mixtures of adiabatic and isocurvature modes, i.e., with vanishing correlation, were
considered in the literature. This statistical independence means that the quéntitids can be expressed as

b = P;,/zel, S= Pé/zez, (21)

whereeq andeo areindependennormalized centered Gaussian random fields (i.e., such{¢h@t)) = O, (ei(k)e;*.(k’)) =
ik — k', for i, j = 1, 2), and where the subscripksare implicit. With the assumption (21), one obtains immediately a
vanishing correlation.

Clearly, if one takes into account all five possible initial modes, as mentioned in the introduction, the most general (Gaussian)
perturbation random field must be described by>a®bsymmetric correlation matrix, as discussed in [4].

2.3. Long wavelength perturbations

As mentioned earlier, primordial perturbations are defined deep in the radiation era on super-Hubble wavelengths, i.e., such
thatk <« aH. In order to characterize all primordial modes, one can expand the perturbative quantities in terms of the small
parametekn, so that

X=XO 4 xOky 4 XDk + ... (22)

One then substitutes these expansions in the equations governing the evolution of the perturbations. This allows us to express
all perturbations in terms of the primordial curvature perturbagiomnd the three primordial entropy perturbatiofis, S, and
Sy (ignoring the neutrino isocurvature velocity mode).
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During most of their history, the relevant cosmological modes remain outside the Hubble kadiusH). In order to study
easily the super-Hubble evolution of adiabatic and isocurvature perturbations, it is convenient to introduce the quantity

{:—lI/—H%O, (23)

defining the curvature perturbation on hypersurfaces of uniform (total) energy density. A similar quantity can be defined for any
individual fluid,

Spx

(x =—W¥ — H—. (24)
19:¢
Using the evolution equations written above, one can show that the evolutioaroéuper-Hubble scales is given by
. H 2
=——(8P —cép), 25
{=—77% (8P —c5dp) (25)

where the expression between parenthesis, involvingatae fluid, can be interpreted as a non-adiabatic pressure. The same
expression applies for each of the individual fluids as long as they are non-interacting. For each such individygl Ruid,
conserved on super-Hubble scales, since the equation of state is barotropic. Moreover, since

Sa,B =30 —¢B) (26)

one finds that the isocurvature perturbation between two non-interacting fluids is conserved on super-Hubble scales.

As for the global, it is not conserved if there are isocurvature perturbations, which make the non adiabatic pressure nonzero.
It is possible to compute explicitly the expression of the gravitational potential perturbation durimgttiee dominated era
terms of the primordial perturbations [3]. For an illustrative purpose, we will discuss here only the case of CDM isocurvature
perturbations, which is the case the most studied in the literature. In the matter era, the gravitational potential perturbation is
given by

3 4 ros 1. mD L 1
D =—[34+ =0 [N Se>® — =S, 27
matter 10( +5 v ) 5ic dc R (27)

where.Q,'?D is the energy density fraction of neutrinos in the radiation era.@LH@ is the energy density fraction of CDM in
the matter era.

Using these results, one can express the CMB anisotropies on large scales (i.e., on scales that are super-Hubble at the time
of last scattering) explicitly in terms of the primordial perturbations. One finds

AT 1 4 . 2 1. 2
(7 ) =1o(e+ 5o) - gakPs= 5o L. @8)

By comparing the above expressions (27) and (28), one recovers the well-known resuk fifat- @ /3 for pure adiabatic
initial conditions andAT /T ~ 2@ for pure isocurvature perturbations.

3. CMB constraintson isocurvature modes

The first bounds on isocurvature perturbations assumed uncorrelated modes [6]. Recently, however, several works have
analysed the CMB data looking for correlated adiabatic-isocurvature perturbations. Considering only the adiabatic mode and
oneisocurvature mode, the following spectra have been assumed:

nag—1
Pvz(/o:AZ(ﬁ) ,
ko
niso—1
Ps(k):fz?(—) , (29)
ko

k (nad+niso)/2—1
) , (30)

Prs k) = ABcosA (—
ko

wherekq is an arbitrary pivot scale and we have introduced, instead of the gravitational potential pertughatiercurvature
perturbatioriR, often used in the literature, relatedd@oduring the radiation-dominated era by
3
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Ignoring the overall amplitude of the fluctuations, the above parametrization means that the initial perturbations are
characterized by four parameters: the adiabatic imggxthe isocurvature index;so, the isocurvature/adiabatic amplitude ratio
B/A and the correlation parameter cosThis represents three more parameters than the usual description, which includes only
the adiabatic indexg.

Allowing for isocurvature perturbations in addition to adiabatic perturbations introduces additional degeneracies in the in-
terpretation of the CMB data. In particular, analysing the CMB data with the prior assumption that primordial perturbations are
purely adiabatic could lead to an incorrect determination of the cosmological parameters if the real universe contains an isocur-
vature contribution. To lift these degeneracies, the measurement of polarisation is crucial, as it was shown quantitatively in [5].

Several very recent papers [7-9] have considered the isocurvature modes in the light of the WMAP data, improving similar
previous studies [10,11]. The present situation is that there is no significant improvement of the fit to the data, from which one
can conclude that the present data do not require an isocurvature component as parametrized above. In a different and more
positive perspective, this means that these analyses provides us with constraints on the maximal contribution of an isocurvature
component to the CMB signal, which can be turned into constraints on the early universe models. Note that the constraints on
the CDM isocurvature mode are much more stringent than those on the other types of isocurvature modes.

4. Generation of isocurvature perturbations

Isocurvature perturbations have been invoked in many cosmological scenarios. Pure isocurvature initial conditions have
even been proposed as an alternative to the standard adiabatic initial conditions, until the observation of the first acoustic peak
rules out this idea. Isocurvature perturbations can also play an important role in models inspired by particle physics, such as
cosmological axions [12] and Affleck—Dine baryogenesis [13].

A point worth noticing, however, is that, in contrast with the adiabatic mode which can always be seen as a perturbation
of the geometry, the isocurvature modes can be erased during the thermal history of the universe. Indeed, if the microphysical
processes are such that all species are locally in a thermal equilibrium that depends only on the local terfipénatued! the
number densities depend only @ which excludes any isocurvature perturbation. Therefore, the existence and the evolution
of the isocurvature modes are very sensitive to the microphysical processes that took place in the early universe.

Below, we discuss two types of mechanisms than can produce isocurvature perturbations and which have been explored very
actively during the last few years.

4.1. Multiple-field inflation

In its simplest version, inflation is driven by a single scalar field, which generates an approximately scale-invariant Gaussian
curvature perturbations [14]. This single field then decays into ordinary matter and automatically gives primordial adiabatic
perturbations. However, current models describing high energy physics usually contain many scalar fields, which suggests the
possibility that several scalar fields play a significant role during inflation.

Multiple-field inflation can generate, in addition to the adiabatic component, an isocurvature contribution [15]. With
appropriate conditions, multiple-inflation can even genecateclated adiabatic and isocurvature perturbations [2,16,17]. In
the case of two uncoupled free massive scalar fields, one can show that the ‘primordial’ curvature and entropy perturbations,
i.e., deep in the radiation era, can be expressed as linear combinations of the scalar field fluctuations at Hubble radius crossing,
i.e.,

& = A18¢1 + A2ddp,  S= B1d¢1 + Badeho. (32)

If the weights are such that, saj, <« A1 andB1 < Ba, then one obtains uncorrelated adiabatic and isocurvature perturbations.
This is the case for instance if inflation is driven &y while ¢, is a very light scalar field and remains passive during the
inflationary phase relevant for current cosmological scales. Then, essentially, the fluctuatibngeerate the adiabatic
component while the fluctuations ¢f give the isocurvature component. However, if our cosmological ‘window’ corresponds
to a phase of double inflation when both scalar fields have a dynamical role, then the weights in (32) can be of the same order
of magnitude, which leads to strong correlations between the adiabatic and isocurvature perturbations.

It can also be convenient to define adiabatic and isocurvature modes during inflation [16].if$tastaneous modes
can be defined in terms of the perturbations of the two scalar fields. The adiabatic and isocurvature perturbations can be
interpreted as the projections respectively along and orthogonal to the background trajectory. One must not confuse these
modes with the ‘primordial’ adiabatic and isocurvature modes, defined deep in the radiation era. Formally, they can be related
by a transformation of the form [11]

)= ()
~ = , 33
( Srad 0 Tss Sx 33)
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where the subscript denotes horizon crossing during inflaticfigz = 1 since the curvature perturbation is conserved

for purely adiabatic perturbations whereBsz = 0 because adiabatic perturbations cannot source entropy perturbations on
large scales. The other terms are model dependent. A potentially observable effect of some multi-field inflation models is the
generation of a significant non-Gaussianity in the primordial perturbations, as recently discussed in [18], in contrast with single
field inflation [19].

4.2. Curvaton

Another scenario related to isocurvature perturbations has been recently explored: the curvaton scenario [20]. It is based
on the fact that a pure isocurvature primordial perturbation can generate a curvature perturbation at late times. The curvaton
is a scalar field that is very light during inflation and acquires Gaussian fluctuations. These fluctuations will give isocurvature
fluctuations. When the Hubble parameter decreases below the curvaton mass, the curvaton oscillates and behaves as pressureles
matter. If it decays sufficiently late, it ends up dominating the matter content of the Universe. This is associated with a
transformation of the isocurvature perturbations into a curvature perturbation. One gets

r
44 3r

wherer is the ratiops / prag When the curvaton decays. In the simplest version, the curvaton perturbations are totally converted
into adiabatic perturbations. One can, however, envisage scenarios where the scenario will also generate an isocurvature
component in addition to the curvature one [21]. If this is the case the adiabatic and isocurvature perturbations are fully
correlated (or anti-correlated) since they are produced by the same field. The curvaton scenario can also produce important
non-Gaussianities in the primordial perturbations.

R=— S, (34)
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