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Abstract

The search for a causal explanation of the large scale properties of the universe supports the idea that a long period of
accelerated expansion, called inflation, preceded primordial nucleosynthesis. The first consequence of inflation is that all pre-
existing classical structures are washed out. In fact, in the simplest inflationary models, the primordial density fluctuations (the
seeds of the large scale structures) only result from the amplification of quantum vacuum fluctuations. The properties of the
spectrum so obtained are presented and compared to the CMB temperature fluctuations. The agreement To siitiéihgs
article: R. Parentani, C. R. Physique 4 (2003).
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Résumeé

Linflation et ses prédictions concernant le fond diffus.La recherche d’une explication causale des propriétés de I'univers
aux grandes échelles suggére qu’'une longue période d’expansion accélérée, appelée inflation, ait précédé la nucléo-synthese
primordiale. La premiére conséquence de l'inflation est que toutes les structures pré-existantes sont effacées. En effet, dans les
modeles d'inflation les plus simples, les fluctuations de densité primordiales (les germes des structures de grandes échelles)
résultent uniqguement de I'amplification de fluctuations quantiques du vide. Les propriétés du spectre ainsi obtenu sont
présentées et comparées avec les fluctuations de température dans le fond diffus. La correspondance est réPoarquable.
citer cet article: R. Parentani, C. R. Physique 4 (2003).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This paper is conceived as a pedagogical introduction to the motivations for inflation, to its mathematical settings and to its
implications concerning the Cosmic Microwave Background (CMB) anisotropies.

For the non-specialist, two remarks should be made from the outset. First, without recourse to fine-tuning, inflation has
successfully passed the cross-checks based on recent observational data. Secondly, inflation is a rather conservative hypothesis
since it rests, on one hand, on the set of cosmological observations conventionally interpreted, and on the other hand, on
Einstein’s equations, i.e., on the hypothesis that the action of General Relativity (GR), or a slight generalization thereof, governs
the evolution of the space-time properties from cosmological scales, of the order of a thousand megaparsecsi®kipg,
down to some microscopic scale which is close to the Planck leagth (].(F35 m), ‘just’ before the threshold of Quantum
Gravity.
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Following these preliminary remarks, one should explain why the search for a causal explanation of the large scale properties
of the universe calls for a long period of accelerated expansion (‘large scale’ and ‘long’ shall be defined in Sections 2.3 and 3.1).
This need stems from the fact that the ‘standard model’ of cosmology [1,2], the hot big bang sceira@ndetethe causal
structure from the big bang is such that no processes could have taken place to explain the homogeneity and the isotropy at large
scales. The importance of these considerations can only be appreciated in the light of today’s understanding of cosmology.

2. The standard model of cosmology

The predictions of modern cosmology concern the evolutiogpatial averaged quantitif@emperature, densities...) and
local structuregfrom density fluctuations to galaxies and clusters). Both aspects should be considered to appreciate the merits
of inflation.

The CMB is extremely isotropic: the temperature fluctuations on the last scattering surface, at the decoupliggtime
have a relative amplitude of the order of 0 By adopting GR, we learn that the (today visible) universe can at that time be
described by a perturbed Robertson—-Walker (RW) metric. Indeed the metric perturbations are also of the orcResioic0
they are linearly related to the temperature fluctuations. We recall that the RW metric reads

d52 = —di? + a?(1) d =2, (1)

where bar quantities describe smoothed out, spatial averaged, quantities. The spatial part of the:@ele'sx:dbes isotropic
and homogeneous 3-surfaces. The actual metric, ignoring gravitons (the two spin 2 fluctuation modes), can be written as

ds? = —(1+2¢)dr? + (1 — 2¥)a?(r) d =2, @)

when the matter stress-tensor is isotropic, a mild hypothesis [3]. The localfigld:) acts as a Newtonian potential. Since
primordial fluctuations are I, one can first adopt a mean field approximation and consider only spatial averaged quantities.
In a second step, one can analyze the evolution of the fluctuations which ride on the background quantities formerly obtained.

2.1. Background quantities and primordial nucleosynthesis

The evolution of the averaged metric Eq. (1) is governed by a single function of time, the scaletfactdhe derivative
of its logarithm defined! = d;a/a which enters in Hubble’s law = H R. This law relates the velocity of a comoving galaxy
to its proper distanc®(r) = a(t)d, whered is its fixed comoving distance which is defined by the static line elemm?t th
GR,a obeys the Friedmann equation,

8 G K
2 —
H=—p— —. 3
3P~ ©)
The averaged matter density is denofednd includes a possible cosmological constant [4]. The last term in Eq. (3) arises
from the curvature of the homogeneous 3-surfaces. Its relative contribution today is gi\feg‘r‘Wy: K/ (Hgag) (where the
subscriptyg means evaluated today) and it is observationally tightly constra'Lf?«gH‘.V = 0.02+ 0.02 [5]. This term is the
integration constant of the ‘dynamical’ Einstein equation,
32a G _ —
~—=—-——(p+3P), 4)
a 3
and energy conservatiome= —3(5 + P) dIna. Together with the density, the pressure fully characterizes the matter stress
tensor when imposing homogeneity and isotropy. Furthermore, when considering non-interacting compcenahi3,split
into terms which obey equations of state of perfect fluids:

P = w; p;. %)

Dust, (cold) baryons and Cold Dark Matter (CDM) hawe= 0, photons and (massless) neutrinos= 1/3, whereas the
cosmological constant has = —1. Energy conservation then fixes the scaling of each component. For baryons, one gets
P X a=3, and for radiationyaq x 4. The 3-curvature term scales onlyzzrs2 whereas the cosmological constant does not
vary.

From these scalings and the present values of the densities, one immediately obtains the different stages of our cosmological
history: The CMB temperaturdp = 0.23 meV, the effective number of massless fields [2], and the relative contribution of
cold matter (baryong- CDM), ng = 0.27+ 0.04 [5], fix the redshift of the transition from radiation to matter domination:
Zeq= ag/aeq— 12 3200. This equilibrium occurred before decoupling which occurred whgg~ ag/agec> 1100. At that
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time, the 3-curvature contribution obeyefilt": < 25" /26 zdec < 10~4. Thus, for all processes which took place at or

before decoupling, the spatial metric can be taken Euclidean and the tefin Eq. (3) can be dropped.

The next step consists in usimqmarticle physicsto inquire about the processes which took place in the early universe,
beforezeq. The greatest success of this standard framework concerns the prediction of relative abundances of light elements
by primordial nucleosynthesis [1,2,6]. This confirms the validity of extrapolating backwards in time Einstein’s equations in
a radiation dominated universe, for redshifts of the order &f 40d temperatures of the order of the MeV. Moreover, a
detailed comparison of theoretical predictions and observations leads to a precise determination of the baryonic content of
our universe (through the determination mf/n,,, the number of baryon per photon, and the absolute normalization of
the CMB thermal photons). Using the recent estimatiorHgf primordial nucleosynthesis give®;g = 0.0424+ 0.005, a
value in agreement with that obtained from analyzing the CMB [7]. So, not only the predictions of the extrapolation can be
observationally tested, but independent cross-checks agree. This puts the standard model of cosmology on extremely firm
foundations.

2.2. Fluctuations and structures

So far, we have ignored the fluctuations around spatial averaged quantities. It is remarkable that the standard model, as it
stands, also correctly predicts the evolution of local structures [1,2]. These structures are described by a perturbed metric, see
Eq. (2), and a local matter densjty= p(¢) + 8p(¢, x). Their combined evolution is governed by matter interactions and by the
local Einstein equations (and no longer by their restriction to RW metrics).

When starting at ~ 1100 with theprimordial fluctuationssp /5 ~ ¥ ~ 102, gravitational instabilities lead to non-linear
structures whose properties are in agreement with what is now observed. However, the best agreement is reached if one
introduces some CDM whose density is about 10 times larger than that of baryons [8]. At first sight this could be considered
as an ad hoc hypothesis to save the standard model, but this is not the case since there are now independent observations
which are consistently interpreted as gravitational effects induced by CDM [4]. The most precise estimatigm @

(= .ng — §2,0 = 0.23+ 0.04) is presently obtained from the CMB anisotropies. (Given fhapmo is known, the challenge
with CDM is to identify what it is made from.)

2.3. The incompleteness of the standard model

Given these two successes, it is tempting to further extrapolate and to inquire what happened before nucleosynthesis, for
redshifts larger than #8 and energies larger than the MeV. Was there a period of baryo-genesis which could explain the
baryon-antibaryon asymmetry, or a lepto-genesis?

In this inquiry one searches for processes by which to explain the expectation values of quantities which, for lack of
something better, have been hitherto treated as initial conditions. Inflation might constitute a crucial step in this endeavor.
The reason is the following. Irrespectively of the high energy local processes which took place, one inevitably encounters a
problem which is non-local in character: Given tbeusalstructure obtained by extrapolatirgt), the solution of Eq. (4)
driven by radiation, théarge scale isotropgannot be explained, as clearly seen from Fig. 1.

There is an interesting and complementary way to consider this incompleteness. It concerns the daigje stale
anisotropies Since the RW metric is homogeneous, comoving wave vegtars conserved. Hence, when treated linearly, the
Fourier modes¥; = [ d3x ¥y andsp; = [ d3x €%*5p evolve independently of modes witth # k. Moreover the Hubble

z=0
today

Al \B 2=1100

Big Bang

Fig. 1. The causal structure from the big bang. In a radiation dominated universe, thepatedikesingularity ate = 0 which is situated at
afinite conformal timeAn = f[’b dr/a. Hence forward light cones from the big bang have, at tingefinite (proper) size equal () An(t).
On the last scattering surfades%, the proper distance between the poiatand B is equal taz An. Hence the matter systemsAtand B have
never been in contact. Thus no (causal) process could possibly explain why the temperature fluctuationAetve®ns only of the order
of 1075, Moreover, the today visible universe (in dotted lines) encompasses abow65disconnected patches on tlss with fluctuations
within that range.
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radiusRy = 1/H (c = 1) provides a natural length scale which coincides, in a radiation dominated universe, with the causal
horizonaAn defined in the caption of Fig. 1. Because comoving wave vectors are conserved, it is appropriate to study the
evolution of its comoving value:

Ru) _ 1 ©)
a(t) dra

The relevance ofly follows from the fact that modes behave very differently according to the relative value of their wave
length ¥k anddy: When 1/ k < dy, modes oscillate. On the other hand, on super-horizon scales, i.e., when their wave length
extends beyond the Hubble radius, modes are frozen (or decay).

These considerations become crucial when questioningrigi of the primordial fluctuations, ~ §p;/5 ~ 1072 on
super-horizon scales (which we know exist since they determine the CMB large scale anisotropies for large scales, i.e., angles
larger than 2 degrees, see Fig. 1). Sidgealways increased in a radiation dominated universe, as seen from Egs. (6) and (4),
the modes which were still outsidl; at decoupling must have been frozen since the big bang. Hence their amplitude can only
be determined binitial conditionsarbitrarily chosen.

dy(t) =

3. Inflation

Inflation is the price to pay to reject this outcome. (Topological defects resulting from a phase transition could have been
another possibility. This, however, is now ruled out by the detailed properties of CMB anisotropies [9,10].) From the above
considerations, a necessary condition for allowing physical processes to have taken place is that there was adipevaden
larger than today’s Hubble scaléyq. Therefore, between then and the beginning of the radiatior/grajust havedecreased
tremendously. Thus from Eq. (6) there must have been a ‘long’ period of accelerated expansion, see Fig. 2.

At this point, inflation is simply a kinematic hypothesis which allows processes to have taken place. (Notice however that
the dilution of scales associated with tHecreaseof dy during inflation solves other problems of cosmology [11,12].) In
order to proceed, several issues should be confronted. One should first dynamically realize inflation, i.e., find an ‘engine’ which
could be responsible for it. Secondly one should identify the mechanism giving rise to the primordial spectrum [13]. The third
issue concerns theheating[14,15]: The collective process which liberates a lot of heat at the end of inflation thereby leading
to the radiation dominated universe necessary for primordial nucleosynthesis. It should also be noticed that to a large extend
these issues could be addressed separately. In particular, it turns out that the mechanism giving rise to the spectrum operates
quite irrespectively of the particular dynamical realization one adopts. Hence, different dynamical models will end up with very
similar spectra. Therefore, in view of our interest in the CMB, we shall focus on this mechanism and the spectrum it produces;
and we shall restrict ourselves to the simplest inflationary model, that of a single massive scalar field. For a large panorama of
inflationary models we refer to [16].

3.1. The inflationary background

To have asuccessfulnflation requires two things. On one hand, the accelerated expansion should last long enough that
today’s Hubble scaldyg be inside the Hubble radius at the beginning of inflation, see Fig. 2. To characterize the ‘duration’

a
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Fig. 2. The evolution of the Hubble radidg;. A vertical line is a fixed comoving scale. The symbdjgg anddygec designate the Hubble
scale evaluated today and at the decoupling, respectively. The evolutignwith or without inflation splits near some high redshift,. The
big bang branch is indicated by the dashed line whereas the inflationary branch is marked by the continugysdipg. andzren give the
respective values of the redshift when inflation starts, when the dggl@xitsdy (), and atreheatingwhen inflation stops. For inflation to be
successful, one must hawg (tin) > dgo-
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of inflation it is convenient to introduce the parametdkst = IN(aren/ain) and Nmin = In(aren/ago) Which respectively give
the (total) number oé-foldsfrom the beginning of inflation to its end and the minimum number for inflation to be successful.
On the other hand, even though inflation need not to be homogeneous, the patch which inflates should be sufficiently large and
homogeneous that the gradients be negligible up to a scale largetiyaif one of these conditions is not met, inflation would
fail to explain the isotropy of the CMB up @y
To have an accelerated expansion in GR requires3P < 0, see Eq. (4). To have inflation thus requires that this condition
be satisfied for a long time but only in the above mentioned patch. This can be fulfilled by introducing a scalar field, called
inflaton, which possesses an expectation vapuahich obeys three conditiong: must dominate all other contributions to
and P, it must slowly decay, and it must be homogeneous. In the patch, the inflaton can thus be written as:

P(t,x) = (1) + 8¢z, x), @)
and it obeys the scalar field equation in a RW metric:
A
392¢ + 3Hp — —f +m2¢ =0. ®)
a

The local fluctuatiors¢ satisfiess¢ <« ¢ and A is the Laplacian. From Eqg. (8) one finds that the slow decay &dllows
3H3 ¢ ~—m2p, i.e.,¢ is dragged to zero at a rate givenmy/3H.

We are now in position to verify thap leads to inflation when several conditions are met. The energy density and the
pressure are dominated by the contributiompagiven by, Py = (3;$)?/2 £ m?$?/2. When the decay is slow enough, the
kinetic term is negligible. In this case one ge_t§/ﬁ¢ ~ —1 and hence an accelerated expansion, see Eq. (4). As long as the
mass term is larger than the kinetic tegrthus acts as a (slowly decaying) cosmological constant. To characterize this decay, it
is appropriate to introduce trstow-roll parametee = —a,H/H2 = —dInH/dIna « 1. Algebra then givemz/SH =¢€H for
the decay rate, an§¢,/,5¢ = —1+ 2¢/3 for the equation of state. One also finds tNat = 1/2¢ = 27rG¢3i2n, thereby relating
the number of e-folds te and to the initial value of the inflaton.

It remains to make contact with (micro)physics. It is generally believed that the reheating process has something to do
with Grand Unification Theories [11,14]. If this is corre@iep, the reheating temperature, should be close to GUT scale,
near 184 GeV. In this case, there must be at least 70 e-folds of inflation. This condition follows Naga> Nmin =~
In(dyo/dyren) = In(ag/aren) =~ IN(Tren/ To) = 70. (The first twox follow from scaling lawsdy o« 1/a during inflation and
dy o a during the radiation era.)

Before considering fluctuations, it should be stressed that the initial valhieléyspi, > N;/inMp, where the Planck mass

is Mp = G1/2 whenc = i = 1. That is, the slow-roll conditions send abovethe Planck scale where there is no particular
reason to believe that the settings we have used make sense. More complicated inflationary models based on two fields do
not suffer from this disease [16], but the question of the nature of the inflaton is still open. There are basically two attitudes.
The dominant attitude [11,14] is that inflation belongs to particle physics and occurs sufficiently below the Planck scale so
that gravity can be safely treated by classical GR. This option raises a very difficult question [18] related to the cosmological
constant problem: If gravity can all the way be treated classically, why the mechanism which screens the vacuum energy during
the radiation era did not screen as well the inflaton potential energy during inflation? One should therefore not exclude the
alternative possibility that the inflaton be merely a phenomenology which aptly characterizes, asjéz.gnflation [13,17],

the background and the fluctuations in a domain wherein quantum gravity (or stringy effects) could still play an important role.
As far as the mechanism giving rise to the primordial spectrum is concerned, these alternatives are equivalent.

2

3.2. The primordial spectrum

To identify this mechanism, we need to consider the combined evolution of the inflaton and the metric pertuigatiah,
¥ . Assuming we can work to first order in these fluctuations, GR gives us a set of equations for their Fourier comppnents,
andyy, see [3] for details. Two important points should be mentioned. Firstitigri3tein equation gives

%a[(aufk) =4r GO pSy. 9)

From this constraint equation one learns that in the absence of matter density fluctwgtidasays like 1a. Hence the metric
fluctuations at decoupling are sustained by matter fluctuations. From the linearization procedure, one also learns that, during
inflation, thedominantmatter fluctuations are those of the inflaton, because the background grismyminated byp. (When
considering inflationary models with several scalar fields, a particular combination of their fluctuations auhabedic drives
the metric fluctuationg’,. The other fluctuations, called iso-curvature, could nevertheless play some role [19].)

The second important fact is that the modgsdefined byvy /a = 8¢y + Wi (8;¢/H), are those of a canonical (and gauge
invariant) field. Since all fluctuations obey linear equations it is crucial to identify which field is canonical becaasmatized
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quantum mechanical fluctuations will be taken into account in the sequel. The moldebave like harmonic oscillators with
time dependent frequency:

82vg + (k% — &) =0, (10)

wheren is the conformal time (gl= dr /a) and wheret is a function of the background solution approximatively given, in the
slow-roll limit, by 2/n2. Hence, in the early past, far— —oo, Eq. (10) reduces to a standard harmonic oscillator. However,
whenk? = ¢, which corresponds to~ 1/dy (1), the mode exits the Hubble horizon and stops oscillating. One gets a growing
(o< a) and decaying modex(1/a). Thusvy /a becomes constant. Straightforward algebra gives the following result. For large
values ofk, i.e., fork > 1/dy (tin), and ifvy is a positive frequency mode of unit Wronskianigt after horizon exit thérozen
value ofvy /a is

2
| /)P = % = [sgf (1 + Oce)), (11)
whereH,, is the value off (¢) at horizon exit, whert = 1/dg (¢).

Then Eq. (9) implies thaw also freezes out after horizon exit. The frozen value is givenify~ —s¢' /¢, i.e.,
\llf,fr 12=4nGe \8¢};r |2. However, there is still a subtlety/.,;cr gets amplified when inflation stops. This follows from the existence
of a conserved quantity [3] which is proportional#p(w + 5/3)/(w + 1), wherew = P/j. Hence when the equation of state
changes from inflation to radiation, the amplification factor/8e2

In brief, from the combined evolution of the background varialalgs and the modes, 8¢y, inflation tells us that in the
radiation dominated era and before re-entry,gtimordial spectrum of¥;, is given by

|wprim|2 _ ‘_1@
f =

5 < /). (12)

We have added a subscriptto € because, in general, it depends on time and hendetbroughk/a = H. The primordial
spectrum is thus given in terms of the equation of state and the frozen valygofvaluated during inflation, just after
horizon exit. This is the first non-trivial outcome of inflation. From Eq. (10), the r.h.s. of Eq. (12) can be corfputeknow

the amplitude ofv; at the onset of inflation. Therefore, so far, we have only ‘postponed’ the problem of the initial conditions,
from some high redshift before nucleosynthesis, to some still higher redshift before 70 e-folds of inflation, see Fig. 2.

3.3. Initial conditions and QFT

It thus remains to confront the question of the initial conditions of the inflaton fluctuations. This question only concerns the
values ofk which correspond to scales which are today visible. We shall call themreléeantscales. When inquiring about
their initial conditions, one encounters a major surprisez must abandon classical settingihe reason is the following. When
a modeyy, is well inside the Hubble horizon, it behaves as a massless mode since its momantusk /a(r) is much larger
than H. Hence, its energy density behaves like radiation and scales/iiie Thus,if v, were to possess a classical amplitude
inside the Hubble horizon, one would reach an inconsistency, because when propagating backwards in time, its energy density
would, after few e-folds, overtake the background dengjjysince the latter is almost constant. But this would violate our
assumption that theris inflation which implies thap,, is the dominant contribution. So, unless one fine tunes the number of
extrae-folds, Nextra= Ntot — Nmin = IN(a go/ain), the relevant modes cannot have classical amplitudes at the onset of inflation.

By a similar reasoning, one shows that the curvature of 3-surfaces vanishes without fine tuning. In order words, inflation predicts
that the universe is flat, i.e‘zgu“’: 0.

One must therefore look for a quantum mechanical origin of the primordial spectrum. (If it turns out tHatgest
structures of our universe are of quantum origin, this would constitute the triumph of quantum mechanics which was elaborated
from atomic and molecular spectra.) Using the settings of quantum field theory in curved space [20], one should re-address
the question of the initial conditions. It is now formulated in terms:pf the occupation number of the quanta of the field
operatoro. For relevant, one finds thaiz; must vanish at the onset of inflation. Indeed, the energy density carried by these
quanta & n;k%/a*) would violate, as in classical settings, the hypothesis that the energy is domingigdSiyone is left with
the vacuum as the unique possibility. It is then remarkable that the vacuum energy contribution evades a potential inconsistency
which would have otherwise ruined inflation: Because of the subtraction of the zero-point energy [20], the vacuum energy does
notgrow like 1/a* and stays much smaller thap. Hence vacuum is the only initial state of relevant modes which is consistent
with inflation. Notice that nothing can, nor should, be said about (irrelevant) infra-red modeg with/d o because their
energy density does not diverge and because they are viewed today as part of the homogeneous background.

There is a complementary way of understanding how inflation answers the question of initial conditions. In the homogeneous
inflating patch, there is an energy scate: Hence, the initial occupation number of quanta of (proper) frequeney: k/ain
must obey a Wien law (wj) e~@in/H for win > H. Now, if Nextrais larger than, say 10, one finds that all relevant modes
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are in their ground state becauss, > Hzin/zyo = HelY, wherezyg is the redshift wheniyg exits the Hubble radius.
Concomitantlydpo had an initial proper size equal 8~ 1zp0/zi, = H e~ Nexra, SounlessNextra< In(M,/H) =~ 13, our

universe was inside a Planck cell. To appreciate the unavoidable character of this conclusion, we invite the reader to draw the
‘trajectory’ of the (proper) Planck length in Fig. 2.

So, in inflation, the choice of the initial state does not follow from a principle (e.g., some symmetry) but it is fixed by the
kinematics of inflation itself. This stems from the blue-shift effect encountered in a backward in time propagation which sends
the frequencies» = k/a of relevant modes way abow. (It is interesting to point out the analogy between these aspects
and black hole physics. Classically black holes cannot radiate and this is deeply connecteabtbairéheorem: Stationary
solutions are characterized only by mass and angular momentum because multipoles are radiated away after a few e-folds [21],
where the unit of time is here given by the Schwarzschild radius. So if after some e-folds some radiation is emitted by a black
hole, it must be of quantum origin, i.e., it must be Hawking radiation [22,23]. Similarly, for the relevant scales in inflationary
cosmology, the geometry would classically be bald, no hair, because, M@ > 1, the pre-existing classical structures
have been so much diluted that today they are still part of the homogeneous background. So if some structure is found, it must
be of quantum origin. Moreover, in both cases, the resulting spectrum is determined by the geometry because the initial state of
relevant modes is the ground state, see, however, [24—26].)

3.4. Predictions and observational data

Having understood how inflation fixes the initial condition of fluctuations, we can bring together the various results. Since
v is a canonical field, the v.e.v. @f(ﬁik is equal to ¥2k (7 = 1) at the onset of inflation. Then Eq. (11) gives the v.e.v. after
horizon exit. (In quantum optical terms, one would say that the freezing out of the modes at horizon exit induces a parametric
amplification of vacuum fluctuations which leads to extremely squeezed two-mode states [27]. When considering the modes
near horizon re-entry, thtevo-mode squeezing translates into propertiesadferencavhich are specific to inflation, see below.)

Using Eqg. (12), the primordial power spectrunﬁmm, defined by the two-point function

o0

(Wt x + )Wt ) = / %S";f’;x) pPm 13)
0
is given by
primzﬁ‘g,pfimf:‘_lﬁ<ﬂ>2, (14)
k 2n2 !k 9 ¢ \2r

In Eq. (13),r should be in the radiation dominated era, well before horizon re-entry. When getting close to horizon rézentry,
starts re-oscillating.
In brief, the simplest model of inflatiopredictsthat the primordial spectrum should enjoy the following properties:

e The power spectrum Eq. (14) iearly scale invariantThis results from the stationarity of the process: parametric

amplification of vacuum fluctuationg,afterk. In fact thek-dependence oP,f”m only originates from the slow evolution
of the background at horizon exit.

e The fluctuation spectrum forms@aussian ensemble because the vacuum is a Gaussian state, and because one starts
with quantum mechanics. This means that phabability of finding llfkp"m with a given amplitude is Gaussian, and that
the |.h.s. of Eq. (13) should be interpreted as an ensemble average. (Non-Gaussianities are not expected to develop in the
early universe since the rms fluctuations are .

e The modesy;, arecoherent(in time) at horizon re-entry. By coherent one means the following. When~ H, each
Y. starts to re-oscillate. Hence the general solution is governed by two independent variables. Inflation predicts that the
combination representing the decaying mode vanishes, because it has had all the time to do so.

Observational data extracted from the CMB anisotropies tell us that the spectrum does enjoy the following properties:

e The power spectrum is nearly scale invariant: It has a rms amplitudé=> (which fixes H;, ~ 10~6Mp) and it is
parametrized by a spectral index, defined/Qy= dInP/dInk, which obeys [5]n; = 0.93+ 0.04 and @ /dInk =
—0.03+ 0.02 at a scale which represent&® of today’s Hubble radius: 4000 Mpc.

e Non-Gaussianities have not been found, and the spread of the dateoéiméc variancgis compatible with standard
deviations given the finite number of independent observables.
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o Narrow ‘acoustic’ peaks are observed in the temperature fluctuations spectrum. These are by-products of the coherence of
the ;. at horizon re-entry. Moreover, when considering flmtarization of the CMB, one finds an anti-correlation peak
which is “the distinct signature of primordial adiabatic fluctuations” [10]. This peak excludes that cosmic strings or textures
could be a relevant mechanism for primordial fluctuations.

The outcome of this comparison is thidite generic predictions of theimplestinflationary models are in accord with
observational data.

4. Developments and perspectives

It should be clear to the reader that several aspects have not been discussed in this paper. These include polarization, galaxy
spectra (to have access to the spectrum at smaller scales) as well as gravitational waves and iso-curvature modes. By taking all
these into account [28], a finer understanding of the predictions of inflation will be reached and one might envisage constraining
inflationary models by observational data (already available and also to come).

In order to provide some guidelines in this direction, we present the following points:

e The primordial power spectrum can lphenomenologicallexpressed in terms of several slow-roll parameters which
characterize the inflaton action and/or the evolution of the background [29]. It is hoped that these parameters, and therefore
the inflaton potential, shall be observationally determined.

e Primordial non-Gaussianities can be obtained when iso-curvature modes are considered [30]. Theoretical studies might
orient and ease observational search. )

« Inflation also predicts that gravitational waves were produced. Their spectrum is giveRp By= 36, Pl [29].
Simultaneous observations Bfrav and P,f”m would allow us to perform consistency checks since they are characterized
by different spectral indices. These checks will confirm (or rule out) inflation. Notice however that the lower VBEJrgvof
might delay (or even exclude) the detection of primordial gravitational waves.
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