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The Cosmic Microwave Background/Le rayonnement fossile à 3K

Can the CMB reveal the topology of the universe?

Jean-Philippe Uzana,b,∗, Alain Riazueloc

a Institut d’astrophysique de Paris, GRεCO, CNRS-FRE 2435, 98bis, boulevard Arago, 75014 Paris, France
b Laboratoire de physique théorique, CNRS-UMR 8627, Université Paris Sud, bâtiment 210, 91405 Orsay cedex, France

c Service de physique théorique, CEA/DSM/SPhT, unité de recherche associée au CNRS, CEA/Saclay, 91191 Gif-sur-Yvette cede

Presented by Guy Laval

Abstract

This article summarizes recent progress in the development of tools to study the topology of the universe with the
microwave background. The different signatures of the topology and observational constraints are described. Th
of future experiments to reveal the topological structure of our universe is then discussed.To cite this article: J.P. Uzan,
A. Riazuelo, C. R. Physique 4 (2003).
 2003 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Le fond diffus peut-il devoiler la topologie de l’univers ? Cet article résume les progrès récents concernan
développement des outils permettant d’étudier la signature topologique de l’univers dans le fond diffus cosmologi
différentes signatures de la topologie et les contraintes observationnelles sont décrites. Pour finir, la possibilité de d
structure topologique de notre univers est discutée.Pour citer cet article : J.P. Uzan, A. Riazuelo, C. R. Physique 4 (2003).
 2003 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

One major thrust of modern cosmology is that the properties of the large scale structures of the universe can be
from the knowledge of local physics. This started by the determination of the structure of spacetime from the loca
gravity by Einstein and its consequence regarding the expansion of the universe. It follows with the understanding by
on how nuclear processes in the hot early phase of the universe imply primordial nucleosynthesis and the existence o
microwave background (CMB). It finally reaches a new dimension with the link between the quantum properties of ma
the large scale structures of the universe through the inflationary paradigm.

However, because we observe only one universe, we face a major problem in distinguishing boundary conditions f
physical laws. This has led to the need to investigate the global properties of our universe as deeply as possible. Am
properties is the question about the topology of the spatial sections of our universe. The CMB photons were emitte
simultaneously at the time of last scattering and are the oldest electromagnetic signal we can ever observe in the
Because of this global property and its extension throughout the whole observable universe, this makes the CMB a pe
to constrain the topological structure of the universe.
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In standard relativistic cosmology, the universe is described by a Friedmann–Lemaître spacetime with locally isotr
homogeneous spatial sections. In the case of a multiply connected universe, we visualize space as the quotientX/Γ of a simply
connected spaceX (which is just a 3-sphereS3, a Euclidean spaceE3, or a hyperbolic spaceH3, depending on the curvature
by a discrete and fixed point free groupΓ of symmetries ofX. This groupΓ is called the holonomy group (see [1–3] f
technical reviews and [4] for popular reviews) and it defines the boundary conditions on all the functions defined on th
sections, which subsequently need to beΓ -periodic. Hence, the topology leaves the local physics unchanged while mod
the boundary conditions on all fields living in the universe.

Here, we aim to overview the interplay between topology and the CMB and to explain the signatures that can be
change of these boundary conditions. In Section 2, we will describe the different observational effects of a non-trivial to
We will then explain the main steps required to simulate CMB maps (Section 3). Such maps are necessary to test t
of any algorithm to detect the topology on a given data set. We then summarize the actual constraints and their impr
from the WMAP data [5].

2. Observational imprints of the topology

The existence of a spatial topology has three distinct effects on the CMB.

2.1. Two-point correlation matrix

The two-point correlation matrix of the temperature field: if one decomposes the observed temperature field
of spherical harmonics, then each coefficienta�m of this decomposition may be seen as a random variable for which
observes a single realization. In a simply connected space, the two-point correlation matrix, defined as the ensemb
C�′m′
�m

≡ 〈a�ma∗
�′m′ 〉 reduces to

C�′m′
�m = C�δ��′δmm′ , (1)

because the angular correlation function depends only on the relative angle between the two directions of observation
isotropic). In a multi-connected space, there exist preferred directions so that global isotropy, and possibly global hom
is broken. The angular correlation function will then depend on the two directions of observations and possibly on the
of the observer. This will induce correlations betweena�m’s of different� andm.

The exact value of the correlation matrixC�′m′
�m

depends both on the local properties of the perturbations (initial po
spectrum, statistics, etc.) as well as their global properties (topology) but the existence of�–�′ andm–m′ correlations is a direc
signature of the breakdown of global isotropy and/or homogeneity. Topology, among other sources, leads to such a br

2.2. The angular power spectrum

The angular power spectrum,C�, obtained by averaging the correlation matrix diagonal coefficients, looses much
topological information. However, most of the constraints on the topology that have been obtained up to now rely
behavior of the angular power spectrum on large angular scales.

Unfortunately, there is a possible loophole that may reduce all the constraints derived from the angular power spe
ashes. These constraints rely on the assumption that the initial power spectrum is still almost scale invariant as pred
from inflation. However, these inflationary models also predict that the spatial sections of the universe should be very
almost flat so that we should not observe any deviation from a critical density universe, nor any topological structure on
of the observable universe. On the one hand, observing a topology (or a slight curvature) would put these models in g
culty (see, e.g., [6]) but on the other hand, there would then be no reason to expect an almost scale invariant power sp
large scales, one reason being that there will exist a new characteristic scale fixed by the topology. At present, there is
model of the early universe leading to an observable topology and the entanglement between the effect of the topolog
local physics (initial power spectrum) has to be considered with care, particularly when trying to exclude a set of topol

The angular power spectrum is thus an interesting indicator but will not help inproving the existence (or absence) of a
topological structure of the universe.

2.3. The existence of pattern correlation

The microwave background photons were all emitted at the time of last scattering, from the last scattering surfac
is a 2-sphere centered on us. Just as a large paper disk wrapped around a cylinder overlaps itself if it is big enoug
scattering surface can wrap around the universe and self-intersect when the universe is multi-connected. The intersec
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Fig. 1. The last scattering surface, with resolution� = 120, is seen from the outside along with two of its closest topological images
translation ofL and −L along one axis of the torus. The left picture shows the Sachs–Wolfe effect only. One can check by eye
temperature fluctuations are very well correlated along matching circles. Note that, as expected, there are very few fluctuations on s
than the size of the torus (which is given here by the distance between the circles). In the right-hand picture, the matching betwe
decreases when one includes the Doppler and integrated Sachs–Wolfe contributions. This map has comparatively more small scale
the previous one as�= 120 is close to the first dip in the Sachs–Wolfe spectrum.

last scattering 2-sphere with itself is simply a circle that will appear twice in the cosmic microwave background. It follo
there might exist pairs of circles which share correlated patterns of temperature fluctuations (because they represen
region of emission, see Fig. 1).

This idea, called thecircle in the sky methodand introduced by Cornish, Spergel and Starkmann [7] is the most d
probe of the global structure of our universe and is unaffected by the uncertainty in the local cosmological model (valu
cosmological parameters, properties of the initial perturbations, etc.).

The correlation between two matched circles would be perfect if the temperature fluctuation were a scalar functio
it did not depend on the direction of observation) and if the patterns were not distorted. However, in addition to the
temperature fluctuations of the emission region, known as the Sachs–Wolfe effect, the observed temperature fluctua
two direction dependent contributions: (i) the Doppler effect, which depends on the relative motion of the emitting reg
respect to us; and (ii) the integrated Sachs–Wolfe effect which depends on the cumulative gravitational effects exper
the photons while travelling from the last scattering to us. From an observational point of view, the galaxy cut can also
part of the circles and the foreground removal can thus affect the matching.

2.4. Summary

To summarize, the angular power spectrum is an unreliable indicator of topology but can be used to tentatively con
topology, keeping in mind there is a possibly unjustified assumption on the initial power spectrum; the existence of�–�′ and
m–m′ correlations is a direct proof of the breakdown of global isotropy and/or homogeneity; while the existence of co
patterns (such as circles) is a direct proof of the existence of the topology, which is independent of the assumptio
local physics and the model of structure formation. However, the applicability of the latter method requires (i) evalua
magnitude of the effects that may blur the topological signal; and (ii) validating search algorithms.

In order to detect the topology of the universe, one therefore needs to be able to simulate high resolution CMB
various topologies.

3. CMB computation with a non-trivial topology

In standard relativistic cosmology, the equations of evolution of the cosmological perturbations reduce to a set of
differential equations involving a Laplacian. The system is therefore conveniently solved in Fourier space. Stud
observational signatures of the topology thus requires the following steps:

1. classify the relevant topologies;
2. compute the eigenmodes of the Laplacian in each topology;
3. implement the topology in a CMB code.
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3.1. Classification of the topologies

The classification of the topologies of three-dimensional spaces of constant curvature depends on the geome
universal covering space.

For locally Euclidean spaces, there exist 18 different topologies [8]: 10 compact spaces (6 orientable and 4 non-or
5 chimney spaces having only two compact directions (2 orientable and 3 non-orientable), 2 slab spaces having one
direction (1 orientable and 1 non-orientable) and the Euclidean spaceE3. Each holonomy group is a finite subgroup of t
isometry group Isom(E3) of Euclidean space.

For hyperbolic spaces, the classification is not yet known. The holonomy group is a finite subgroup of the isometry
hyperbolic 3-space, Isom(H3)= PSL(2,C)≡ SL(2,C)/Z2 (see [9] for the status of this classification).

Spherical spaces were originally classified by Threlfall and Seifert [10] in 1930. The classification was recently rev
terms of single, double and linked action manifolds by Gausmann et al. [11]. Borrowing from Thurston’s approach [9
authors used the fact that any finite group of unit quaternions determines a fixed point free groupΓ of isometries ofS3, which
then serves as the holonomy group of a multiply connected spherical space. The spaces arising in this way are casingle
actionspaces and are in one-to-one correspondence with the finite subgroups ofS3, thought of as the group of all unit leng
quaternions. In adouble actionspace, two groups of relatively prime order (excluding perhaps a common factor of tw
simultaneously so thatΓ is the product of a cyclic group by either a cyclic or a binary polyhedral group.Linked actionspaces
are similar to double action spaces except that the orders of the factors are not relatively prime and only certain eleme
factor are allowed to act simultaneously with a given element of the other factor.

3.2. Eigenmodes of the Laplacian

Once the topology is fixed, we must determine the eigenmodesΥ
[Γ ]
k (x) and eigenvaluesk2 −K of the Laplacian onX/Γ

through the generalized Helmholtz equation

�Υ
[Γ ]
k

(x)= −(
k2 −K

)
Υ

[Γ ]
k

(x), (2)

wherek indexes the set of eigenmodes, and where the eigenmodes satisfy the periodicity conditions

Υ
[Γ ]
k ◦ g(x)= Υ

[Γ ]
k (x) ∀x ∈X, ∀g ∈ Γ. (3)

These modes, on which any function onX/Γ can be expanded, respect the boundary conditions imposed by the top
they correspond precisely to the modes ofX that are invariant under the action of the holonomy groupΓ so that any linear
combination of such modes will satisfy, by construction, the required boundary conditions.

It is fruitful to expand the modes ofX/Γ on the basisY[X]
k�m

of the eigenmodes of the universal covering space as

Υ
[Γ ]
ks =

∑

�=0

�∑

m=−�
ξ
[Γ ]s
k�m Y[X]

k�m, (4)

so that all the topological information is now encoded in the coefficientsξ
[Γ ]s
k�m , wheres labels the various eigenmodes shar

the same eigenvalue. The sum over� runs from 0 to infinity if the universal covering space is non-compact (i.e., hyperbo
Euclidean).

The computational challenge is to find thisΓ -invariant subspace and construct an orthonormal basis for it. In the case
manifolds the eigenmodes can be found analytically [12]. In the case of hyperbolic manifolds, many numerical inves
have been performed (see Ref. [2] for a reviews). In the case of spherical manifolds, the eigenmodes have been found a
for lens and prism spaces [13], and otherwise can be found numerically [14].

3.3. CMB computation

The temperature fluctuation in a given direction in the sky can be related to the eigenmodes of the Laplacian by
convolution operatorO[X]

k
(Y[X]

k�m
) depending only on the modulusk of the wavenumber, and a 3-dimensional random varia

êk related to the initial conditions. Specifically,

δT

T
(θ,ϕ)= (2π)3

V

∑

k,s

O
[X]
k

(
Y[X]
k�m

)√
P(k) êk, (5)

whereP is the initial power spectrum of the fluctuations. Since the topology does not affect the local physics, the only
arises from the eigenmodes on which the functions are expanded. It can be shown [15] that the correlation matrix d
Eq. (1) takes the general form
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[23].
C�′m′
�m = (2π)3

V

∑

k

P(k)O[X]
k

(
R

[X]
k�

)
O

[X]
k

(
R

[X]
k�

)∑

s

ξ
[Γ ]s
k�m

ξ
[Γ ]s∗
k�′m′ . (6)

This approach, originally developed in [15], turns out to be very efficient for simulating high resolution CMB maps both
Euclidean case [12,15] and in the spherical case [16] (that is, in all the spaces where theξ

[Γ ]s
k�m coefficients are known).

In conclusion, once the eigenmodes of the Laplacian are known (i.e., the coefficientsξ
[Γ ]s
k�m

), one can compute the correlatio
matrix which contains all the information about the temperature field and from which one can extract theC�, simulate maps
etc.

4. Observational prospects

The recent WMAP results interestingly indicate that a closed universe seems to be marginally prefered [5]. In pa
with a prior on the Hubble constant, one gets a density parameterΩ0 = 1.03± 0.05, while further constraints including type
supernovae data leads toΩ0 = 1.02± 0.02. Moreover, the WMAP angular correlation function seems to lack signal on s
larger than 60 degrees [5]. This may indicate a possible discreteness and a cutoff in the initial power spectrum, as
expected from a multi-connected topology [6]. Nevertheless|Ω0 − 1| is small, which has important implications concerni
the observability of the topological structure of our universe [17].

The possibility of detecting the topology of a nearly flat universe was discussed in [17]. It was noted that the cha
detecting a multiply connected topology are worst in a large hyperbolic universe. The reason is that the typical tra
distance between a cosmic source and its nearest topological image seems to be on the order of the curvat
|1−Ω0|−1/2, and that whenΩ � 1 the distance to the last scattering surface is less than the half of that distance (see [1
flat universe, the topology scale is completely independent of the horizon radius, because Euclidean geometry has no
scale and admits similarities. In a spherical universe the topology scale depends on the curvature radius, but, in cont
hyperbolic case, as the topology of a spherical manifold gets more complicated, the typical distance between two im
single cosmic source decreases. No matter how closeΩ is to 1, only a finite number of spherical topologies are excluded f
detection.

At present, the constraints on the topology of the universe are still very preliminary. Regarding locally Euclidean
it was shown on the basis of the COBE data that in the case of a vanishing cosmological constant the size of the fun
domain of a 3-torus has to be larger thanL � 4800h−1 Mpc [19], where the lengthL is related to the smallest wavenumb
2π/L of the fundamental domain, which induces a suppression of fluctuations on scales beyond the sizeL of the fundamenta
domain. This constraint does not exclude a toroidal universe since there can be up to eight copies of the fundamental c
our horizon. This result was generalized to four other compact Euclidean manifolds in [20]. A non-vanishing cosm
constant induces more power on large scales, via the integrated Sachs–Wolfe effect. For instance, ifΩΛ = 0.9 andΩmat= 0.1,
the constraint is relaxed to allow for 49 copies of the fundamental cell within our horizon [21]. Recently we computed th
signatures of the 17 Euclidean spaces with non trivial topology [15]. Among the various shapes for a topological 3-t
found that a right torus of sizeLx = Ly = 4 andLz = 2 in units of the Hubble radius seems to be favored [22].

Recently, we constrained a family of spherical spaces on the basis of the WMAP data. A lens space’s fundamenta
is constructed by identifying the two faces of a lens shaped solid with a 2πq/p rotation, for relatively prime integersp andq
such that 0< q < p. The result is the lens spaceL(p,q). Exactlyp copies of the fundamental domain tile the 3-sphere, t
faces lying on great 2-spheres filling a hemisphere of each, just as the 2-dimensional surface of an orange may be tip

sections of orange peel, meeting along meridians spaced 2π/p apart. For lens spaces of the formL(p,1) we were able to show
that, if Ω = 1.02,p needs to be larger than 7 for the topology to be detectable and smaller than 15 for being compati
the WMAP angular power spectrum.

The reason for this latter constraint comes from the fact that these spaces induce an increase of power on large ang
contrary to what one would expect from the simple example of a torus. Such an increase lies in the properties of the sp
lens spaces. The smallest nonzero eigenvalue ofL(p,1) is alwaysk = 2

√
K (K being the comoving space curvature), and

constant multiplicity 3 for allp > 2, contrasting sharply to the behavior of the cubic 3-torus of sizeL, for which the smalles
eigenvalue scales asL−1. This behavior can be understood by realizing that asp increases the space is becoming smalle
only one direction and remains large in perpendicular directions: on large scales we see a 2-dimensional repartition
that are perpendicular to the axis of the lens, and the relative weight of large scale modes to small scale modes is gre
dimensions than in three.

This leads to the conclusion that such an increase of power on large angular scale will also appear for slab and chim
and to any space that is strongly anisotropic. This leads to the idea that a ‘well proportioned’ universe may be favored
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Fig. 2. Contour plots of the correlation estimator function between pairs of parallel circles of latitudesθ1, θ2 for a cubic toroidal universe. In
this model, the circles are expected to lie at latitudeθ = ±18◦,±30◦,±71◦ . In the upper row we show the Doppler and integrated Sachs–W
contributions, which can be considered as noise. In the lower row, we show on the left the Sachs–Wolfe contribution, which exhibits s
correlations at the expected latitudes. Summing the three contributions, one can check that the expected correlation remains, althoug
level (lower right picture).

Concerning the circle method, we recently studied the influence of the Doppler and integrated Sachs–Wolfe effects
found that the topological signal was not excessively blurred (see Fig. 2). This is a first step toward finding an optima
to detect pairs of matching circles in the CMB temperature fluctuation map.

In conclusion, tools to study the topology have been developed and maps can be confidently simulated. This enab
discuss in detail the detectability of the topology (effects of noise, foreground, etc.) with the WMAP or the Planck Survey
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