Available online at www.sciencedirect.com

SCIENCE<$DIRECT®

ComPTES RENDUS

ELEVER C. R. Physique 4 (2003) 945-951 PHYSIQUE

The Cosmic Microwave Background/Le rayonnement fossile a 3K

Can the CMB reveal the topology of the universe?

Jean-Philippe Uzatt*, Alain Riazueld

@ Institut d’astrophysique de Paris, GRO, CNRS-FRE 2435, 98bis, boulevard Arago, 75014 Paris, France
b Laboratoire de physique théorique, CNRS-UMR 8627, Université Paris Sud, batiment 210, 91405 Orsay cedex, France
C Service de physique théorique, CEA/DSM/SPhT, unité de recherche associée au CNRS, CEA/Saclay, 91191 Gif-sur-Yvette cedex, France

Presented by Guy Laval

Abstract

This article summarizes recent progress in the development of tools to study the topology of the universe with the cosmic
microwave background. The different signatures of the topology and observational constraints are described. The ability
of future experiments to reveal the topological structure of our universe is then discliesgtk this article: J.P. Uzan,

A. Riazuelo, C. R. Physique 4 (2003).
0 2003 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Le fond diffus peut-il devoiler la topologie de I'univers? Cet article résume les progrés récents concernant le
développement des outils permettant d’étudier la signature topologique de I'univers dans le fond diffus cosmologique. Les
différentes signatures de la topologie et les contraintes observationnelles sont décrites. Pour finir, la possibilité de dévoiler la

structure topologique de notre univers est discu®éar citer cet article: J.P. Uzan, A. Riazuelo, C. R. Physique 4 (2003).
0 2003 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

One major thrust of modern cosmology is that the properties of the large scale structures of the universe can be inferred
from the knowledge of local physics. This started by the determination of the structure of spacetime from the local law of
gravity by Einstein and its consequence regarding the expansion of the universe. It follows with the understanding by Gamow
on how nuclear processes in the hot early phase of the universe imply primordial nucleosynthesis and the existence of a cosmic
microwave background (CMB). It finally reaches a new dimension with the link between the quantum properties of matter and
the large scale structures of the universe through the inflationary paradigm.

However, because we observe only one universe, we face a major problem in distinguishing boundary conditions from local
physical laws. This has led to the need to investigate the global properties of our universe as deeply as possible. Among these
properties is the question about the topology of the spatial sections of our universe. The CMB photons were emitted almost
simultaneously at the time of last scattering and are the oldest electromagnetic signal we can ever observe in the universe.
Because of this global property and its extension throughout the whole observable universe, this makes the CMB a perfect tool
to constrain the topological structure of the universe.
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In standard relativistic cosmology, the universe is described by a Friedmann—Lemaitre spacetime with locally isotropic and
homogeneous spatial sections. In the case of a multiply connected universe, we visualize space as th& glasfensimply
connected spack¥ (which is just a 3-spher83, a Euclidean spadé3, or a hyperbolic spaclel3, depending on the curvature)
by a discrete and fixed point free group of symmetries ofX. This groupI” is called the holonomy group (see [1-3] for
technical reviews and [4] for popular reviews) and it defines the boundary conditions on all the functions defined on the spatial
sections, which subsequently need tolbgeriodic. Hence, the topology leaves the local physics unchanged while modifying
the boundary conditions on all fields living in the universe.

Here, we aim to overview the interplay between topology and the CMB and to explain the signatures that can be left by a
change of these boundary conditions. In Section 2, we will describe the different observational effects of a non-trivial topology.
We will then explain the main steps required to simulate CMB maps (Section 3). Such maps are necessary to test the ability
of any algorithm to detect the topology on a given data set. We then summarize the actual constraints and their improvements
from the WMAP data [5].

2. Observational imprints of the topology

The existence of a spatial topology has three distinct effects on the CMB.

2.1. Two-point correlation matrix

The two-point correlation matrix of the temperature field: if one decomposes the observed temperature field in term
of spherical harmonics, then each coefficiept, of this decomposition may be seen as a random variable for which one
observes a single realization. In a simply connected space, the two-point correlation matrix, defined as the ensemble average
cim' = (ayyaj, ) reduces to

anT = CZSZZ’Smm’v (1)
because the angular correlation function depends only on the relative angle between the two directions of observations (space is
isotropic). In a multi-connected space, there exist preferred directions so that global isotropy, and possibly global homogeneity,
is broken. The angular correlation function will then depend on the two directions of observations and possibly on the position
of the observer. This will induce correlations betweey)'s of different¢ andm.

The exact value of the correlation matr@fﬂ’l” depends both on the local properties of the perturbations (initial power
spectrum, statistics, etc.) as well as their global properties (topology) but the existénééaidm—m’ correlations is a direct
signature of the breakdown of global isotropy and/or homogeneity. Topology, among other sources, leads to such a breakdown.

2.2. The angular power spectrum

The angular power spectrurdy, obtained by averaging the correlation matrix diagonal coefficients, looses much of the
topological information. However, most of the constraints on the topology that have been obtained up to now rely on the
behavior of the angular power spectrum on large angular scales.

Unfortunately, there is a possible loophole that may reduce all the constraints derived from the angular power spectrum to
ashes. These constraints rely on the assumption that the initial power spectrum is still almost scale invariant as predicted, e.qg.,
from inflation. However, these inflationary models also predict that the spatial sections of the universe should be very large and
almost flat so that we should not observe any deviation from a critical density universe, nor any topological structure on the size
of the observable universe. On the one hand, observing a topology (or a slight curvature) would put these models in great diffi-
culty (see, e.g., [6]) but on the other hand, there would then be no reason to expect an almost scale invariant power spectrum on
large scales, one reason being that there will exist a new characteristic scale fixed by the topology. At present, there is no known
model of the early universe leading to an observable topology and the entanglement between the effect of the topology and the
local physics (initial power spectrum) has to be considered with care, particularly when trying to exclude a set of topologies.

The angular power spectrum is thus an interesting indicator but will not hgdpining the existence (or absence) of any
topological structure of the universe.

2.3. The existence of pattern correlation

The microwave background photons were all emitted at the time of last scattering, from the last scattering surface, which
is a 2-sphere centered on us. Just as a large paper disk wrapped around a cylinder overlaps itself if it is big enough, the last
scattering surface can wrap around the universe and self-intersect when the universe is multi-connected. The intersection of the
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Fig. 1. The last scattering surface, with resolutioe: 120, is seen from the outside along with two of its closest topological images after
translation ofL and —L along one axis of the torus. The left picture shows the Sachs—Wolfe effect only. One can check by eye that the
temperature fluctuations are very well correlated along matching circles. Note that, as expected, there are very few fluctuations on scales larger
than the size of the torus (which is given here by the distance between the circles). In the right-hand picture, the matching between circles
decreases when one includes the Doppler and integrated Sachs—Wolfe contributions. This map has comparatively more small scale power than
the previous one as= 120 is close to the first dip in the Sachs—Wolfe spectrum.

last scattering 2-sphere with itself is simply a circle that will appear twice in the cosmic microwave background. It follows that
there might exist pairs of circles which share correlated patterns of temperature fluctuations (because they represent the same
region of emission, see Fig. 1).

This idea, called theircle in the sky methodnd introduced by Cornish, Spergel and Starkmann [7] is the most direct
probe of the global structure of our universe and is unaffected by the uncertainty in the local cosmological model (value of the
cosmological parameters, properties of the initial perturbations, etc.).

The correlation between two matched circles would be perfect if the temperature fluctuation were a scalar function (i.e., if
it did not depend on the direction of observation) and if the patterns were not distorted. However, in addition to the intrinsic
temperature fluctuations of the emission region, known as the Sachs—Wolfe effect, the observed temperature fluctuations have
two direction dependent contributions: (i) the Doppler effect, which depends on the relative motion of the emitting region with
respect to us; and (ii) the integrated Sachs—Wolfe effect which depends on the cumulative gravitational effects experienced by
the photons while travelling from the last scattering to us. From an observational point of view, the galaxy cut can also suppress
part of the circles and the foreground removal can thus affect the matching.

2.4. Summary

To summarize, the angular power spectrum is an unreliable indicator of topology but can be used to tentatively constrain the
topology, keeping in mind there is a possibly unjustified assumption on the initial power spectrum; the exister¢end
m—m’ correlations is a direct proof of the breakdown of global isotropy and/or homogeneity; while the existence of correlated
patterns (such as circles) is a direct proof of the existence of the topology, which is independent of the assumptions of the
local physics and the model of structure formation. However, the applicability of the latter method requires (i) evaluating the
magnitude of the effects that may blur the topological signal; and (ii) validating search algorithms.

In order to detect the topology of the universe, one therefore needs to be able to simulate high resolution CMB maps for
various topologies.

3. CMB computation with a non-trivial topology

In standard relativistic cosmology, the equations of evolution of the cosmological perturbations reduce to a set of coupled
differential equations involving a Laplacian. The system is therefore conveniently solved in Fourier space. Studying the
observational signatures of the topology thus requires the following steps:

1. classify the relevant topologies;
2. compute the eigenmodes of the Laplacian in each topology;
3. implement the topology in a CMB code.
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3.1. Classification of the topologies

The classification of the topologies of three-dimensional spaces of constant curvature depends on the geometry of the
universal covering space.

For locally Euclidean spaces, there exist 18 different topologies [8]: 10 compact spaces (6 orientable and 4 non-orientable),
5 chimney spaces having only two compact directions (2 orientable and 3 non-orientable), 2 slab spaces having one compact
direction (1 orientable and 1 non-orientable) and the Euclidean dpfcEach holonomy group is a finite subgroup of the
isometry group IsonE(3) of Euclidean space.

For hyperbolic spaces, the classification is not yet known. The holonomy group is a finite subgroup of the isometry group of
hyperbolic 3-space, Isor®) = PSL(2, C) = SL(2, C)/Z> (see [9] for the status of this classification).

Spherical spaces were originally classified by Threlfall and Seifert [10] in 1930. The classification was recently revisited in
terms of single, double and linked action manifolds by Gausmann et al. [11]. Borrowing from Thurston’s approach [9], these
authors used the fact that any finite group of unit quaternions determines a fixed point fred"gobigpmetries ofS3, which
then serves as the holonomy group of a multiply connected spherical space. The spaces arising in this way sirgtalled
action spaces and are in one-to-one correspondence with the finite subgro8istiubught of as the group of all unit length
quaternions. In alouble actionspace, two groups of relatively prime order (excluding perhaps a common factor of two) act
simultaneously so thaF is the product of a cyclic group by either a cyclic or a binary polyhedral grbimed actionspaces
are similar to double action spaces except that the orders of the factors are not relatively prime and only certain elements of one
factor are allowed to act simultaneously with a given element of the other factor.

3.2. Eigenmodes of the Laplacian

Once the topology is fixed, we must determine the eigenmorgﬁgé(x) and eigenvalues? — K of the Laplacian orX/I"
through the generalized Helmholtz equation

AT o0 = (k% - k)10, @)
wherek indexes the set of eigenmodes, and where the eigenmodes satisfy the periodicity conditions
o0 =7"10 vxex, vger. 3)

These modes, on which any function & I” can be expanded, respect the boundary conditions imposed by the topology:
they correspond precisely to the modesXothat are invariant under the action of the holonomy gréupo that any linear
combination of such modes will satisfy, by construction, the required boundary conditions.

It is fruitful to expand the modes ot /I" on the basisvl[jér]n of the eigenmodes of the universal covering space as
¢
[ [I1s~,[X]
Tks = Z Z gk(imsykém’ (4)

{=0m=—¢

so that all the topological information is now encoded in the coefficig&f;#', wheres labels the various eigenmodes sharing
the same eigenvalue. The sum o¥euns from 0 to infinity if the universal covering space is non-compact (i.e., hyperbolic or
Euclidean).

The computational challenge is to find thisinvariant subspace and construct an orthonormal basis for it. In the case of flat
manifolds the eigenmodes can be found analytically [12]. In the case of hyperbolic manifolds, many numerical investigations
have been performed (see Ref. [2] for a reviews). In the case of spherical manifolds, the eigenmodes have been found analytically
for lens and prism spaces [13], and otherwise can be found numerically [14].

3.3. CMB computation

The temperature fluctuation in a given direction in the sky can be related to the eigenmodes of the Laplacian by a linear

convolution operatoOIEX](yIEer) depending only on the modulésof the wavenumber, and a 3-dimensional random variable
¢k related to the initial conditions. Specifically,

sT (2r)3 .
- 0.9 ="~ kz o (VXY P () e, (5)
8

whereP is the initial power spectrum of the fluctuations. Since the topology does not affect the local physics, the only change
arises from the eigenmodes on which the functions are expanded. It can be shown [15] that the correlation matrix defined in
Eq. (1) takes the general form
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3
em' _ (27) (X1 plX1) o [X]( plX] (Is ([T ls
i =" 2L POOC (R ) O (R ) D Eem e - ©)
k K
This approach, originally developed in [15], turns out to be very efficient for simulating high resolution CMB maps both in the
Euclidean case [12,15] and in the spherical case [16] (that is, in all the spaces W%‘[hﬂ)eﬁicients are known).

In conclusion, once the eigenmodes of the Laplacian are known (i.e., the coeff&zéi{é}ﬁts one can compute the correlation
matrix which contains all the information about the temperature field and from which one can extr@gt #imulate maps,
etc.

4. Observational prospects

The recent WMAP results interestingly indicate that a closed universe seems to be marginally prefered [5]. In particular,
with a prior on the Hubble constant, one gets a density parangfer 1.03+ 0.05, while further constraints including type la
supernovae data leads 2y = 1.02+ 0.02. Moreover, the WMAP angular correlation function seems to lack signal on scales
larger than 60 degrees [5]. This may indicate a possible discreteness and a cutoff in the initial power spectrum, as would be
expected from a multi-connected topology [6]. Neverthelggs— 1| is small, which has important implications concerning
the observability of the topological structure of our universe [17].

The possibility of detecting the topology of a nearly flat universe was discussed in [17]. It was noted that the chances of
detecting a multiply connected topology are worst in a large hyperbolic universe. The reason is that the typical translation
distance between a cosmic source and its nearest topological image seems to be on the order of the curvature radius
11— 20/~Y/2, and that wher2 ~ 1 the distance to the last scattering surface is less than the half of that distance (see [18]). In a
flat universe, the topology scale is completely independent of the horizon radius, because Euclidean geometry has no preferred
scale and admits similarities. In a spherical universe the topology scale depends on the curvature radius, but, in contrast to the
hyperbolic case, as the topology of a spherical manifold gets more complicated, the typical distance between two images of a
single cosmic source decreases. No matter how alb&eto 1, only a finite number of spherical topologies are excluded from
detection.

At present, the constraints on the topology of the universe are still very preliminary. Regarding locally Euclidean spaces,
it was shown on the basis of the COBE data that in the case of a vanishing cosmological constant the size of the fundamental
domain of a 3-torus has to be larger thar: 4800h~1 Mpc [19], where the lengtiL is related to the smallest wavenumber
27 /L of the fundamental domain, which induces a suppression of fluctuations on scales beyond thef simefundamental
domain. This constraint does not exclude a toroidal universe since there can be up to eight copies of the fundamental cell within
our horizon. This result was generalized to four other compact Euclidean manifolds in [20]. A non-vanishing cosmological
constant induces more power on large scales, via the integrated Sachs—Wolfe effect. For instgneeiP and2mat=0.1,
the constraint is relaxed to allow for 49 copies of the fundamental cell within our horizon [21]. Recently we computed the CMB
signatures of the 17 Euclidean spaces with non trivial topology [15]. Among the various shapes for a topological 3-torus we
found that a right torus of sizey = Ly =4 andL; = 2 in units of the Hubble radius seems to be favored [22].

Recently, we constrained a family of spherical spaces on the basis of the WMAP data. A lens space’s fundamental domain
is constructed by identifying the two faces of a lens shaped solid withg 2 rotation, for relatively prime integerg andg
such that O< ¢ < p. The result is the lens spadd p, ¢). Exactly p copies of the fundamental domain tile the 3-sphere, their
faces lying on great 2-spheres filling a hemisphere of each, just as the 2-dimensional surface of an orange may beptiled with
sections of orange peel, meeting along meridians spacggd apart. For lens spaces of the foitip, 1) we were able to show
that, if 2 = 1.02, p needs to be larger than 7 for the topology to be detectable and smaller than 15 for being compatible with
the WMAP angular power spectrum.

The reason for this latter constraint comes from the fact that these spaces induce an increase of power on large angular scales,
contrary to what one would expect from the simple example of a torus. Such an increase lies in the properties of the spectrum of
lens spaces. The smallest nonzero eigenvalug(pf 1) is alwaysk = 2¢/K (K being the comoving space curvature), and has
constant multiplicity 3 for allp > 2, contrasting sharply to the behavior of the cubic 3-torus of Biz@r which the smallest
eigenvalue scales ds~L. This behavior can be understood by realizing thap ascreases the space is becoming smaller in
only one direction and remains large in perpendicular directions: on large scales we see a 2-dimensional repartition of modes
that are perpendicular to the axis of the lens, and the relative weight of large scale modes to small scale modes is greater in two
dimensions than in three.

This leads to the conclusion that such an increase of power on large angular scale will also appear for slab and chimney space
and to any space that is strongly anisotropic. This leads to the idea that a ‘well proportioned’ universe may be favored [23].
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Fig. 2. Contour plots of the correlation estimator function between pairs of parallel circles of latitydisfor a cubic toroidal universe. In

this model, the circles are expected to lie at latitdde +18°, £30°, £71°. In the upper row we show the Doppler and integrated Sachs—Wolfe
contributions, which can be considered as noise. In the lower row, we show on the left the Sachs—Wolfe contribution, which exhibits significant
correlations at the expected latitudes. Summing the three contributions, one can check that the expected correlation remains, although at a lower
level (lower right picture).

Concerning the circle method, we recently studied the influence of the Doppler and integrated Sachs—Wolfe effects [15] and
found that the topological signal was not excessively blurred (see Fig. 2). This is a first step toward finding an optimal method
to detect pairs of matching circles in the CMB temperature fluctuation map.

In conclusion, tools to study the topology have been developed and maps can be confidently simulated. This enables one to
discuss in detail the detectability of the topology (effects of noise, foreground, etc.) with the WMAP or the Planck Surveyor data.
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