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1 Introduction

This document describes a limited parallel implementation of the CCP6 pro-
gram MOLSCAT, a general purpose package for performing non-reactive molec-
ular scattering calculations. The code has been run successfully on a 64 node
iPSC/860 and a small HP 700 series cluster at Daresbury.

The aim of the implementation is three fold:

e To cut down on the large memory requirements of the program by dis-
tributing the larger arrays across a number of processes.

e To show reasonable scalability.

e To make the user interface as similar to the serial version as possible.

1.1 Implemented sections of the code
The following portions of the code have been implemented:
e All non-IOS coupling types ( but only
— Atom - linear rigid rotor scattering ( ITYPE = 1)
— Linear rigid rotor - Linear rigid rotor scattering ( ITYPE = 3 )

— Atom - asymmetric top scattering ( ITYPE = 6 )

— Atom - asymmetric top scattering within the centrifugal sudden ap-
proximation { ITYPE = 26 )

— The generalised form of atom ~ vibrating diatom scattering, allowing
a j dependent potential ( ITYPE = 7))

have been tested ).

e The diabatic modified log-derivative propagator of Manolopoulos ( INT-
FLG = 6 ), both with and without propagator scratch files.

e The hybrid modified log-derivative Airy propagator of Manolopoulos and
Alexander ( INTFLG = 8 ), both with and without propagator scratch
files. '

o Checking of the convergence of the S matrix.

e Resonance searching.




1.2 Sections of the code that are NOT implemented and planned
future developments

Besides the non-implemented propagators, the following features of MOLSCAT
are not currently available in the concurrent version:

¢ I0S Calculations

e Pressure broadening calculations

e The LASTIN option

o Convergence checking of total cross section calculations

Work is currently in progress on implementing the pressure broadening sec-
tion of the code, and it is also planned to allow the LASTIN option.

2 Input files: Names and data formats

2.1 The main input file

The communications harness about which the code is designed is PVM. This
unfortunately places some restrictions on where the input file may be placed in
the file system. Further the fact that many processes may attempt to read this
file means that simply redirecting standard input will not work. Due to these
considerations the file must be in the home directory of the user on the machine
on which the process is executing, and it must be called molscat.in. This name
may be changed by altering the INPUT_FILE parameter in the driver routine
and re-compilation.

2.1.1 The NAMELIST block & INPUT

The interpretation of the variables defined in this block is identical to the serial
program, with one very minor exception. If JTOTL>JTOTU and JSTEP<0
then the parallel code will step down from JTOTL to JTOTU. The serial version
would accumulate total scattering cross sections until convergence had been
reached.

2.1.2 The NAMELIST block & BASIS

The interpretation of the variables defined in this block is identical to the serial
program. However users intending to supply their own routines ( ITYPE =9 )
should examine the sections on how the coupling constant array ( VL ) is
distributed, and should also see the note at the end of this subsection.

2.1.3 The NAMELIST block & POTL

The interpretation of the variables defined in this block is identical to the serial
program. However users intending to supply their own routines should see the
note at the end of this subsection. :




2.1.4 The NAMELIST block & CONV

The interpretation of the variables defined in this block is identical to the serial
program.

2.1.5 A note on user supplied routines

User supplied routines should not exit the program by using the FORTRAN
statement STOP. This will almost certainly cause deadlock. Instead the utility
subroutine DIE, which is supplied with the program, should be called.

2.1.6 A Warning about Channel Use for Scratch Files

In the parallel version of MOLSCAT FORTRAN channel number 1 is reserved
for internal use. It should not be used for scratch files.

2.2 Other input files

The parallel version may, but need not, use two other input files. One must be
called par_control.in and must be situated in the user’s home directory, as for
molscat.in. This file sets up various options that control the exact manner in
which the parallel program executes. However if the user requires non-default
options it will be rarely necessary to create this file for it may be created by
command line options. The other’s name may be set by the user. This file
controls a list of all the JTOT/M/Energy values that the job will use. This is
discussed latter in the section on job control.

3  Output files: Names and data formats

With the exception of the log file the data formats for the output files are the
same ag for the serial code. The log file’s format is very similar to the serial
version, but

e it may contain informational messages describing the data distribution
and parallelisation in the job.

e the ‘raw’, unshifted values for the eigenphase sums are written out. This
is because a given process in the parallel code has no guarantee that it
will know what the previous eigenphase sum was.

e any calculations with no open channels are skipped before any propagation
occurs. '

However the names of the files differs from the serial version. Each process
writes to its own set of files, called <old name>.xxxx, where xxxx is a number
unique to each process, ranging from 0 to one less than the number of processes
in the job. The log file is called molscat.out.xxxx. Thus a three process job
may create the following files:




molscat.out.0000 molscat.out.0001 molscat.out.0002
ISAVEU.0000 ISAVEU.0001  ISAVEU.0002
ISIGU.0000 ISIGU.0001 ISIGU.0002
KSAVE.0000 KSAVE.0001 KSAVE.0002

ete.
The potentially large number of open files could conceivably cause problems
on some machines. In latter versions a different solution to the problem of

output may be desirable.

4 Running parallel MOLSCAT

4.1 Basic execution

The exact methodology for executing the parallel version may, and probably
will, vary slightly from machine to machine. The following description assumes
that a workstation cluster of machines running under UNIX is the platform.

1. Check that a version of PVM 3.2.1 or later is installed on all the machines.

2. Start the PVM daemon on the machines, ensuring that the hosts file tells
PVM where the daemon and molscat executables reside.

3. In the file molscat.script check that the file assigned to the variable host_executable
is the host program.

4. Execute molscat.script

You will then be prompted for the name of the executable and how many
processes will be used in the calculation, and then the calculation will start.

4.2 Command line options

It will probably be sensible to put molscat.script somewhere that is on your
PATH and then set up an alias e.g.

in csh

alias molscat “molscat.script $argv*

in ksh

molscat(){

molscat.script $@

1

Then the full syntax of the molscat command becomes:

molscat[-he executable] [-we executable] [-nod #] [-o file]
[-inquire] [-all] [-min #] [-[no]sort] [-read file] [-help]

where -he executable Specifies the host program executable.
-we executable Specifies the worker program executable




-nod # Specifies the number of processes in the concurrent job.
Default is 2.

-o file Specifies the log file for the host program.

-inquire Perform an inquiry run. This performs a run
that quickly ascertains how many processes
are required for the given job.

-all Perform job control in ‘all energies’ mode
( see section on job control ).
-min # Always distribute VL over at least # processes
-[no]sort [Don’t] sort the job control list. Default is -sort.
( see section on job control ).
-read file Read job control list from file.
( see section on job control ).
-help Lists a summary of the available command line options.

If -help is specified then no calculation is performed.

All these options are actually to set up the par_control.in file mentioned in
section 2.2, and thus the user will rarely, if ever, have to actually create this
file. v

5 General overview of the Parallel package

The package consists of three different executables, each of which have a dif-
ferent task to perform. These are the shell script molscat.script, as mentioned
above, a host program and a worker program.

5.1 The shell script

The shell script is written in standard Bourne shell ( sh ) commands, and should
therefore be portable across many Unix machines. It is fairly simplistic and may
well not do exactly what you think it should do if you make mistakes on the
command line. Expert shell programmers are invited to write a better one !

5.2 The host program

The host program is written in fairly standard FORTRAN 77. The extensions
it uses, as flagged by the HP {77 compiler with the -a option, are

¢ Variable names longer than six alphanumeric characters.

Variable names containing the underscore (-) character.

Include files are used.

Lower case is used.

A routine to flush FORTRAN channel 6 is used.




However these are extremely common, if not universal, extensions to FOR-
TRAN 77, and the first four are acceptable under the Fortran 90 standard.
The last extension is not vital to the execution of the program, and in the ab-
sence of such a routine the executable statements in STDOUT_FLUSH may be
commented out. It also has to be linked with the PVM libraries.

The purpose of the host program is to decide what task the worker processes
will next perform. At the start of the job it spawns the required number of
workers and then waits until it receives a message from one of the them. This
message contains a list of all the jobs to be performed, their sizes and how many
processes will be required to perform each one. It again waits until one process
sends it a message telling it that it is available for a job. If the first job requires
only one process the host will send off the job description to the process which
signalled it, otherwise it will wait until enough processes are available for work,
and it will send out the job to them. It will repeat this process until all the jobs
have been performed, and then it will signal to the workers that the calculation
is complete and exit.

5.3 The worker programs

The worker processes actually do the calculation, and resemble in most places
the serial version of the code. The extensions to standard FORTRAN 77 are
those mentioned in the serial code’s user guide and

e Variable names longer than six alphanumeric characters.
e Variable names containing the underscore (-) character.

Include files are used.

¢ Lower case is used.
o A routine to flush FORTRAN channel 6 is used.

Similar comments to those on the host program apply.

After being spawned by the host, the worker reads molscat.in, processes
the data and initialises the various data sets required by the main calculation.
Then for every JTOT/M /Energy combination the number of basis functions are
calculated, and from that the number of processes required to hold the VL array
for that combination. Note that this is for every JTOT/M/Energy combination,
thus the counting calls to BASE are done before the main calculation loop is
ever reached, unlike the serial code. This list is then processed into a form to
be sent back to the host. This consists of a list of jobs, each job description
consisting of the following data: ’

1. JTOT
2. M
3. Number of basis functions

4. Number of processes over which VL will have to be distributed




5. E(1), E(2), E(3) ... E(processes) the energies for this job.

They then send this list back to the host, finish initialisation of the job, and then
signal to the host that they are ready for work. They wait until the host sends
them a job description of the form above. Each process which receives this job
description then decides on which energy it will propagate ( each process chooses
a different energy ) and which parts of the coupling array will be calculated and
stored by it. The coupling constants are then calculated and the wavefunction
propagated. Each process then outputs the desired results for this propagation
to its set of files, and then signals the host that it is again available for work.

If the host signals to the process that there is no more work to be done any
final output and analysis is performed, and the worker then exits.

6 Groups

Before giving a more detailed description of both the host and worker programs
it is necessary to introduce the concept of groups as applied to MOLSCAT.
A group is simply a number of processes working together. In the parallel
implementation of MOLSCAT there is a three-tier hierarchy of groups, each
group a subset ( or identical ) to the group above it in the hierarchy. The
groups from the largest to the smallest, are:

e The global group, gg. This group contains all processes in the job except
the host program.

e The working group, gw. This group contains all processes working to-
gether on the same JTOT/M combination.

e The VL group, gv. This group contains a set of processes over which VL
is distributed.

Thus in MOLSCAT a group simply has two properties, a name and a size, ng.
Within a given group each processes has two properties:

e An instance number, i;. This is a unique identification number for each
process, 0 < i < ng.

e A connectivity to other processes in the group. In MOLSCAT this is set
up as a ring, processes iz being connected to processes mod(ig — 1,ng)
and mod(iz +1,1n,)

For instance in a group of size 4 the processes have instance numbers 0, 1, 2,
and 3, process 0 is connected to processes 1 and 3, process 1 to 0 and 2, 2 to
1 and 3, and 3 to 2 and 0. It should be noted that the i; of a process in one
group will generally be different from its instance number in another group.
Further the difference between the identification number of a process and its
various instance numbers should be appreciated. The identification number of
a process is a unique number ascribed to each process by the message passing
harness. They are thus harness dependent, may well vary from run to run, and




could well be machine dependent. The instance numbers are assigned by the
program, and are totally invariant to such considerations.

As a slight aside the instance numbers in the global group have already
appeared. They are used as the postfixes on the output file names.

There are many routines supplied to utilise the three groups, thus mak-
ing the communication harness in most cases transparent to the user. These
routines are documented in section A of the appendix, along with any other
communication routines.

7 Job Control

Each process in a working group will propagate the wavefunction under slightly
different conditions. For each process JTOT and M will be the same, and so
the basis functions and hence the coupling constants will be the same for each
process, but typically each process in the group will propagate for a different
energy. The one exception to this is in convergence checking, when the different
processes use slightly different integration parameters.

However it will not always be possible to find useful work for every process.
Imagine the situation where VL is so large that it requires four processes to
store it, but propagation is required for only three energies. The VL group
must contain at least four processes, and so one process will be redundant for
propagation purposes. In such a case all output, except for severe warnings and
fatal errors, is switched of for that process, and it simply supplies the relevant
parts of VL when required. I shall term such a process as being in ‘VL server’
mode. :

Obviously the optimal job control method for a particular calculation will:

e Minimize the number of processes acting as VL servers
¢ Minimize the time spent by a process waiting for more work from the host
e Minimize the CPU and wall time required.

These goals are extremely difficult to meet without resorting to a highly complex
control system which would have to calculate how long each job will take, and
then find the optimal order to send the jobs out to the workers. Instead two
different simple job control systems are available, ‘default’ and ‘all energies,’
and it is also possible to define the exact sequence in which the jobs will be
performed by hand.

7.1 Default Job control

‘Default’ job control is actually only the default if the program is not searching
for resonances, convergence checking, or the job is being run on one process (
‘pseudo-serial’ ). In this case the working and VL groups are identical. Each
process propagates for one energy ( or acts as a VL server ) and then requests
more work from the host. This continues until all the jobs are completed. As an
example consider the case when JTOT=10, M=1,2, there are four energies, four
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processes and each calculation requires VL to be distributed over two processes.
The job list that the host will receive will look something like

JTOT M N  Processes Energies

10 1 300 2 12
10 1 300 2 34
10 2 332 2 12
10 2 332 2 34

The first two processes to signal the host, say their instance numbers in the
global group are 1 and 2, will receive the job JTOT=10, M=1, energy=1,2.
Process 1 will do energy=1, while process two will do energy=2. Next processes
0 and 3 will signal the host and receive the second job in the list. Since the
higher the energy the longer the propagation tends to take, processes 1 and 2
will finish first, signal the host that they are ready for more work, and receive
the third job in the list. Here the inefficiency in the scheme becomes apparent.
Processes 0 and 3 receive two comparatively compute intensive jobs, while 1
and 2 get off comparatively lightly, and it may well have been more efficient to
have each group do one short and one long job.

An even worse example of inefficiency would have been if the job control
list was

JTOT M N  Processes Energies

10 1 300 2 12
10 1 300 2 34
10 2 332 3 123
10 2 332 3 400

( The zeros in the list indicate VL servers ). In this case, as before processes
1 and 2 would do the first job, while 0 and 3 would do the second. However
when processes one and two finish they must wait for either 0 or 3 to indicate
that they are available for work. Say 0 finishes first, processes 0, 1, and 2 do
the third job. Meanwhile process 3 finishes and indicates to the host that it is
ready for a job. However it must wait for two of the other processes to finish
before it can proceed. When two of them do, process 3 and say 0 and 1 will
then do the fourth job. But for this fourth job the VL matrix is the same as for
the third, but process 3 does not have this set of coupling constants stored on
it. Therefore a potentially expensive call to BASE has to be made, which could
have been avoided if the job allocator was intelligent enough to work out that
it would have been better to use processes 0, 1 and 2 for both the third and
fourth jobs. It is partially to circumvent this problem that the ‘all energies’ job
control mode is available. ' ‘ '

7.2 All Energies Job Control

In the ‘all energies’ mode of job control one working group propagates all the
energies for a given JTOT/M combination. This is the default mode for reso-
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nance searching, convergence checking and for ‘pseudo-serial’ calculations, and
it can be forced by the -all command line option.

In this case the VL group will usually be smaller than the working group.
Consider the first case above. In all energies mode the job allocator will realise
that if a working group of four is created, and two.VL groups each of two
processes are created within that group, all four energies may be done. For this
case the job control list is '

JTOT M N  Processes Energies
10 1 300 4 4000
10 2 332 4 4000

The energy list in all energies mode is redundant, for obvious reasons. In this
case there is no particular advantage in using this mode. However in the second
case the job list becomes

JTOT M N  Processes Energies
10 1 300 4 4000
10 2 332 4 4000

The way that groups are created ensures that the same set of 3 processes do all
four energies when M=2. This is still not ideal, but a call to BASE has been
avoided.

This form of job control should, however, be used with caution. Say in the
first case above there were not 4 but 6 processes in the job. The first four
processes to signal the host would be sent the JTOT=10, M=1 job. The next
two would signal the host, but the host thinks that at least four processes are
required for the second job, and so will wait until two of the other processes are
available. Compare this with the default action. The first two processes will
get the first job, the next two the second and the last two to signal the host
the third. This leads obviously to a more efficient use of the resources.

7.3 Manual Control of the Job Control List

Both the two automatic forms of job control have, as been seen above, poten-
tially serious drawbacks. Potentially the way to get the best performance is to
read in a job control list using the -read command line option, and probably
with the -nosort option as well.

~ In the job control file every possible combination of JTOT, M and energy
~ should be listed in the format '

JTOT M Energy N Required number of processors.

" Thus to reproduce the job control list for the first example the job control file
would contain
1011 300 2
1012 300 2
10 1 3 300 2
10143002
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10213322

10223322

10233322

10243322

Using this method one can improve the performance of the second example by
using the job control file

10113002

101 2 300 2

10133002

1014300 2

10213324

10223324

10233324

10 2 4 332 4,

that is forcing slight over parallelisation on the M=2 jobs by distributing VL
over 4 processes, not just three. Therefore only one pass, not two over the M=2
energies need be performed.

Unless the -nosort option is set on the command line the job control list is
sorted. Usually it is sorted in increasing job size, as measured by the number of
basis functions, but if JSTEP<O0 is set in molscat.in this ordering is reversed.
If two jobs are the same size the one with the lower JTOT comes first in the
list.

The main problem with this approach is that it requires a much greater
understanding of how the program works to be able to use it effectively. However
the judicious use of the -inquire option, which causes the program to output
the job control list and then exit, is a straightforward way of tailoring the list
to be as efficient as possible.

7.4 The Job Control Code

A brief description of the major subprograms involved in job control is included
in section B of the appendix.

8 Memory Management

As in the serial version the large array X is used to provide effective dynamic
memory allocation, and the organisation within it is very similar in the parallel
version. The differences result from

1. Distributing VL
2. Further space saving tricks, mainly to do with the real and imaginary

parts of the S matrix.

8.1 The Distribution of VL

. VL, the coupling constant matrix, is a three dimensional hypermatrix, its ele-
ments normally subscripted VL, where i,j<n, the number of basis functions,
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and lambda <npotl, the number of terms in the potential. It is symmetric in
the i and j indices, and advantage is taken of this in both the serial and parallel
versions of the program to save on storage space.

For the parallel version where VL is distributed it is convenient to think of
the array as n ( two dimensional ) rectangular matrices VL; of dimension npotl
by i, i<n. The aim is to distribute these matrices across the processes in the
VL group in such a way that the storage taken up on each process by its part
of VL is, as close as possible, the same. One of the simplest ways of achieving
this is as follows. Consider a very simple and unrealistic example where n is
four and it is intended to distribute VL across two processes. Thus the set of
matrices, and the storage each one takes up, is

VL requires npotl storage units

VL, requires 2xnpotl storage units
VL3 requires 3 xnpotl storage units
VL4 requires 4 xnpotl storage units.

If the process with instance number 0 is assigned matrices 1 and 4, while process
1 gets matrices 2 and 3, each process will store exactly the same amount,
5xnpotl. This idea can obviously be extended to the general case. Process 0
gets a few of the very smallest and very largest matrices, Process 1 is assigned
a set of slightly larger small matrices and slightly smaller large matrices and
so on. More specifically let iz be the instance number of the process under
consideration, n; be the number of processes in the VL group, nay = int(n—ng-)
and ns = int(%+). Then this process will be assigned the matrices VL; for
ng X ig+1 <i<ng X (ig+1) andn—ng X (ig+ 1)+ 1 <i<n—ngxig This
will only cover all the matrices if the number of basis functions is an even
multiple of the number of processes in the VL group. If this condition is not
satisfied the small number of matrices not covered by the above recipe are
assigned in order to different processes. The resulting imbalance is negligible.

8.1.1 The Routines which Control the Distribution of VL

This section provides a general overview of the routines concerned with dis-
tributing VL across the processes. For more syntactical detail see section C of

the appendix.
There are four routines concerned with the distribution of VL. Three are

simple integer functions

e VLnods returns the minimum number of processes over which VL must
be distributed to fit in the large X array

e VLmem returns essentially the memory that VL will use in the X array-
e VLnumi returns how many of the (2D) matrices this process will hold.
However the main workhorse of the VL distribution system is the subroutine

VLlist. This, through its arguments, returns three pieces of important data:

14




e integer number_of_i. This is the number of (2D) matrices this process will
hold, i.e. it is the same as the return value of VLnumi. It is commonly
abbreviated in the code to NUMIL.

e integer matrices_this.node( 1:number.of.i ). This holds a list of the (2D)
matrices held by this process, indexed by I value. It is commonly abbre-
viated MATNOD.

e logical held by_this node( 1:n ). If the (2D) matrix VL; is held by this
process, HELD_BY_THIS_NODE( I ) is true. It is commonly abbreviated
HLDNOD.

The two arrays are held in the large dynamic memory (X) array, and space
must be allocated for them.

In general VLlist can be treated as a ‘black-box’ routine, though its method-
ology is a straightforward implementation of the ideas outlined above. However
it has a secondary purpose, to generate a list of the communications involved
in the propagators. For more detail see the later. In passing it should be
mentioned that VLlist is always called, even when VL is to be all held on one
process. In such a case

e number.ofi=n
¢ the elements of matrices_thisnode are 1, 2, ... n
e all elements of held_by_this_node are set to true.

Though described as the workhorse, VLIlist is not a computationally expen-
sive routine, being O(n) instructions.
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8.1.2 User Implemented Coupling Schemes

After a call to VLIist has been made the implementation of most user defined
coupling schemes is very straightforward. Simply change the lines corresponding
to

doxxi=1, n
to

do xx index = 1, number_of_i
i = matrices_this_node( index )

where xx is a line number. However many schemes count the number of zero
elements of the VL hypermatrix, and report a warning if all elements are zero.
In the parallel version of MOLSCAT all elements of VL on one process may be
zero, but this does not imply that all elements of VL are zero. The simplest
way to avoid spurious warnings is to change the code to something like

integer work
integer dummy

- character*7 group
character*7 VL_group

it
(@]

dummy

group = VL_group( dummy )

number_not_zero = 0
do xx index = 1, number_of_i
i = matrices_this_node( index )

doyy j=1, 1
Calculate relevant elements of VL
if( element .ne. 0.0d0 ) then

number_not_zero = number_not_zero + 1
endif ’

vy continue
Xx  continue
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call group_imax( number_not_zero, 1, work, group )
if ( number_not_zero .eq. 0 ) then

write( 6, xxxx )
endif

xxxx format( 1x, °All elements of VL are zero !’)

where the routines VL_GROUP and GROUP_IMAX are described in the ap-
pendix. It is very important to note that the fragment

if ( number_not_zero .eq. 0 ) then
call group_imax( number_not_zero, 1, work, group )
endif

is INCORRECT. For GROUP_IMAX not to result in deadlock all processes
in the relevant group must call it. In the above fragment it is perfectly possible
that only a small number of members of the group will call it.

There is one other small change that may be required. On a basis function
counting call to BASE the J array must be calculated. This will require storage
in the dynamic memory array.

8.2 Other Changes to the Memory Management

By far the most important change not to do with VL is the handling of the real
and imaginary parts of the S matrix. These are symmetric matrices, and are
now stored in packed upper format i.e. the order of storage is

S(1) in the program corresponds to S(1,1)
S(2) in the program corresponds to S(2,1)
S(3) in the program corresponds to S(2,2)
S(4) in the program corresponds to S(3,1)
S(5) in the program corresponds to S(3,2)

etc. This means the SR and SI need only be allocated 3521%2 storage units in
the dynamic memory array (X), a saving of n(n-1) over the serial code. There
are some important consequences of this:

e Much of the code generating and handling the S matrices has been com-
pletely rewritten.

o The Y and W arrays are also held in packed upper format.
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e The memory management in some places has become more complex.

The third of the above points requires more elucidation, particularly with
regard to two points. Firstly though the W matrix is held in packed format it
must be allocated n? storage units. The reason for this is two fold. Firstly in
many places a n? scratch array is required. The area in X corresponding to W
is often used for this. Secondly the second half of the W array is sometimes
used as temporary buffering for communications.

The second point requiring elucidation is the interface to the YTOK routine,
the subprogram that converts the log derivative matrix to the K matrix. Here,
in essence, two scratch matrices of size n? are required, while, without taking
up further space in the dynamic memory array, only one is available. Here
advantage is taken of the fact that SR and SI are stored contiguously in the X
array, and the arguments corresponding to SR and SI for YTOK (Y and T )
are next to each other. In the parallel implementation the T array is unused,
but the Y array is declared as Y( 1:N, 1:N ), and thus, though T is not explicitly
mentioned in the routine, part of it will be used when accessing the second half
of Y.

There are two other small changes in the use of the dynamic memory array:

e While it is being constructed the job list is placed in the array. After it
has been sent to the host it is deleted.

e A basis function counting call to BASE now allocates the J array. Space
on X must be available for this, as noted above.

9 Propagating the Wavefunction

Virtually all the communication involved with propagating the wavefunction
occurs in the routine WAVMAT, which has been completely rewritten. The
next subsection gives a description of the methodology employed, and that
following it outlines some other consequences of this.

9.1 The Routine WAVMAT

The heart of the two propagators impleinented in the parallel version of MOLSCAT
is the routine WAVMAT. This oversees the calculation of the ( symmetric ) W
matrix from

npotl
Wij(r) = Y VLijpa(y)
A=1

where p is the vector representing the potential for a radial separation r. ( -
This is not exactly the case, there are some additional terms in the diagonal
elements of W, but since W is not distributed these may be calculated locally,
exactly like the serial code. )

The method used is to pass the potentials calculated on each process in
the VL group round the ring and send the parts of W back to the process
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from which the potential originated. More specifically, if py(r) is the vector
describing potential calculated on process with instance number n in the VL
group, and the size of the VL group is ng, then

1. For process with instance number n calculate pn(r)
2. Let COUNT=1

3. Let ORIGIN=mod(n-COUNT+1, ng)

4. Let NEW=mod(n-COUNT, n,)

5. Send poricin(r) to instance number mod(n-+1,n4)
6. Receive pNgw (r) from instance number mod(n-1,n,)
7. YVL; on process n calculate W;i(r) = VL;pnEw (1)
8. If COUNT < ng then

(a) Send {W;} back to instance number NEW

b) Receive message from mod(n+COUNT,n,) containing the parts of
( g g g P
W calculated on that process

(c) Fill in the parts of W represented by this message
9. COUNT=COUNT+1
10. If COUNT < ng return to step 3

This looks a lot more complicated than it actually is ! As an example

- let us focus on the process with instance number 0 in a 3 process VL group.
The first thing it does is calculate the potential vector. It then initializes a
variable COUNT to 1, and sends the potential onto the next process in the ring,
instance number 1. It then receives the potential from the previous process in
the ring, number 3 and uses that to calculate all the parts of W that it can
with its part of VL. From COUNT the process knows that only 1 potential
send has been made, so the potential used in the calculation of W must have
come from process 2. Hence the part of W just calculated belongs on that
process, and so it is sent there. Similarly because COUNT is one the potential
calculated by process 0 is at present on process 1, and so process 1 has just
calculated part of the W matrix that should be on process 0. Therefore node 0
receives it. Further because the VL hypermatrix is distributed in a completely
deterministic manner node 0 knows not only what parts of VL are held by
it, but also what parts are held by all other processes in the VL group. It
follows from this that it can work out which parts of the W matrix the message
it has just received from process 1 correspond to, and so the W matrix can
be partially constructed. COUNT is then incremented, becoming two, the
potential on process 0, which originated on process 2, is sent to process 1, and
a new potential is received from process 2. Again the parts of W that can be
calculated are done so, and from the value of COUNT it knows that this belongs
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on process 1, from where the potential originated. Similarly it knows that the
part of W relevant to it is at present on process 2. These are received, and since
each process holds a different part of VL, a different part of W can be filled in.
COUNT is again incremented, the present potential is sent to process 1, and a
new potential is received from process 2. Now COUNT is three, and therefore
the potential on process 0 is the potential that was originally calculated on that
process. Hence the part of W that will be calculated is the part required on this
process, and therefore all calculations can be done locally. A similar sequence
of events occurs on the other processes.

The actual implementation is an optimised version of this. The two main
features that are not outlined above are

e All the communications occur asynchronously, thus reducing the time the
process sits waiting for messages.

e All the details of the communications are precomputed in VLLIST and are
communicated to WAVMAT through common blocks to hide the details
from the user.

For more specific details see the code which is well documented.

This method makes no assumptions about the potential beyond the vec-
tor having the same dimension on each process. In general the potential will
actually be the same on each process and the potential communications will
be redundant. However they are short and asynchronous, and so incur only a
very small drop in performance, and the flexibility gained for cases when the
potentials are not all the same, for instance in convergence checking, more than
outweighs this.

9.2 Implications of the Implementation of WAVMAT

The passing of messages around the ring means that all processes must call
WAVMAT before the calculation of W on any one process can complete. Thus
WAVMAT is a ‘loosely synchronous’ routine. This has the important implica-
tion that each member of the VL group must call WAVMAT ezactly the same
number of times. This problem must be addressed in two different circum-
stances.

In DASCAT ( the routine corresponding to propagator 6 ) the number of
propagation steps is calculated before the main loop. In this case each process
calculates how many steps it would use if it where performing the propagation
independently. Then a GROUP_IMAX call is used to choose the largest number
of steps wanted, and the step size is adjusted accordingly.

In AIRPRP ( the routine corresponding to propagator 8 ), and in the rou-
tines used to find a suitable lower bound for the separation to start propagat-
ing from ( FINDRM and RMSET ), rather than there being a predetermined
number of steps, calls to WAVMAT are made until a convergence criterion is
satisfied. In this case a logical variable is used which becomes true when the
criterion is satisfied on the process, and then a GROUP_LAND is used to de-
‘termine if all processes have reached convergence. If they have the routine is
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finished, if not it carries on calling WAVMAT until the GROUP_LAND returns
true.

10 Resonance Searching

The implementation of resonance broadening is very straightforward. Once
five energies have been propagated ( 5 points are required for the interpolation
method ) the eigenphase sums are broadcast to all processes in the working
group, shifted and the resonance is found as in the serial code. Note that all
processes at this point will be doing exactly the same thing, an inefficiency, but
as the routine which searches for resonances is quick this is not of importance.

Users of the serial version should note that the main driver routine does not
call NEXTE, the routine which searches for resonances, in the parallel version.
Instead it calls RESONANCE_SEARCH which oversees the communication of
the eigenphase sums and their shifting before it calls NEXTE.

11 Convergence Checking

The method used to implement convergence checking is simply to pass the S
matrices around the working group ring, comparing the one just calculated with
the one on the previous process in the group. The ordering of jobs within the
group is designed so that the correct pairs of matrices are compared. On the
first call to the convergence checking routine process 0 may read S matrices
from a file, on later calls it uses the S matrices from the last process in the
group calculated on the last call.

Some clarification may be necessary with regard to the case where the num-
ber of steps in the propagator is varied. Previously it was stated that all
processes must call WAVMAT the same number of times, and this may appear
to be in conflict with such a convergence check. However as that convergence
checking is run in ‘all energies’ mode, the VL and working groups will be dif-
ferent. The statement about calling WAVMAT refers to the VL group. The
convergence checking occurs within the working group. There is therefore no
conflict. -

12 Other Changes to the Program

There have been a large number of other small changes to the program, too nu-
merous to list here. Generally they consist of either one or two extra arguments
in an argument list of a subprogram, or the removal of a small inefficiency, or
just some tiding up of some slightly obscure code. Users used to the serial code
should check these, especially the argument lists, before modifying the code.
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13 Implementation Dependent Parameters in the In-
clude Files

Some parameters in the include file may have to be changed depending on the
actual machine that the package is being installed on. The important ones are

¢ MAXNOD in comm.finc sets the maximum number of worker processes
that may be used.

e VL.MEGABYTES in max.VLmem.finc sets the maximum number of
megabytes VL may occupy on one process.

e The parameters in size.finc set the sizes, in bytes, of various variable types.
They are set up for 32 bit machines, and will require modification if the
package is to be used on a 64 bit machine.

14 Some Sample Performance Figures

Benchmarking is a tricky business, fraught with dangers. It is bad enough in a
serial environment, but in parallel the situation can be much worse. Therefore
“the following figures should be taken with an extremely large pinch of salt, and
be merely taken as general guidelines rather than gospel truth.

The runs were for propagator number 6, coupling type 6 and 8 energies, all
at one JTOT/M combination. There were nine terms in the potential. The
size of the job was varied by altering the JMAX parameter. The runs where
performed on an HP 700 series cluster, with communications occurring over
FDDI, and full optimisation at the compile stage. Default job control was
used. In all cases VL was distributed across all processes in the job. Since the
load balancing is not perfect the time recorded for the parallel jobs is the time
taken by the most compute intensive process, and the memory requirement is
that for the most heavily loaded process. Time is in CPU seconds and memory
in double precision storage units.

LJMAX [ N ] Procs I Time | Memory | Speed up ]

5 67 1 43.1 35674 —
5 67 2 34.0 25492 1.3
5 67 4 22.5 20264 1.9
5 67 8 18.1 17808 24
7 164 1 486.2 | 193679 —
7 164 2 301.4 | 132712 1.6
7 164 4 192.3 | 102215 2.5
9 325 1 5461.0 | 730500 —
9 325 2 2261.9 | 492864 2.1(1Y
9 325 4 1392.5 | 372299 3.4
9 325 8 850.6 | 312120 5.6
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These figures, as far as they go are rather encouraging. There is appre-
ciable speed up and memory savings even for rather low values of N. Further
the integrator used is the less compute intensive, and the number of terms in
the potential expansion was rather small. On using INTFLG=8 and a more
complex potential one would expect some further improvement.

The Appendix

The appendix covers the more important routines and include files intro-
duced into the code on parallelisation.

A Communication Routines and Utilities

In the following:

e integer id is the identification number assigned to a process by the message
passing harness (PVM).

e integer instance is the instance number of the process in the given group
e integer dummy is a dummy argument

e character®7 group is the name of a group

A.1 Basic communication routines

These routines are relatively low level, and interface directly with the harness.

subroutine inicom
Initialise the communications.

subroutine exit_comms
Exit the communications harness.

subroutine synchronous_send( msg_tag, type, buffer,
size, id, tag )

integer msg_tag, type, size, id, tag
TYPE buffer( 1:size )
Synchronous_send sends a message of size SIZE held in the buffer BUFFER to
the process with identification ID. The message is of type TYPE, valid types be-
ing defined in the file types.finc. The message is given an identification number
MSG_TAG. TAG is redundant in the PVM implementation. The communica-
tion is synchronous in the sense that no further computation will occur until
the message is safely on its way, but not necessarily received.
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subroutine synchronous_receive( msg_tag, type, buffer,
size, id, tag )

integer msg_tag, type, size, id, tag
TYPE buffer( 1:size ) :
Synchronous_receive receives a message of size SIZE and puts it in buffer BUFFER
from the process with identification ID. The message is of type TYPE, valid
types being defined in the file types.finc. The message must have an identifica-
tion number MSG.TAG. TAG is redundant in the PVM implementation. The
communication is synchronous. No further computation will occur until the
message is received.

There are also asynchronous versions of the above routines. For further
information see the code.

integer function who_am_i( dummy )
This function returns the identification number of the process from which it is
called.

integer function size_of_job( dummy )
This function returns the total number of processes in the job, including the
host.

A.2 Group Routines
The following routines use the groups that are set up in MOLSCAT.

A.2.1 Informational routines
These routines return information about the given group.

character*7 function global_group( dummy )
This function returns the name of the global group.

character*7 function job_group( dummy )
This function returns the name of the working group.

character*7 function VL_group( dummy )
This function returns the name of the VL group.

integer function instance_in_group( group )
This function returns the instance number of the calling process in the group
named GROUP.

integer function number_in_group( group )

This function returns the number of processes in the group named GROUP
which the process is in. '
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A.2.2 In Group Communication Routines

There are two communication routines which exploit the connectivity of the
given group

subroutine synchronous_send_next( type, buffer, size, tag,
group )

integer type, size, tag
TYPE buffer( 1:size )
character*7 group
Synchronous_send_next sends a message of size SIZE held in the buffer BUFFER
to the process with instance number mod(ig + 1, ng) in the group named GROUP.
The message is of type TYPE, valid types being defined in the file types.finc.
The message is given an identification number MSG_TAG. TAG is redundant
in the PVM implementation. The communication is synchronous in the sense
that no further computation will occur until the message is safely on its way,
but not necessarily received.

subroutine synchronous_receive_prev( type, buffer, size, tag,
group )

integer type, size, tag
TYPE buffer( 1:size )
character*7 group :
Synchronous_receive_prev receives a message of size SIZE and puts it in buffer
BUFFER from the process with instance number mod(iz — 1,1n4) in the group
named GROUP. The message is of type TYPE, valid types being defined in the
file types.finc. The message must have an identification number MSG_TAG.
TAG is redundant in the PVM implementation. The communication is syn-
chronous. No further computation will occur until the message is received.

A.2.3 Group operations

The following routines perform operations involving data on all processes of the
group. Every process must call the routine before completion and subsequent
computation can occur. ‘

The routines are all of the form
subroutine group_TYPE OPERATION( a, n, work, group )
integer n
- TYPE a( 1:n ), work( 1:n )
character*7 group
where

e if TYPE=dp then a double precision operation is performed. Validboper—

ations are

— sum - for every corresponding element of A across the named group
add all the elements together. On return A holds the result of the
operation.
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prod - as for sum but take the product instead.

— max - as for sum but perform a max function instead.

— min - as for sum but perform a min function instead.

— use - as for sum but perform the user defined function held in user_dpop

e if TYPE=r then a single precision operation is performed. Valid opera-
tions are as for TYPE=dp., except the user defined function is held in
user._rop.

¢ if TYPE=i the an integer operation is performed. Valid operations are as
for TYPE=dp., except the user defined function is in user_iop.

o if TYPE=] (el ) then a logical operation is performed. Valid operations
are

— and - for every corresponding element of A across the named group
and all the elements together. On return A holds the result of the
operation.

— or - as for and but logical or instead.

— use - as for and but use the function defined in user.lop instead.

A few words should be said about the user defined operations. The func-
tions must be declared as
TYPE function user_TYPEop( x, y )
TYPE x, y
If the operation is not associative random results will occur for the order in
which the data is taken will not be the same for each process.

Very closely related to these routines is

subroutine group_barrier( group )
This routine loosely synchronises the given group. Each process in the group
will pause until every process in the group has called this routine. '

A.3 Utilities

Three utilities are provided.

integer function id-to_instnum( id )
This routine returns the instance number in the global group of the process
with identification number ID.

integer function instnum_to_id( instance, group )
This function returns the identification number of the process with instance
number INSTANCE in the group named GROUP.

subroutine close_files

It has been found that on occasions PVM fails to flush all output streams. By '
explicitly closing all open files this subroutine circumvents this problem.
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B Job control Routines and Utilities

In the following:

e integer joblist is an array containing the job list. It is held in the large X
array until sent to the host.

e integer job_number is the number of jobs found so far.

e integer length list is the length of the job list so far.

B.1 Job List Creation and Manipulation

The following routines create the job list and turn it into the correct form:

subroutine job_control_init( lots - see code )
The driver routine for creating and manipulating the joblist.

subroutine list_all_jobs( lots - see code )
This subroutine creates a list of all the JTOT/M/Energy combinations, with
the number of basis functions and processes required for each one. These are
held in job list in the same format as the ( optional ) job control file.

subroutine add_to_list( joblist, jtot, m, energy, n,
processes, job_number)
This routine adds an entry to the end of the job list.

subroutine read_joblist( joblist, job_number, inquire, job_list_file)
logical inquire
character*72 job_list_file
This reads in the job list from the file JOB_.LIST_FILE. INQUIRE is a flag

which is set if this is an inquiry run.

subroutine sort_job_list( joblist , job_number, jtot_step )
This routine sorts the job list. If JTOT_STEP>0 then the list is sorted so that
the smallest jobs come first, otherwise the largest are placed at the beginning
of the list.

subroutine prepare_list( joblist, job_number, length_list)

This routine prepares the possibly sorted job list from list_all_jobs into a form
suitable to be sent to the host.

B.2 Requesting the Next Job

The following two routines request job descriptions:

subroutine go
Start the calculation part of the computation.
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subroutine request_new_job
Request the next job from the host.

B.3 Receiving and Interpreting the Job Description

The following two routines set up the job ready for propagation:

subroutine create_group( lots - see code )
Receives the new job description, interprets it and sets up the working and VL
groups.

integer function my_next_energy( lots - see code )
Returns the index of the next energy to be considered by this process.

B.4 Utilities

There is only one utility:

subroutine shell sort( n, arr, first_dim, sort_dim, direction )
integer n, first_dim, sort_dim, direction, arr( 1:first_dim, 1:n )
Performs a sort using Shell’s algorithm. ARR is sorted by index SORT.-DIM.
If DIRECTION is 1 the array is sorted into ascending order, -1 descending.

C Routines Concerned with the Distribution of VL

There are four such routines, three functions and one subroutine. In the fol-
lowing

e integer n is the number of basis functions
e integer number_of i is the number of (2D) matrices held by this process

e integer matrices_this.node( I:number of i) is a list of which matrices are
held by this process.

subroutine VLlist( n, number_of_i, matrices_this_node,
held _by_this_node )

logical held_by_this_node( 1:n )

This routine calculates and returns the number and list of the (2D) matrices-
which are part of the VL hypermatrix and are held by this process. It must
always be called. It also works out the size and form of the communications
required in the propagating stage, but this is deliberately hidden from the user.
Elements of HELD.BY _THIS_NODE are true if the corresponding part of VL.
_indexed by i, are held by this process.

integer function VLnods( n, n_potential, next_available,

upper_bound )
integer n_potential
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integer next_available, upper_bound

This routine must return the minimum number of processes which VL must be
distributed. N.POTENTIAL is the number of terms in the potential, NEXT_AVAILABLE
is the index of the first unused element in the dynamic memory (X) array, and
UPPER_BOUND is the index of the last element in the X array. At present

the last two arguments are redundant. Rather the parameter MAXMEM_VL

held in the include file max_VLmem.finc is used to set how much memory VL

may occupy on each process.

integer function VLnumi( n )
This returns NUMBER._OF_I

integer function VLmem( number_of_i, matrices_this_node )
This function returns the memory required to store VL on this process before
weighting by the number of terms in the potential expansion. That is the
memory required to store VL is given by VLmem(n)xnpotl.

D The Include Files

This section outlines the contents of the include files used in the package.

D.1 SIZES.FINC

This include file contains the size in bytes of the various data types used in the
package. The file as provided is for a 32 bit machine. If run on a machine with
different data type sizes this file must be altered before compilation.

D.2 COMM.FINC

This is the main include file. It contains a number of parameters and common
blocks that control the communications in the calculation. Thefile SIZES.FINC
is included in this file.

integer parameter maxnod -
MAXNOD is the maximum number of working processes in the calculation.

integer parameter hostmsg, job_request, next_job, message_W _base,
message_p_base, global_msg, job_msg, VL_msg
These parameters define message identification numbers for various kinds of
message.

logical parameter log_msg
If set all messages used in the job are recorded.

integer parameter msgfile
This is the channel number on which the message log is written.
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common /msg_hst/, host_id
integer host_id
The identification number of the host.

common /msg.nod/ me, ionode
integer me
logical ionode
ME is the identification number of the process on which this job is being exe-
cuted. If IONODE is set input/output is performed, otherwise it is not.

common /msg_glb/ numnod, tid, global_instnum, global_next, global_prev
integer numnod, tid( 1:maxnod ), global_instnum, global_next, global_prev
This common block describes the global group.

e numnod - The number of nodes in the global group

e tid - A list of the identification numbers of the processes in the global
group

e global instnum - The instance number of this process in the global group

e global next - The identification number of the next process in the global
group ring

global prev - The identification number of the previous process in the
global group ring.

common /msg_job/ ngroup, mychum, instnum, next, prev
integer ngroup, mychum( 1:maxnod ), instnum, next, prev
This common block is the same as the previous one except it refers to the work-
ing group rather than the global group.

common /msg_VL/ ngroup_VL, mychum_VL, instnum_VL, next_VL,
prev_VL '
integer ngroup_VL, mychum_VL( 1:maxnod ), instnum_VL, next_VL,
prev_VL
This common block is identical to msg_glb except that it refers to the VL group
rather then the global group.

common /msg_str/ glbnam, grpnam, grpnam_VL
character*7 glbnam, grpnam, grpnam_VL
This common block contains the names of the various groups. Due to the lu-
dicrous FORTRAN 77 restriction that character variables and other types may
not be mixed in common, there must be a separate common block for them.

" common /msg_wpr/ nwsends, nwrecvs, wsends, wrecvs, wend
integer nwsends, nwrecvs, wsends( 1:4, 1:5 ),
wrecvs( 1:4*¥(maxnod-1), 1:6 ), wend
This common block controls the communications in the routine WAVMAT. The
various variables are all set up in VLLIST. They are :
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e nwsends - The number of messages this process sends out in one call to
WAVMAT.

e nwrecvs - The number of messages this process receives in one call to
WAVMAT.

e wsends - This array contains all the information relevant to sending out
W to the other processes.

o wrecvs - This array contains all the information relevant for receiving the
W array from other processes.

e wend - This is the index of the last used element of the W array stored
in packed format.

The other two common blocks in COMM.FINC are redundant in the PVM
version.
D.3 MAX_VLMEM.FINC

This include file sets up the maximum allowed memory for the VL array on any
given process. SIZES.FINC is included. The only parameter of interest in this
file is

integer parameter VL_megabytes
This sets the maximum storage that VL may occupy in megabytes.

D.4 TYPES.FINC

This include file sets up the reference numbers for the various data types in the
communication routines. For the present implementation they must agree with
those found in the PVM include file ‘FPVM3.H.’
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