2. Stars
Stellar structure and evolution
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n Stars

> The form, evolve, and die
> One property to rule them all: the mass
o All properties (luminosity, temperature, lifetime) depend primarily on a single property:
the mass of the star when it stars shining
> Understanding of stars
e Spectroscopy
e Quantum physics, nuclear and particle physics, thermodynamics, statistical physics
o A major achievement of XXth century physics
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B The Hertzsprung-Russel Diagram (HRD)
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Our Lecture: understand the physical basis of the HRD
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m Basics of the HRD
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E Main sequence stars

RGB - Red Giant Branch
HB - Horizontal Branch
AGB - Asymptotic Giant Branch

8-t
=

> A star spends most of the time on the main-sequence
e MS = fusion of hydrogen into helium
e The Sun spends 10 Gyr on the MS
e Massive stars spend less time on the main sequence
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B Mass-Luminosity relation
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> Mass is the primary property of a star
> All stars work pretty much the same: competition between gravity and pressure
e Pressure is due to temperature (thermal pressur, like for a perfect gas), to radiation,
and in some cases (very dense regions as in white dwarfs or neutron stars) to Pauli
exclusion principle

> Luminosity is the most important property because this is what we can measure
o L~ M &Ex3.5-4
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B Main sequence lifetime

M [Mo]

> tms ~ M/L ~ M
o Reality more complex (convective vs radiative stars)
> Estimate the main-sequence lifetime of a 5 M, star

UGA L3 — Introduction to astrophysics

B Post-main-sequence evolution
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B From hydrogen fusion to helium fusion
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B The Sun as a red giant
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> The evolution of the Sun into the red giant phase
> Time is given in Gyr
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B Betelgeuse
Jan 2019 Dec 2019
> left: visible
> right: VLT VISIR/NEAR in the infrared (10mic); dust production?
10
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m After the fusion of helium

Hertzsprung gap

> Helium fusion in the core of the star has stopped: cools down, moves to the right along
the Asymptotic giant branch (AGB)
> AGB stars are stars moving on the AGB
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m AGB stars: inner structure

Close-up of core region fora 1 M
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> H and He shell-burning surrounding inert core of C and O
e mass loss: planetary nebulae
> many other features: deep convection, neutrino cooling, s-process
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B Planetary nebulae

> Planetary nebula are due to mass loss from AGB stars
> PN mark the end of the AGB phase
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m Mass loss: Wolf-Rayet stars

“WR 124 seen by the HST"

> Wolf-Rayet stars are very massive stars with extreme mass loss
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> Open clusters (left): M45, Pleiades, are young (~ 108 yr), 10-100 stars
> Globular clusters (right): old (~ 10'2-10'3 yr)
e Example: M1, Q Centauri, the brightest, most massive, globular cluster in our galaxy;
~ 108 stars; diameter ~ 150 ly
e revision of the coeval assumption: it is made of two populations of stars born at different
times (heic0809, eso0509)
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B The Westerlund 1 open cluster

The Westerlund 1 open cluster, one of the largest one in the Milky Way, containing among
the most massive stars, and a magnetar. More info here and here.
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m HRD of clusters: leaving the main sequence
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> Key point: stars in clusters are born at ~ same time (we say they are coeval)
> The main sequence turn-off (MSTO) point; the older the cluster, the lower the MSTO in
the HRD
> Visible features:
e Hertzprung gap, subgiant, helium ignition
e RGB; H shell-burning and He core-fusion (He flash for <2 Mgstars)
e Horizontal branch (HB): helium core fusion (Helium main sequence)
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E The end of stars

> Stellar evolution leads to different fates, depending on the mass of the star on the main
sequence

Quiet, slow end of life: low-mass stars (M < 8 Mo)

Cataclysmic end of life: high-mass stars (M > 8 M)

Compact objects: white dwarfs, neutron stars, black holes

vV vV Vv
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B Low-mass stars: Planetary Nebula, White Dwarfs

> Planetary nebula are due to the loss of outer layers of AGB stars

> Central object: White dwarf (WD) are slowly cooling objects with mass ~ 0.6 Myand
effective temperature from 10% to ~ 105 K.

> Image: Hubble Space Telescope
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B High-mass stars: Supernovae explosions, neutron
stars, black holes

> Depending on the mass,
explosion leads to neutron star
or black hole

> 8 <M < 20-25 M,: Supernova
remnant (SNR) is a neutron star

(Crab Nebula)

e Result: a rotating neutron
star (called a pulsar) with a
period P=30ms

> Above ~ 20-25M,: direct
formation of a black hole

“Crab nebula (Messier 1), located in the Taurus, explosion in 1054
was observed and recorded by Chinese astronomers; see here for
details. Image: Very Large Telescope (VLT).”
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B The fate of high-mass stars: Fusion of neutron stars

> Fusion of two neutron stars into a kilonova: synthesis of elements beyond iron

> First detected through gravitational waves on 17-aug-2017: fusion of a 1.1 and a 1.6 M,
neutron stars

> Followed by multi-wavelength observations

> More information here
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B The fate of very-high-mass stars: black holes

2017 April 11

‘e

“Direct image of a supermassive black hole by the Event Horizon Telescope (EHT)”

> Stars with main sequence mass M>20-25 Mcollapse and directly form black holes

> Broad range of black hole mass
e stellar BH: M~ 3-20 M,; binary systems
o supermassive BH (SMBH): M~ 10° to 10"® M,
e no detection so far of Intermediate Mass BH
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m Stellar Black Holes
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> SBHs are binary systems: companion star cover a broad range of mass too (K- to B-stars)
> In our galaxy, we estimate to ~108-10° the numbers of stellar BHs
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m Super Massive Black Holes

THe ASTROPIYSICAL JOURNAL. T64:184 (14pp). 2013 February 20 MeCoNNELL & Ma.

* starsEarly
Nasa2 e
10° -+ s
gy, co,
& MasersiEarly-type .
4 MasersLatetype iy
760 iz
10° Ry
iz i
3 Tuze
< nasie s
= ezt el
< 0 bt
= st
=
S e o s
= 1y asag] | fissor
7 100
nazse T
S s LIS
oz
549
, 78 wasso
10 wazag Nesss

300 200

e galaxics (BC
es axe plotied in
the Fomax cluster, bt i &
NGC 4472 (M49) lies ~1 Mpe

> SMBHs are found at the center of galaxies
> The Milky Way harbours a 4.3 x10° MoBH at its center
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m Fusion of black holes

Detection of Gravitational waves produced by the fusion of two black holes by the two
LIGO observatories (3000 km apart; 7ms-light) detected on 14-sep-2015

e Power ~ few 10* W at peak (more than all stars in the universe)

e Measurement of AL(t) = 6L, — 6L, = h(t)Lo, Lo=4km, h(t)=strain

o Merger: distance: 410 Mpc, z=0.09; mass 36 and 29 M,

> GW150914 (more information here and here)
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E The stellar cycle
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The expansion of the Universe

> Galaxies were discovered in the 1920s, opening a new field, that of observational
cosmology

> Once galaxies were discovered, their motions relative to us was measured and the
expansion of the universe was demonstrated
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B M31: The first extragalactic object

> Using Cepheids, E. Hubble computed the distance to the Andromeda Galaxy (see here)
> His value, 300 kpc (actually a factor two too low) implies that M31 is outside the M-W.

> This was the first proof for the existence of structures outside the Milky Way (see also this
link); see Tammann 2005 for historical aspects.
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m Cepheids

)
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> Left: what we call a light curve showing the luminosity as a function of time of the star 6
Cephei, (4th magnitude F5 supergiant) P=5.37 d

> Right: the relation between absolute magnitude (M = -2.5log,, £ + M) with the Period
(log,,P) for 25 variable stars in the SMC, Leavitt & Pickering 1912

measuring the period gives the luminosity, and therefore, the
distance!
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m The Hubble law

A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY
AMONG EXTRA-GALACTIC NEBULAE

By Epwix HussLe
MOUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON
Communicated January 17, 1020
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Velocity-Distance Relation among Extra-Galactic Nebulae.
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m The Hubble’s constant

> The Universe is expanding. Locally, the Hubble’s law (1929, see here) says that any two
objects move away (after subtracting their peculiar motions) from each other at a velocity
which increases in proportion to the distance between them.

> The Hubble’s constant Hy is the present value of the expansion rate of the Universe, H(t)
> Cosmological distances are primarily expressed as redshift

Aobs = (1 +2)Ao

z = (Aobs = A0)/ Ao
> For small z, H relates the recession velocity v to the distance d

v =cz=Hyd

> How is Ho determined ? You need to know the redshift (now, easy) and a distance. The
latter is the challenging part of the game. Distances are determined using stars: the
better we understand stars, the better we measure the Universe.
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B The challenge of measuring Hy
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> The evolution of the value of Hy in the early times, illustrating the difficulty of the
measurement: from 550 (Hubble 1929) to 55 (Sandage 1962) !

> Difficulty: distance determination were underestimated by factors 5-10
e incorrect interpretation of the magnitudes
e calibration of the P-L relation of Cepheids
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B The current picture
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> Use different distance measurement tools: variables stars (Cepheids, RR Lyrae),
Supernova, Tully-Fisher empirical law, etc. . .
> Most accurate: Cepheids, SNla; currently: SNla at z up to 2.3

Current value: noted Ho, ~ 70 km/s/Mpc, or z=2.4(-4) dypc O dupe = 4200 z
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B Accelerating expansion

> The Hubble Space Telescope: measure the expansion rate and geometry of the Universe
> Observe Cepheids and SNla at large distances (up to z~ 0.5)

> Result: expansion will last forever and is currently accelerating

> Nobel Prize 2011: Perimutter, Riess, and Schmidt
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B A crack in the standard cosmological model?
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CMB measurements (Planck mission): (flat A CDM): Hy = 67.3+1.0 km/s/Mpc

SNla and Cepheid method (Riess et al 2018) Ho = 73.52+1.62 km/s/Mpc

Baryon Acoustic Oscillations (Abbott et al 2018): (flat A CDM) Ho=67.4+1.2 km/s/Mpc
At the root of the discrepancy: the compelling accuracy of distance determination with
Cepheids;

vV vV VvV Vv
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