No document allowed. No computer/mobile phone allowed.

Aucun document autorisé. Aucun ordinateur, téléphone portable.

1 Questions (/10 pts)

There is one, or more, correct answer(s) for each question. Tick the right box(es).

1. The effective area of X-ray telescopes is of the order of:

- \square $30 \mathrm{~cm}^{2}$
- $\square 300 \mathrm{~cm}^{2}$
- $\square 3000 \mathrm{~cm}^{2}$
- $\square 3 \mathrm{~m}^{2}$

2. Which type of interferometer is used in optical and infrared domains?

- \square additive
- \square multiplicative
- \square a mixture of additive and multiplicative

3. How does an radio interferometer behave?

- \square as low-pass plus bandpass filter
- \square as a bandpass filter
- \square as low-pass plus high-pass filter

4. A star located 10 pc away from the Sun has an absolute visual magnitude $\mathrm{M}_{\mathrm{V}}=5$. The star is now placed in a galaxy that has a distance modulus $\mathrm{DM}=20$. What is its apparent magnitude?

- \square $\square \mathrm{V}=22.5$
-$\mathrm{V}=25$
-$\mathrm{V}=27.5$
-

5. We consider two stars. Star 1, noted S 1 , has colors index $B-V=-0.30$ and $V-R=-0.13$. Star 2 has $\mathrm{B}-\mathrm{V}=+0.58$ and $\mathrm{V}-\mathrm{R}=0.50$.

- $\square \mathrm{S} 1$ is hotter than S2
- $\square \mathrm{S} 1$ is cooler than S2

6. We note m and M the apparent and absolute magnitudes, and d_{pc} the distance in pc .

- $\square \mathrm{M}=\mathrm{m}-5+5 \log _{10}\left(\mathrm{~d}_{\mathrm{pc}}\right)$
- $\square \mathrm{M}=\mathrm{m}+5-5 \log _{10}\left(\mathrm{~d}_{\mathrm{pc}}\right)$
- $\square \mathrm{M}=\mathrm{m}-5-5 \log _{10}\left(\mathrm{~d}_{\mathrm{pc}}\right)$

7. We consider two stars. S 1 is a $2 \mathrm{M}_{\odot}$ star with $\mathrm{M}_{\mathrm{V}}=+4$ and a bolometric correction $\mathrm{BC}_{1}=-0.16$. S 2 is a $10 \mathrm{M}_{\odot}$ star. Both stars are on their main sequence phase and we assume that the MassLuminosity relation is $\mathrm{L} \propto \mathrm{M}^{\wedge} \alpha, \alpha=3.5$. The bolometric magnitude of S 2 is:

- $\square \mathrm{M}_{2}=+2.28$
- $\square \mathrm{M}_{2}=-2.28$
- $\square \mathrm{M}_{2}=-1.96$
- $\square \mathrm{M}_{2}=+9.96$

8. If $\mathrm{p}_{\text {mas }}$ is the parallax in mas, then the distance modulus is:

-

$\square \mathrm{DM}=20-5 \log _{10}\left(\mathrm{p}_{\mathrm{mas}}\right)$$D M=10-5 \log _{10}\left(p_{\text {mas }}\right)$
-$\mathrm{DM}=-10+5 \log _{10}\left(\mathrm{p}_{\mathrm{mas}}\right)$

$$
\mathrm{DM}=-15+5 \log _{10}\left(\mathrm{p}_{\mathrm{mas}}\right)
$$

9. We note the mean-square fluctuations of the photon number is $\left.\left(\Delta<\mathrm{n}_{\nu}\right\rangle\right)^{2}$. Photon noise dominates over thermal noise:

- \square at low frequency, and $\left.\left(\Delta<\mathrm{n}_{\nu}>\right)^{2}=<\mathrm{n}_{\nu}\right\rangle$
- \square at low frequency, and $\left(\Delta<\mathrm{n}_{\nu}>\right)^{2}=$ $<\mathrm{n}_{\nu}>^{2}$
- \square at high frequency, and $\left(\Delta<\mathrm{n}_{\nu}>\right)^{2}=\left\langle\mathrm{n}_{\nu}\right\rangle$
- \square at high frequency, and $\left(\Delta<\mathrm{n}_{\nu}>\right)^{2}=$ $<\mathrm{n}_{\nu}>^{2}$

10. A radiotelescope of diameter $\mathrm{D}=12 \mathrm{~m}$ is used to map a molecular cloud located a 150 pc at a frequency $\nu=115 \mathrm{GHz}$. In order to avoid aliasing of spatial frequencies, the spatial sampling θ_{s} must satisfy:

$$
\begin{aligned}
& \text { - } \square \theta_{\mathrm{s}}>22.4 " \\
& \text { - } \square \theta_{\mathrm{s}}<22.4 " \\
& \text { - } \square \theta_{\mathrm{s}}>44.8^{\prime \prime} \\
& \text { - } \square \theta_{\mathrm{s}}<44.8^{\prime \prime}
\end{aligned}
$$

11. A CCD has been designed using Si semiconductor dopped with Sb . The gap energy is $\mathrm{E}_{\text {gap }}=39 \mathrm{meV}$. The domain of wavelength that can be measured is:

- $\square \lambda<64 \mu \mathrm{~m}$
- $\square \lambda<32 \mu \mathrm{~m}$
- $\square \lambda>32 \mu \mathrm{~m}$
- $\square \lambda>64 \mu \mathrm{~m}$

2 Exercise 1 (/6 pts)

A protoplanetary disk located at 60 pc has a radius of 200 au . It is observed with a single dish radiotelescope of diameter $\mathrm{D}=12 \mathrm{~m}$ the $\mathrm{CN}(3-2)$ rotational line at a frequency $\nu=340 \mathrm{GHz}$. The disk is seen exactly face-on and we neglect the Keplerian broadening. We also assume that the turbulent broadening is negligible.

1. What is the antenna power pattern P of a singledish antenna in terms of the aperture function A. Give the definition of the beam-solid angle Ω_{A}. What is the relation between the effective area A_{e} and beam solid angle Ω_{A} for a radio telescope?
2. What is the angular resolution in au?
3. What is the beam dilution factor?
4. A line is detected with an intensity $\mathrm{T}_{\mathrm{mb}}=1 \mathrm{~K}$. What is the emitted intensity of the line?
5. If the kinetic temperature is 30 K , what is the expected linewidth? What spectral resolution, in kHz , is required to resolve the line (at least three spectral channel per FWHM).
6. The central protostar has a mass $M=1 M_{\odot}$. We want to resolve the orbit of an Earth-like planet. What would be the baseline B of an interferometer if observing at $\lambda=1 \mu \mathrm{~m}$, and $\lambda=0.8 \mathrm{~mm}$.
7. We use the ALMA radio-interferometer with a baseline of 10 km to observe the 3-2 line of CN at 340 GHz . Each antenna has a diameter of 12 m . What is the field of view? IF we note P the power pattern of a single antenna, and D the dirty beam, what is the observed brightness in terms of the sky brightness $\mathrm{I}_{\text {sky }}$?

3 Exercise 2 (/4 pts)

A diffuse interstellar cloud containing dust is observed with a bolometer.

1. We recall that the NEP is given by $\mathrm{NEP}=(4 \mathrm{kTG})^{1 / 2} / \eta$. What is the NEP and explain the different factors in this expression.
2. The dust has a temperature $\mathrm{T}_{\mathrm{d}}=30 \mathrm{~K}$. Assuming that the dust radiates as a black-body, What is the wavelength $\lambda_{\text {peak }}$ of the peak of the dust emissivity? At which wavelength should one observe to be in the Rayleigh-Jeans approximation?
3. The cloud was observed with the IRAS and Herschel satellites at $\lambda=100$ and $500 \mu \mathrm{~m}$. Compute the measured brightness at these wavelengths. Put the result in MJy/sr.
4. At $500 \mu \mathrm{~m}$, the NEP is $5.3 \mathrm{E}-17 \mathrm{~W} \mathrm{~Hz}^{-1 / 2}$, and the aperture efficiency is 0.70 . The Herschel primary mirror has a diameter of 3.5 m . Recalling that the $\mathrm{NEFD}=2 \mathrm{NEP} /\left(\mathrm{A}_{\text {eff }} \Delta \nu\right)$ with $\mathrm{A}_{\text {eff }}$ the effective area and $\Delta \nu$ the bandwidth, compute the NEFD of the Herschel/SPIRE at $500 \mu \mathrm{~m}$.
5. Give the expression of the signal-to-noise ratio $(\mathrm{S} / \mathrm{N})$ in terms of the NEP, the source power P_{s}, and the integration time $\Delta \mathrm{t}$. The same relation applies for the NEFD.
6. From this relation, compute the source intensity in mJy that can be measured with $\mathrm{S} / \mathrm{N}=5$ in 1 hr .
