No document allowed. No computer/mobile phone allowed.

Aucun document autorisé. Aucun ordinateur, téléphone portable.

1 Questions (/10 pts)

There is one, or more, correct answer(s) for each question. Tick the right box(es).

- 1. The effective area of X-ray telescopes is of the order of:
 - \square 30 cm²
 - \Box 300 cm²
 - $\Box 3000 \text{ cm}^2$
 - $\square 3 \text{ m}^2$
- 2. Which type of interferometer is used in optical and infrared domains?
 - □ additive
 - □ multiplicative
 - \square a mixture of additive and multiplicative
- 3. How does an radio interferometer behave?
 - □ as low-pass plus bandpass filter
 - □ as a bandpass filter
 - □ as low-pass plus high-pass filter
- 4. A star located 10pc away from the Sun has an absolute visual magnitude M_V =5. The star is now placed in a galaxy that has a distance modulus DM=20. What is its apparent magnitude?
 - □ V=22.5
 - □ V=25
 - □ V=27.5
 - □ V=30
- 5. We consider two stars. Star 1, noted S1, has colors index B-V=-0.30 and V-R=-0.13. Star 2 has B-V=+0.58 and V-R=0.50.
 - □ S1 is hotter than S2
 - □ S1 is cooler than S2
- 6. We note m and M the apparent and absolute magnitudes, and d_{pc} the distance in pc.

- \square M = m-5+5log₁₀(d_{pc})
- \square M = m+5-5log₁₀(d_{pc})
- \square M = m-5-5log₁₀(d_{pc})
- 7. We consider two stars. S1 is a $2M_{\odot}$ star with M_V =+4 and a bolometric correction BC_1 =-0.16. S2 is a $10M_{\odot}$ star. Both stars are on their main sequence phase and we assume that the Mass-Luminosity relation is $L \propto M^{\alpha}$, α =3.5. The bolometric magnitude of S2 is:
 - \Box M₂ = +2.28
 - \Box M₂ = -2.28
 - \Box M₂ = -1.96
 - \Box M₂ = +9.96
- 8. If p_{mas} is the parallax in mas, then the distance modulus is:
 - \Box DM = 20 $5\log_{10}(p_{mas})$
 - \Box DM = 10 $5\log_{10}(p_{mas})$
 - \Box DM =-10 + 5 $\log_{10}(p_{mas})$
 - \Box DM =-15 + 5log₁₀(p_{mas})
- 9. We note the mean-square fluctuations of the photon number is $(\Delta < n_{\nu} >)^2$. Photon noise dominates over thermal noise:
 - \Box at low frequency, and $(\Delta < n_{\nu} >)^2 = < n_{\nu} >$
 - \square at low frequency, and $(\Delta < n_{\nu} >)^2 = < n_{\nu} >^2$
 - \Box at high frequency, and $(\Delta < n_{\nu} >)^2 = < n_{\nu} >$
 - \Box at high frequency, and $(\Delta < n_{\nu} >)^2 = < n_{\nu} >^2$
- 10. A radiotelescope of diameter D=12m is used to map a molecular cloud located a 150pc at a frequency ν =115 GHz. In order to avoid aliasing of spatial frequencies, the spatial sampling θ_s must satisfy:
 - $\Box \theta_{\rm s} > 22.4$ "
 - $\square \theta_s < 22.4$ "
 - $\Box \theta_{\rm s} > 44.8$ "
 - $\Box \theta_{\rm s} < 44.8$ "
- 11. A CCD has been designed using Si semiconductor dopped with Sb. The gap energy is E_{gap} =39meV. The domain of wavelength that can be measured is:

- $\square \lambda < 64 \mu m$
- $\square \lambda < 32 \mu m$
- $\square \lambda > 32 \mu \text{m}$
- $\square \lambda > 64 \mu m$

2 Exercise 1 (/6 pts)

A protoplanetary disk located at 60 pc has a radius of 200 au. It is observed with a single dish radiotelescope of diameter D=12m the CN(3-2) rotational line at a frequency ν =340 GHz. The disk is seen exactly face-on and we neglect the Keplerian broadening. We also assume that the turbulent broadening is negligible.

- 1. What is the antenna power pattern P of a single-dish antenna in terms of the aperture function A. Give the definition of the beam-solid angle Ω_A . What is the relation between the effective area A_e and beam solid angle Ω_A for a radio telescope?
- 2. What is the angular resolution in au?
- 3. What is the beam dilution factor?
- 4. A line is detected with an intensity $T_{mb}=1K$. What is the emitted intensity of the line?
- 5. If the kinetic temperature is 30K, what is the expected linewidth? What spectral resolution, in kHz, is required to resolve the line (at least three spectral channel per FWHM).
- 6. The central protostar has a mass $M=1M_{\odot}$. We want to resolve the orbit of an Earth-like planet. What would be the baseline B of an interferometer if observing at $\lambda=1\,\mu\mathrm{m}$, and $\lambda=0.8\mathrm{mm}$.
- 7. We use the ALMA radio-interferometer with a baseline of 10km to observe the 3-2 line of CN at 340GHz. Each antenna has a diameter of 12m. What is the field of view? IF we note P the power pattern of a single antenna, and D the dirty beam, what is the observed brightness in terms of the sky brightness I_{sky}?

3 Exercise 2 (/4 pts)

A diffuse interstellar cloud containing dust is observed with a bolometer.

- 1. We recall that the NEP is given by NEP= $(4kTG)^{1/2}/\eta$. What is the NEP and explain the different factors in this expression.
- 2. The dust has a temperature T_d =30K. Assuming that the dust radiates as a black-body, What is the wavelength λ_{peak} of the peak of the dust emissivity? At which wavelength should one observe to be in the Rayleigh-Jeans approximation?
- 3. The cloud was observed with the IRAS and Herschel satellites at λ =100 and 500 μ m. Compute the measured brightness at these wavelengths. Put the result in MJy/sr.
- 4. At $500\mu\mathrm{m}$, the NEP is $5.3\mathrm{E}\text{-}17~\mathrm{W}~\mathrm{Hz^{-1/2}}$, and the aperture efficiency is 0.70. The Herschel primary mirror has a diameter of 3.5m. Recalling that the NEFD=2NEP/($A_{\mathrm{eff}}~\Delta\nu$) with A_{eff} the effective area and $\Delta\nu$ the bandwidth, compute the NEFD of the Herschel/SPIRE at $500\mu\mathrm{m}$.
- 5. Give the expression of the signal-to-noise ratio (S/N) in terms of the NEP, the source power P_s , and the integration time Δt . The same relation applies for the NEFD.
- 6. From this relation, compute the source intensity in mJy that can be measured with S/N=5 in 1 hr.