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ABSTRACT

Hydrodynamic unstratified Keplerian flows are known to be linearly stable at all Reynolds numbers, but may nevertheless become turbulent
through nonlinear mechanisms. However, in the last ten years, conflicting points of view have appeared on this issue. We have revisited the
problem through numerical simulations in the shearing sheet limit. It turns out that the effect of the Coriolis force in stabilizing the flow depends
on whether the flow is cyclonic (cooperating shear and rotation vorticities) or anticyclonic (competing shear and rotation vorticities); Keplerian
flows are anticyclonic. We have obtained the following results:
i/ The Coriolis force does not quench turbulence in subcritical flows; however, turbulence is more efficient, and much more easily found, in
cyclonic flows than in anticyclonic ones.
ii/ The Reynolds number/rotation/resolution relation has been quantified in this problem. In particular we find that the resolution demand, when
moving away from the marginal stability boundary, is much more severe for anticyclonic flows than for cyclonic ones. Presently available
computer resources do not allow numerical codes to reach the Keplerian regime.
iii/ The efficiency of turbulent transport is directly correlated to the Reynolds number of transition to turbulence Rg, in such a way that the
Shakura-Sunyaev parameter α ∼ 1/Rg. This correlation is nearly independent of the flow cyclonicity. The correlation is expected on the basis
of generic physical arguments.
iv/ Even the most optimistic extrapolations of our numerical data show that subcritical turbulent transport would be too inefficient in Keplerian
flows by several orders of magnitude for astrophysical purposes. Vertical boundary conditions may play a role in this issue although no
significant effect was found in our preliminary tests.
v/ Our results suggest that the data obtained for Keplerian-like flows in a Taylor-Couette settings are largely affected by secondary flows, such
as Ekman circulation.
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1. Introduction

The question of the existence and physical origin of turbu-
lence in accretion disks has been lively debated for a number of
decades. Generally speaking, there are a priori two basic ways
in which an accretion disk can become turbulent. In the first
way, some linear instability is present in the flow, and its non-
linear development eventually drives turbulence. In the second
one, the flow is linearly stable, and undergoes a direct laminar-
turbulent transition once a certain threshold in Reynolds num-
ber is reached. The first type of transition to turbulence is called
supercritical, and the second, (globally) subcritical.

Global instabilities (such as the Papaloizou & Pringle
1984 instability) seem unpromising to drive turbulence (Blaes
1987; Hawley 1991). As for local instabilities, an astrophysi-
cally important example of supercritical transition is provided
by the magneto-rotational instability (MRI) which has been

extensively studied following the pioneering work of Balbus,
Hawley and their collaborators (Balbus & Hawley 1991;
Hawley et al. 1995; see Balbus 2003, for a recent review). The
turbulent transport induced by this instability is by now char-
acterized in a number of instances, and has been called upon
even when only some fraction of the disk is ionized, as in the
midplane region of YSOs inner disks – the dead-zone (Gammie
1996; Fleming & Stone 2003). However, the reduced efficiency
of the transport in this case, as well as the possible existence
of disks which may not support MHD phenomena at all, has
prompted some upsurge of interest in purely hydrodynamic in-
stabilities. A local, baroclinic-like instability has been observed
in global simulations by Klahr & Bodenheimer (2003). Local
stability analyzes (Klahr 2004; Johnson & Gammie 2005a) find
transient instability in this context, but shearing box simula-
tions indicate that this does not drive turbulence (Johnson &
Gammie 2005b). Urpin (2003) discusses an instability related
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to vertical shear and heat transport of the Goldreich-Schubert
type (Goldreich & Schubert 1967); however, this instability
produces only a rather weak radial transport (Arlt & Urpin
2004). More recently, Dubrulle et al. (2005b) and Shalybkov
& Ruediger (2005) have discussed an instability arising when
both the fluid differential rotation and vertical stratification
are stabilizing according to the Høiland criterion. However,
it seems that this instability is connected to the presence of
walls, and is dynamically important only when the inter-wall
distance is small enough for a resonant-like interaction to take
place1 (Satomura 1981), otherwise disturbances are confined
to the near boundary zone; a related result has recently been
found in the astrophysics literature (Umurhan 2005). Earlier
analytic and numerical investigations have shown this instabil-
ity to be absent in local disk models (Goodman & Balbus 2001;
Brandenburg & Dintrans 2001; Rüdiger et al. 2002). Note fi-
nally that vertical convection in a stratified disk can in prin-
ciple also drive turbulence; however, it induces inwards trans-
port instead of the required outwards one (Cabot 1996; Stone
& Balbus 1996). Therefore, no local instability has yet been
found in the hydrodynamic regime, which would explain the
turbulent transport taking place in accretion disks.

Subcritical transition to turbulence is the subject of the
present work. The non-rotating plane Couette flow provides
a classical (and to date the best understood) example of a
system undergoing a subcritical transition. Although the na-
ture and mechanism of the transition remained elusive for
decades, it has been identified in the recent years, in labora-
tory experiments (Daviaud et al. 1992; Dauchot & Daviaud
1995a,b; Bottin et al. 1997), numerical simulations (Hamilton
et al. 1995; see also Schmiegel & Eckhardt 1997 and Eckhardt
& Mersmann 1999), and theoretical analyzes (in particular
Waleffe 1997; Waleffe 2003). Earlier investigations of the prob-
lem have focused on the role of nonlinear instabilities in sub-
critical shear flows, based on Landau-like toy-models on the
one hand (e.g., Drazin & Reid 1981 and references therein),
and analysis of the linear stability of finite amplitude defects
in the flow profile on the other (Lerner & Knobloch 1988;
Dubrulle & Zahn 1991; Dubrulle 1993); unfortunately, such
analyzes yield little information on the existence and location
of the turbulent state in parameter space and on the turbu-
lent transport efficiency, unless further ad hoc assumptions are
made.

In any case, on the basis of the empirically observed sub-
critical transition in laboratory flows, it was suggested that a
similar process is relevant in accretion disks (Shakura et al.
1978), in spite of their very different prevailing physical condi-
tions. This suggestion was tested and challenged in a series of
numerical simulations performed by Balbus et al. (1996) and
Hawley et al. (1999), in the shearing sheet limit. Transition to
turbulence was not found in these simulations for Keplerian-
like flows. The simulations were performed with two different
finite difference codes (a PPM type code, and the ZEUS code),
up to a resolution of 2563. These two works concluded that a
stabilizing Coriolis force prevents the existence of turbulence

1 We thank Stéphane Le Dizes for bringing this point to our
attention.

in the simulated flows, except in the immediate vicinity of the
linear marginal stability limits.

This conclusion was in turn questioned by Richard &
Zahn (1999), on the basis of the Taylor-Couette experiments
performed by Wendt (1933) and Taylor (1936). These exper-
imental results display a subcritical transition to turbulence in
presence of a stabilizing Coriolis force. Also, new sets of exper-
iments have been carried out in order to bring the experimental
conditions closer to the ones prevailing in a Keplerian flow.
Namely, a Taylor-Couette apparatus was used in conditions
of radially decreasing angular velocity and radially increasing
specific angular momentum. Turbulence was again found for
high enough Reynolds numbers (Richard 2001; Richard et al.
2001) but the results are not unambiguous, as the potential role
of secondary flows induced by the boundary conditions in the
experiments, such as Ekmann’s circulation, is unclear, in spite
of the attention devoted to this point in the experiments. In any
case, a subcritical transition is also found in all experiments
of shear flows on which a linearly stabilizing Coriolis force is
superimposed (Longaretti & Dauchot 2005).

Longaretti (2002) has argued from a phenomenological
analysis that the lack of turbulence in the simulations per-
formed to date was due to a lack of resolution, as the Coriolis
force may increase the range of scales that need to be resolved
for a subcritical turbulent transition to show up. On the other
hand, on the basis of a newly developed Reynolds stress clo-
sure scheme (Ogilvie 2003), Garaud & Ogilvie (2005) find that
Keplerian flows may or may not be turbulent depending on
the parameters of the scheme. For their favored choice of pa-
rameters, unbounded Keplerian flows are not turbulent, on the
contrary to linearly stable, wall-bounded Taylor-Couette flows.

The recent astrophysical literature on the problem of sub-
critical transition has also focused on the concept of tran-
sient growth in Keplerian flows (Chagelishvili et al. 2003;
Tevzadze et al. 2003; Yecko 2004; Umurhan & Regev 2004;
Mukhopadhyay et al. 2005; Afshordi et al. 2005). Due to
the nonnormal character of the Navier-Stokes equation, lin-
ear modes can transiently be strongly amplified in shear flows,
although on the long run they must viscously decay. It has
been argued that this transient growth can be relevant to as-
trophysical disks in two different ways. First, 3D turbulence
(or an external forcing) can couple to large scale 2D struc-
tures; the (statistical) amplitude of these structures can be
large, under the combined action of this coupling, of tran-
sient growth and of viscous decay, and these 2D structures
may contribute to the overall transport in the disk (Ioannou &
Kakouris 2001). Secondly, a large transient growth has been
invoked in the bypass scenario of transition to turbulence,
which involves an interplay between nonnormality and nonlin-
earity (see, e.g., Grossman 2000; Brosa & Grossmann 1999).
Waleffe (1995) has emphasized the key role played by nonlin-
ear interactions in the context of the recently identified turbu-
lent self-sustaining process of non-rotating plane Couette flows
(Hamilton et al. 1995; Waleffe 1997). Even though transient
growth explains the strong modulations of the streamwise ve-
locity from relatively weak streamwise rolls involved in this
self-sustaining mechanism, the existence and properties of the
turbulent basin of attraction for the full nonlinear dynamics are
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apparently poorly constrained by the nonnormal linear problem
characteristics.

Our present understanding of the possible existence of a
dynamically significant subcritical turbulent transition in ac-
cretion disks is unsatisfying in several respects, calling for a
reinvestigation of the problem. On the one hand, the relevance
of the available laboratory experiments to accretion disk turbu-
lence is at best unclear, as will be shown in the course of the
present work (for a different opinion, see Hersant et al. 2005).
On the other hand, the absence of subcritical turbulence in the
shearing sheet local model of accretion disks used by Balbus
et al. (1996) and Hawley et al. (1999) may be an effect of var-
ious numerical limitations, namely, algorithm choice, limited
resolution, nature of the boundary conditions, imposed aspect
ratio and initial conditions of the simulations. Of these options,
only the first two have been partially addressed in these pre-
vious investigations, leading to questions concerning the “ef-
fective Reynolds number” of the performed simulations – an
ill-defined process-dependent concept, that we shall clarify in
the context of the present problem. Following the suggestion of
Longaretti (2002), the primary aim of the present work is to in-
vestigate in a more systematic way, through numerical simula-
tions of plane parallel, rotating shear flows, the effects of finite
resolution on the results. The effects of the other factors listed
above are also somewhat explored, but to a lesser extent. Both
cyclonic and anticyclonic rotation are considered; although cy-
clonic rotation is not relevant to accretion disks, it turns out
that cyclonic flows behave very differently from anticyclonic
ones, opening some interesting perspective into the nature of
the problem.

This paper is organized as follows. Section 2.1 collects the
background material relevant to the problem. First, the form of
the equations solved is provided, and the global energy budget
recalled, before discussing linear stability limits. The section is
concluded by a summary of the effect of a stabilizing rotation in
shear flows as characterized by the available laboratory experi-
ments. The next section presents the various codes used in this
work, and the numerical results obtained with them. Section 4
discusses various aspects of our numerical results, most notably
the role of resolution and boundary conditions on the numerical
side, the role of the Coriolis force, the underlying phenomeno-
logical picture, and the astrophysical implications, on the phys-
ical side. A summary is provided in Sect. 5, along with an
outlook on the question of turbulence in accretion disks.

2. Rotating plane shear flows: a summary

The present investigation is concerned with the nonlinear in-
stability of laminar flows characterized by a uniform shear, in
the presence of a uniform global rotation. The direction of the
flow is identified with the x axis (streamwise direction), and
the direction of the shear with the y axis (shearwise direction);
rotation is applied along the z axis (spanwise direction). The
laminar flow uL is invariant in the streamwise and spanwise di-
rections (in particular, the vertical stratification expected in a
real disk is ignored): uL = U(y)ex.

Such a flow can be used to numerically model either a local
portion of an accretion disk, or experiments on rotating plane
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Fig. 1. Sketch of the configuration of rotating plane shear flows.

Couette flows, depending on the nature of the applied boundary
condition in the shearwise direction (in practice, either rigid or
shearing sheet; see next section). The configuration is repre-
sented in Fig. 1.

2.1. Equations of motion

The most useful form of the Navier-Stokes equation, for our
present purpose, is obtained by separating the laminar flow uL

and the deviation from laminar w in the total velocity u in the
rotating frame, leading to

∂w

∂t
+ w · ∇w = S · y∂w

∂x
+ (2Ω + S )wyex − 2Ωwxey

− ∇δπ
ρ
+ ν∆w, (1)

where the gradient terms balancing the laminar flow Coriolis
force has been subtracted out to form the effective generalized
pressure δπ (which therefore absorbs the equilibrium centrifu-
gal, gravitational and/or pressure force term, depending on the
considered equilibrium problem); Ω is the flow rotation veloc-
ity in an inertial frame, and S = −dU/dy is the shear. The
convention adopted here is that the sign of S is chosen to be
positive when the flow is cyclonic, i.e., when the contributions
of shear and rotation to the flow vorticity have the same sign.
With our choice of axes, this implies that S = −2S xy, where
S i j = 1/2(∂iuL, j + ∂ juL,i) is the usual deformation tensor. The
system is closed either with the usual continuity equation sup-
plemented by a polytropic equation of state, or, for simplicity,
through an incompressibility assumption (∇ · w = 0).

The relevant global time-scales of the problem are the shear
time-scale ts = |S −1|, the viscous one tν = d2/ν (d is the gap
in the experiment, or the shearwise size of the shearing sheet
box), and the rotation time-scale related to the Coriolis force
tΩ = (2Ω)−1; they relate to the advection term, the viscous term,
and the Coriolis force term, respectively. Correlatively, the
flow is described by two dimensionless numbers, the Reynolds
number

Re = tν/ts = |S |d2/ν, (2)

and the rotation number

RΩ = sgn(S )ts/tΩ = 2Ω/S . (3)

For Keplerian flows, RΩ = −4/3. More generally, if one as-
sumes that the large scale rotation of an astrophysical disk fol-
lows a power-law, Ω(r) ∝ r−q, one locally has RΩ = −2/q in
the disk.



28 G. Lesur and P.-Y. Longaretti: Subcritical turbulence in rotating shear flows

Note that our Reynolds number is defined on the outer
scales, and not on the turbulent ones, such as, e.g., the Taylor
microscale. Large values (∼104) of this number are involved
in the problem investigated here; the correlative numerical re-
quirements are discussed in Sect. 4.4.

2.2. Energy budget

As the global energy budget plays some role in the discussion
of the results, it is rederived here. In the following equations,
the bracket notation refers to a volume average of the brack-
eted quantity. The averaging volume is the simulation one, and
shearing-sheet boundary conditions are assumed in the deriva-
tion, for definiteness. For the kinetic energy in the streamwise
and shearwise directions, one finds:

∂

∂t

〈
w2

x

2

〉
= S (RΩ + 1) 〈wxwy〉

−
〈
wy

ρ

∂δπ

∂x

〉
+ ν〈wx∆wx〉, (4)

∂

∂t

〈
w2
y

2

〉
= −S RΩ〈 wxwy〉

−
〈
wy

ρ

∂δπ

∂y

〉
+ ν〈wy∆wy〉. (5)

Instead of the vertical equation, it is more instructive to write
down the total kinetic energy equation:

∂

∂t

〈
w2

2

〉
= S 〈wxwy〉 − ε, (6)

where

ε = ν
∑

i

〈(∇wi)
2〉 (7)

is the usual energy injection rate of turbulence cascade argu-
ments2. In this last equation the incompressibility condition
and the boundary conditions have been used in the reexpres-
sion of the pressure term, and an integration by part has been
performed on the viscous term (a constant kinematic viscosity ν
is assumed).

In statistical steady-state, Eq. (6) reduces to,

S 〈wxwy〉 = ε. (8)

As pointed out by Balbus et al. (1996), the fact that ε > 0
implies that in steady state, the shear rate and the Reynolds
stress responsible for radial transport have identical signs.
This result has a direct physical interpretation: the imposed
shear prevents the flow to be in global thermodynamic equilib-
rium. Nevertheless, the flow tries to restore this global equilib-
rium by radially transporting momentum through the turbulent
Reynolds stress from regions of larger momentum to regions of
lower momentum, consistently with Eq. (8).

2 Because the rate of energy transfer in scale is constant in a
Kolmogorov-like argument, the injection rate is directly related to the
small-scale dissipation rate.

Note finally that, in Eqs. (4) and (5), the pressure-velocity
correlation terms cannot be neglected, as they are of the order
of the cascade energy injection term ε. This is almost unavoid-
able, as pressure is the only force that can provide for the ac-
celeration of fluid particles in turbulent motions. As a matter
of fact, the energy budget of any particular velocity compo-
nent depends critically on the behavior of the velocity-pressure
correlations, which are notoriously difficult to model (Speziale
1991). Ignoring this term in the analysis of the energetics there-
fore leads to dubious or erroneous conclusions.

2.3. Linear stability limits

Surprisingly enough, the question of the linear stability limits
of the simple rotating shear flows considered here is not com-
pletely solved to date. Focusing for the time being on purely
streamwise-independent perturbations, instability with respect
to local perturbations follows when (Pedley 1969; Leblanc &
Cambon 1997; Sipp & Jacquin 2000)

RΩ(RΩ + 1) < 0, (9)

or, equivalently, −1 < RΩ < 0.
In plane Couette flows, it has been proven that R+

Ω
≡

0 is the correct cyclonic marginal stability limit for non
streamwise-invariant perturbations as well, at all Reynolds
numbers (Romanov 1973). No such generic proof exists at the
anticyclonic marginal stability limit (R−

Ω
≡ −1). However, var-

ious linear and nonlinear numerical investigations suggest that
this is indeed the case (Cambon et al. 1994; Komminaho et al.
1996; Bech & Andersson 1997). These results belong to plane
Couette flows with rigid boundary conditions in the shearwise
direction, but tend to prove that a local criterion captures the
correct stability limit, as observed, e.g., in the simulations of
Balbus et al. (1996) and Hawley et al. (1999).

The physics behind Eq. (9) can be captured by a displaced
particle argument (Tritton & Davies 1981; Tritton 1992). This
argument is reproduced in Appendix A for the reader’s conve-
nience. Note that Eq. (9) is identical to Rayleigh’s specific an-
gular momentum criterion for the centrifugal instability, as the
usual epicyclic frequency reads κ2 = S 2RΩ(1 + RΩ). However,
in the plane shear flow limit of cylindrical flows, the con-
cept of specific angular momentum used in the derivation of
Rayleigh’s criterion no longer has meaning, so that one must
follow a different route, as done here. Note also that, conse-
quently, the Rayleigh criterion for the centrifugal instability in
the inertial frame can also be understood from the action of the
Coriolis force in the rotating frame (a somewhat surprising, al-
though not new conclusion), as the displaced particle argument
of Appendix A is readily extended to cylindrical flows.

2.4. Subcritical transition in rotating plane Couette
flows: a summary of relevant experimental results

In the laboratory, non-rotating plane Couette flows undergo a
subcritical transition to turbulence at Re � 1500. The transi-
tion Reynolds number steeply increases if a stabilizing rotation
and/or a curvature is superimposed on the flow. The concep-
tually cleanest way to add rotation to a plane Couette flow is
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to place a plane Couette apparatus on a rotating table. Also,
by considering a Taylor-Couette apparatus with varying gap
width and independently rotating cylinders, one obtains a flow
in which both rotation and curvature effects can be studied, and
which reduces to a rotating plane Couette flow in the narrow
gap limit. For a more complete discussion of the distinction and
characterization of rotation and curvature in Taylor-Couette ex-
periments, and of the related experimental data, the reader is
referred to Longaretti & Dauchot (2005).

For the range of parameters studied to date in the exper-
iments, it turns out that rotation and curvature effects on the
transition Reynolds number are superposed in an mostly addi-
tive way, so that both plane Couette flows and Taylor-Couette
flows can in principle be used to characterize the effect of rota-
tion. Concerning cyclonic flows, the only directly relevant data
have been collected by Tillmark & Alfredsson (1996) with the
help of a plane Couette flow apparatus placed on a rotating ta-
ble. For anticyclonic flows, the only available experiments are
those of Richard and coworkers (Richard 2001; Richard et al.
2001), who used a Taylor-Couette apparatus. The range of ro-
tation number RΩ explored in these experiments is 0 to 0.1 for
cyclonic rotation, and −1.6 to −1 for anticyclonic rotation. The
data are shown in Fig. 2

The important point to note here is the steep dependence of
the transition Reynolds number with the “distance” to marginal
stability, with a typical slope |∆Rg|/|∆RΩ| ∼ 104−105.

3. Numerical codes, strategy, and results

In the present work, we are concerned with rotating, unstrat-
ified uniform shear flows. Periodic boundary conditions hold
in the direction of the flow (x axis) and the “vertical” direc-
tion (z axis), and either shearing sheet or rigid boundary con-
ditions are applied in the direction of the shear (y direction).
The vertical axis is also the axis of rotation of the flow. The
shearing sheet boundary conditions are described in detail by
Hawley et al. (1995). Shearing sheet flows thus modelled can
be viewed as a local approximation of disk flows, while the use
of mixed rigid-periodic boundary conditions is appropriate to
numerically represent the rotating plane Couette flows of lab-
oratory experiments, as routinely done in the fluid mechanics
community.

3.1. Numerical codes

Two different 3D codes have been written for the present work:
a finite difference compressible code, similar to ZEUS (Stone
& Norman 1992), but restricted to the Cartesian geometry, and
rigid-periodic or shearing sheet boundary conditions; and a
3D incompressible Fourier code, in Cartesian geometry, and
implementing only the shearing sheet boundary conditions. An
explicit kinematic viscosity term is added in both codes, upon
which the Reynolds number is defined. Both codes were paral-
lelized using the Message Passing Interface.

The shearing sheet boundary conditions induce some
changes with respect to a standard Fourier code. As a mat-
ter of fact, while we were developing this code, the work by
Umurhan & Regev (2004) appeared, which implements the
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Fig. 2. Data on the Reynolds number of subcritical transition to tur-
bulence as a function of the rotation number RΩ, measured from the
appropriate marginal stability limit R±
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plane Couette flow (data from Tillmark & Alfredsson 1996). Bottom
panel: anticyclonic Taylor-Couette flow (data from Richard 2001).
The anticyclonic data are more difficult to collect, and consequently
noisier.

same technique. Therefore, our description of the required
changes will be brief, and we refer the reader to this recent
paper for details.

To get effective periodic boundary conditions on the 3 axes,
one needs to write Eq. (1) in the sheared frame defined by:

t′ = t (10)

x′ = x + S · y · t (11)

y′ = y (12)

z′ = z. (13)

In this shearing frame, Eq. (1) (supplemented by the incom-
pressibility condition) becomes:

∂w

∂t′
+ w · ∇̃w = − ∇̃δπ

ρ
− 2Ωwxey + (2Ω + S )wyex

+ν∆̃w (14)

∇̃ · w = 0 (15)

in which ∇̃ = ∂x′ex′ + (∂y′ − S t′∂x′)ey′ + ∂z′ez′ and ∆̃ = ∇̃ · ∇̃.
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Since the shearing box is a periodic box in the shearing
frame, this last formulation of the Navier-Stokes equation can
be written in 3D-Fourier Space. Defining:

µ = k − S tkxey, (16)

one finally obtains:

∂ŵ

∂t′
+ iµ · ŵ ⊗ w = −iµ

δ̂π

ρ
− 2Ω ŵxey + (2Ω + S )ŵyex

−νµ2w (17)

µ · ŵ = 0. (18)

These are the equations actually used in our spectral code. The
nonlinear term is computed using the 2/3 dealiasing rule with a
pseudo-spectral method (see e.g. Peyret 2002 for a description
of this point) and each time-step is evaluated using a 4th or-
der Runge Kutta Scheme. One should note that a k-wave in
the sheared frame actually appears as a µ(t)-wave in the steady
frame. Then, as time goes on in the simulation, the k-grid de-
scribes higher spatial frequency in the steady frame and con-
sequently, the large scales are not computed anymore. Since
nonlinear coupling limits the shearing of any wave-number,
a remap procedure is periodically applied all along the sim-
ulation, and prevents to loose information on the large scale3

(Rogallo 1981). This kind of algorithm has been extensively
described by Umurhan & Regev (2004) using a 2D spectral
code and the reader should refer to this publication for techni-
cal details on the remap procedure.

The choice of these two codes was made first for purposes
of comparison with previous work, and secondly to allow us
to cross-check the potential limitations of one code against the
other; e.g., the shearing sheet boundary conditions and sheared
spatial basis Eq. (16) have their own limitations, as the sheared
basis forms a complete basis for shearing sheet boundary con-
ditions, but only for these conditions.

The three codes were tested in a variety of ways. The first
test was to reproduce the non-rotating plane Couette flow be-
havior computed by Hamilton et al. (1995). This was done both
with our finite difference code, and with David Clarke’s version
of ZEUS3D, for comparison purposes. We checked the non-
linear transition mechanism was well reproduced, with the cor-
responding Reynolds number and aspect ratio, and that the two
codes gave completely consistent results. Then, the shearing
sheet boundary conditions were tested using these two finite
difference codes and the Fourier code. We have verified that
mean turbulent quantities (e.g., mean energy, mean transport,
velocity maxima and minima) and critical Reynolds number
were statistically the same using the different codes, for differ-
ent rotation numbers, either cyclonic or anticyclonic. This con-
sistency holds over the 105−106 time steps of our simulations.

3.2. Initial conditions and numerical strategy

The experimental results recalled in Sect. 2.4 suggest that a
steep dependence of the transition Reynolds number with the
rotation number may be the cause of the difficulty to find such

3 We thank Achim Wirth for pointing out this reference to us.

a transition in the previously published shearing sheet numer-
ical simulations. Accordingly, one of the major aims of this
investigation is to quantify the effect of the simulation resolu-
tion on the determination of the transition Reynolds number as
a function of RΩ.

Now, one of the characteristic features of the subcritical
transition to turbulence is an observed spread in transition
Reynolds numbers, depending on the choice of initial condi-
tions, and a correlative large spread in turbulence life-times.
This has been documented both experimentally (Darbyshire &
Mullin 1995) and numerically (Faisst & Eckhardt 2004) in pipe
flows, and guides to some extent our choice of initial condi-
tions and our numerical procedure. Indeed, turbulent life-times
typically vary from fast decay (survival for less than one hun-
dred dynamical times) to long or indefinite survival (several
thousands of dynamical times, with a clear divergence at finite
Reynolds number) over several orders of magnitude of varia-
tion of the initial condition amplitude, but for less than 50%
of variations of Reynolds number (see Faisst & Eckhardt 2004,
Figs. 2 and 7).

It is reasonable to assume that this qualitative behavior
is generic. Consequently, we have chosen once and for all,
fixed, high amplitude initial conditions, to make our numeri-
cal runs more directly comparable to one another upon vari-
ations of Reynolds numbers. Furthermore, we consider that
turbulence is long-lived if it is not observed to decay for 100
or 200 shear times (depending on the runs). This choice is a
compromise between computational time constraints, and ac-
curacy in the determination of the transition Reynolds number
of indefinitely self-sustained turbulence. In practice, simula-
tions are performed in a cubic box (the impact of this choice is
discussed in the next section, to some extent). The flow is adi-
mensionalized with the only dimensional quantities introduced
in the problem: S and d, where d is the simulation box size
(or equivalently, by choosing |S | = 1 and d = 1). The initial
conditions used for all our simulation are a random 3D exci-
tation of the 10 largest Fourier modes, with rms fluctuations
in velocity of order unity in our chosen units. Other shapes of
initial conditions were tested such as white noise (all scales ex-
cited randomly) or introducing large scale vortices in various
directions with a small superimposed noise. This produces no
significant difference once the flow is relaxed (t >∼ 20 ts).

The numerical strategy adopted is then rather straightfor-
ward: choosing a code, a resolution, a boundary condition (for
the finite difference code) and a Reynolds number, at fixed ini-
tial conditions, the flow evolution is computed starting from the
marginal stability limit in rotation number RΩ and evolving the
rotation number by (small) fixed steps every 100 or 200 shear
times. According to the preceding discussion, this allows us to
reduce at maximum the number of runs and the run time needed
to observe systematic trends in the numerical results.

In this section, only shearing sheet boundary conditions are
used. We have also checked that the time required to dissi-
pate the turbulent energy of the flow assuming energy injec-
tion is stopped (deduced from the ε term in Eq. (6)) is smaller
than 100ts; this constraint is always satisfied by a large mar-
gin in all our runs, implying that the deviations from lami-
nar motion that we observe are self-sustained (i.e., we do not
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Fig. 3. Example of the time evolution of a 643 (Re = 12 000) cyclonic
flow run as computed by our Fourier code. The turbulent energy, trans-
port and dissipation rate are the quantities involved in Eq. (6). The
dissipation time follows from the turbulent energy and the dissipation
rate. The bottom panel displays the evolution of the rotation number
that is imposed in the course of the simulation.

observe them because their dissipation time exceeds the run
time). Actually, once turbulence is lost in our simulations, the
energy in the velocity fluctuations always decreases rather fast,
as can be checked in Fig. 3 for cyclonic flows. The same prop-
erty is found for anticyclonic flows, see Sect. 3.4.

We conclude this section on our choice of the Mach num-
ber (Ma = dS/cs) for our simulations with the compressible
Zeus-like code. The type of motions we are considering in these
simulations reach at most a small fraction of the boundaries rel-
ative velocity (normalized to unity in this work). We found that
a sound speed also normalized to unity was a good compromise
between limiting the effects of compressibility (which eventu-
ally makes the turbulence compressible and largely different
in character when the Mach number is too large), and the im-
pact of the sound speed on the CFL condition. Also, this value
mimics the real role of compressibility in a vertically stratified
accretion disk. Consequently, Ma = 1 is imposed in all our
compressible simulations.

3.3. Numerical results: cyclonic flows

On the cyclonic side, simulations are performed while main-
taining the rotation number RΩ constant during 100 shear
times; then the rotation number is increased by steps of 0.02,
starting from the marginal cyclonic point RΩ = 0. An ex-
ample global output of such a simulation is plotted in Fig. 3
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Fig. 4. Transition Reynolds number Rg as a function of the rotation
number RΩ, with different resolutions and codes for shearing-sheet
boundary conditions (cyclonic rotation). All points were obtained us-
ing our Fourier code except those labelled FD (finite difference) which
use our ZEUS-like code.

for Re = 12 000. The relaminarization point is easily found
since the transition between the turbulent to laminar state is
quite abrupt (at t = 1150 in Fig. 3). We define the last turbulent
point as the last rotation rate for which turbulence is sustained
for 100 ts. For our example simulation, we find that the last tur-
bulent point at Re = 12 000 and 643 resolution with our Fourier
code is RΩ = 0.2.

Using this kind of simulation, we plot the last turbulent
points in the (Re, RΩ) space, for different resolutions and/or
codes in Fig. 4. Turbulence is found on the cyclonic side at
least up to RΩ = 0.3, i.e. significantly away from the marginal
stability point.

Note that turbulence is maintained with certainty (with our
adopted criteria) at any given point, but, due to the sampling
made in the explored Reynolds number, turbulence may also
be maintained at a somewhat lower Reynolds number (i.e. just
below the last turbulent point in Fig. 3). This can be true down
to the previously tested Reynolds number, for which turbulence
is not maintained at the considered rotation rate. In conclusion,
the real transition Reynolds Rg curve in the (RΩ,Re) plane
should be found somewhat below (but not far from) the last
turbulent point curve determined here. This remark is more im-
portant for anticyclonic flows, for which precise quantitative
results are needed.

Except for a systematic shift between the results obtained
with the Fourier code and the ZEUS-like one, the results seem
to be independent of the resolution. The numerically minded
reader may ask how one can reach such high Reynolds numbers
with such relatively small resolutions. This point is addressed
in Sect. 4.4.

An important issue is to quantify transport in subcritical tur-
bulent flows. The phenomenological arguments of Longaretti
(2002) suggest that 〈vxvy〉 ∝ 1/Rg in subcritical flows, and that
the turbulent transport in a given flow with specified (Re,RΩ)
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numbers depends only on RΩ through Rg (see Sect. 4.1)4.
Consequently, we have used all our simulations at a given RΩ
to obtain the least noisy evaluation of 〈vxvy〉. Then, with the
help of Fig. 3, one finds a transition Reynolds number Rg for
any given RΩ, which allows us to plot the mean turbulent trans-
port 〈vx vy〉 as a function of the transition Reynolds number in
Fig. 5. This was done only from the data of our Fourier code for
self-consistency, but using both the 323 and 643 resolution runs,
as they produced the same results, and as the use of a larger data
set improves the statistics. The resulting relation reads

〈vx vy〉 � 5.5
Rg − 1250

(S d)2. (19)

The presence of an additive constant in the denominator of this
expression is a clear indication of the influence of the linear
instability close to the marginal stability limit; indeed, transport
in the supercritical region is significantly enhanced with respect
to the subcritical region (see, e.g., Fig. 16 in Dubrulle et al.
2005a, and explanations therein). For large critical Reynolds
number (i.e., far enough from the marginal stability boundary,
e.g., Rg >∼ 15 000), 〈vx vy〉 � 5.5/Rg is a good approximation.

3.4. Numerical results: anticyclonic flows

The strategy adopted in simulations of anticyclonic flows is
similar to the cyclonic side. Starting at RΩ = −1.0, the ro-
tation number is decreased in steps of 0.004 and each step
lasts 200 shear times to allow for flow relaxation. A typical
run is shown in Fig. 6, computed with our 3D Fourier Code
at Re = 12 000. One should note that the flow fluctuations
have higher amplitudes on the anticyclonic side than on the
cyclonic side; this is why we have reduced the rotation number
steps and increased the relaxation time in anticyclonic runs.
Consistently, The last turbulent point is defined here as the last
rotation rate for which turbulence is sustained for 200ts. On the

4 The same result follows if one assumes that in the fully turbulent
state, the torque ∝Re2, as predicted in Kolmogorov turbulence, and
observed in experiments (see, e.g., Dubrulle et al. 2005a). The argu-
ment of Sect. 4.1 allows us to recover this result from more generic
physical principles.
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Fig. 6. Time evolution of a 643 Re = 12 000 anticyclonic flow as com-
puted by our Fourier code. Panel description is identical to Fig. 3.

example Fig. 6, we find the last turbulent point for Re = 12 000
at RΩ = −1.024.

As for cyclonic rotation, the last turbulent points for anti-
cyclonic rotation are plotted in Fig. 7 and the mean transport
in Fig. 8. Error bars are added in Fig. 7 to help assessing the
significance of the various fits performed, as they will be used
later on. On the lower bound of these bars, turbulence is not
maintained with certainty whereas the contrary is true for at
least 200 shear times at the upper bound. Therefore, the actual
transition Reynolds number is bracketed by the error bar.

Recalling that RΩ = −2/q with Ω(r) ∝ r−q and that
RΩ = −1 corresponds to a constant specific angular momen-
tum distribution in cylindrical flows, the largest rotation num-
ber reached here (RΩ = −1.032) corresponds to q = 1.94; this
is quite consistent with the results shown in Fig. 1 of Hawley
et al. (1999), except for the crucial fact that the resolution and
Reynolds number dependence are now quantified. The reason
why such high Reynolds numbers are accessible with our rela-
tively low resolutions is discussed in Sect. 4.4. For the time be-
ing, let us comment a bit further on the information encoded in
Fig. 7, which shows that Reynolds number and resolution are
different, albeit related control parameters. We will focus on
the Fourier code data for definiteness. Consider the 323 data,
for example. For |RΩ| < 1.016, the transition Reynolds num-
ber agrees with the one found at higher resolution. However,
increasing the Reynolds number above ∼6000 produces a loss
of turbulence at the same rotation number independently of the
Reynolds number, whereas this is not true at higher resolutions.
This implies that the physics is not faithfully represented at this
resolution for Re > 6000 and RΩ > 1.016.
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This is the most important point to note here: two different
regimes of transition from turbulent to laminar are displayed
in this figure. The first (corresponding to the various fitting
curves) is the correct, resolution independent and Reynolds de-
pendent transition. The second (apparent as the various ver-
tically aligned points at a given resolution) is an incorrect,
Reynolds independent and resolution limited transition. Note
that the points belonging to both this vertical line and the
laminar-turbulent line are still resolved, though, as shown in
Sect. 4.4.2. The meaning of the behavior displayed in Fig. 7 is
further discussed in Sect. 4.1, and its implications in Sects. 4.2
and 4.4.

Comparing Figs. 4 and 7, we remark that the dependence
of the transition Reynolds number Rg on the “distance” to
marginal stability in rotation number |RΩ − R±

Ω
| is consider-

ably stiffer on the anticyclonic side than on the cyclonic one.
This has important implications that will be discussed in the
next section. Conversely, the turbulent momentum transport is
very similar to the one found for the cyclonic side5, as shown
in Fig. 8

〈vx vy〉 � 5.5
Rg − 3000

(S d)2. (20)

The constant in the denominator differs from the one found
on the cyclonic side. This reflects the difference of transition
Reynolds number at the two marginal stability limits. For large
enough Reynolds number, one find 〈vx vy〉 � 5.5/Rg, which

5 Figure 8 is noisier than its cyclonic counterpart. This is a con-
sequence of the larger turbulent fluctuations observed in anticyclonic
flows. Longer integrations time-scale would have been required to im-
prove the statistics.
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Fig. 8. Mean transport as a function of critical reynolds number on the
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corresponds to the asymptotic relation found on the cyclonic
side (see Sect. 4.1 for a discussion of the possible origin of this
behavior). This indicates that this relation is very robust for
subcritical flows, far enough from the supercritical transition
limit.

4. Discussion

Our results are at variance with both the point of view advo-
cated by Balbus et al. (1996) and Hawley et al. (1999) (ab-
sence of subcritical turbulence), and Richard & Zahn (1999)
and Hersant et al. (2005) (efficient transport due to subcriti-
cal turbulence). This is further investigated in this section. We
shall first present some phenomenological background material
which helps to understand the physical origin and meaning of
the results presented in the previous section. Then, we shall re-
spectively discuss the implications of our results for Keplerian
flows (Sect. 4.2), the stabilizing role of the Coriolis force in
subcritical flows (Sect. 4.3), and the relation between Reynolds
number and resolution (Sect. 4.4); these last two items have
been highly controversial in the past decade. Section 4.4 also
discusses the relation of these results with the scale-invariance
argument of Balbus (2004). Finally the influence of the na-
ture of the adopted boundary conditions and aspect ratio on
our results is the object of Sect. 4.5, as well as their relation
to fluid dynamics experiments. Note also that the discussion
of the boundary conditions helps quantifying possible biases
introduced by the sheering sheet boundary conditions with re-
spect to actual disk physics. The reader interested only in the
astrophysical implications of our results may focus in Sect. 4.2.

4.1. Some aspects of subcritical turbulence
phenomenology

The phenomenology of subcritical turbulence has been dis-
cussed in Longaretti (2002) and Longaretti & Dauchot (2005).
Some directly relevant aspects for our present purpose are pre-
sented here (and clarified where needed).

Turbulent transport is often quantified in terms of a turbu-
lent viscosity. As this description has been criticized in the past,
a brief discussion of its use here might be useful. First, note
that, in scale-free systems such as the ones studied here (the
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only scale present being the simulation box size), one can al-
ways assume that

〈vxvy〉 = νtS , (21)

as this only amounts to defining a turbulent viscosity νt such
that this relation is satisfied. In any case, as the source of tur-
bulence is the shear, the Reynolds stress 〈vxvy〉 must be some
function of the shear S , which cancels when the shear cancels.

Now, νt has the dimension of a length times a velocity, so
that one must therefore have, in our simulations,

νt = αS d2, (22)

as S d and d are the only dimensional quantities with the right
dimensionality introduced in the problem.
α is a Shakura-Sunyaev-like parameter. It is a dimension-

less quantity, and can therefore only depend on the dimension-
less quantities6 characterizing the problem at hand, namely the
Reynolds number Re and the rotation number RΩ (i.e., the shear
dependence of α can only appear through the ratios of the shear
time scale to the viscous and the rotation time scales):

α ≡ α(Re,RΩ). (23)

The results of Sect. 3 suggest that, quite remarkably, α depends
only on RΩ through the transition Reynolds Rg, and not (or
little) on Re, in subcritical flows. The origin of this behavior
can be understood in the following way (Longaretti 2002).

A sheared flow is out of global thermodynamical equilib-
rium, and tries to restore this equilibrium by transporting mo-
mentum across the shear. A subcritical flow has only two means
at its disposal to achieve this purpose: laminar and turbulent
transport. It will tend to choose the most efficient one under any
given set of conditions7, i.e. at given Re and RΩ. The subcriti-
cal turbulent transport will exceed the laminar one when νt >∼ ν.
Right at the laminar-turbulent threshold, Re ∼ Rg and νt ∼ ν.
This implies that

α ∼ ν

S d2
∼ 1

Rg
· (24)

Now, what does happen at Reynolds numbers Re larger than
the transition Reynolds number Rg? To answer this question, it
is useful to have in mind some idealized, qualitative picture of
the situation in wave-number space. Such a picture is proposed
in Fig. 9, and constitutes a reasonable working hypothesis. It
is reasonably well-supported by our current knowledge of the
plane Couette flow turbulent self-sustaining process and of in-
ertial spectra, as well as by the spectral analysis of some of our
simulations presented and discussed in Sect. 4.4.2.

In this picture, the large scales are occupied by the self-
sustaining mechanism. All scales in this domain are expected to
be coherent in phase, and interactions between large and small

6 Actually, in principle, α depends also on the aspect ratio of the
simulation, and on the nature of the boundary conditions. As these are
not varied in the results discussed on the basis of the phenomenology
described here, this dependency is ignored for simplicity.

7 Note that this does not imply that the momentum transport is ab-
solutely maximized.
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Fig. 9. Proposed sketch of the idealized energy spectrum in a turbulent
shear flow. Arrows indicate the energy flow through mode coupling.
The length-scales lM and ld correspond to the top of the inertial range
(assumed identical to the bottom of the self-sustaining range for sim-
plicity) and the top of the dissipation range. Scales are assumed to be
normalized to the box simulation size d, and anisotropy is ignored in
this sketch (see text for details).

scales occur both ways8. The intermediate range is the inertial
range of turbulence; scales have no phase coherence, energy
cascades to smaller scales at a constant rate, provided by the
self-sustaining mechanism (as part of the mode coupling tak-
ing place in the self-sustaining mechanism range of scales oc-
curs with the inertial range). The smallest range represents the
viscous dissipation scales. The existence of the self-sustaining
process scales, their properties, and their influence on the iner-
tial range (energy input and anisotropy) is the distinctive fea-
ture of shear turbulence with respect to the more commonly
known and studied forced isotropic turbulence.

In such a picture, increasing the Reynolds number almost
exclusively results in an increase of the inertial range, which is
essentially vanishing at the transition Reynolds number. This
should have little effect on the turbulent transport (whereas, on
the contrary, the laminar transport becomes smaller and smaller
when increasing the Reynolds number).

Indeed, we have first checked that this is case in non-
rotating Couette plane flows, where the self-sustaining mech-
anism is identified (Hamilton et al. 1995): the transport is al-
most completely determined dominated by the mechanism rolls
and streaks. Furthermore, in our simulations, we have com-
puted the contribution of each length scale to the total trans-
port 〈vxvy〉. First one should note that in Fourier space (in 1D
for simplicity):

〈vxvy〉 =
N−1∑
n=0

ṽx(kn)ṽ∗y(kn). (25)

8 This is the case in particular for the non-rotating plane Couette
self-sustaining mechanism (Waleffe 1997).
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tion, Re = 20 000, RΩ = −1.020.

Therefore, the contribution to mean transport of the wave-

length kn is found to be 2�
(
ṽx(kn)ṽ∗y(kn)

)
, since kn and kN−n rep-

resents the same physical wavenumber. This simple result can
be used in 3D by averaging the transport over 2 directions (in
physical space) and by computing the Fourier transform in the
remaining direction; this procedure is sufficient for our purpose
here. The resulting cumulative Fourier sum, starting from n = 0
is illustrated on an example in Fig. 10 to quantify which scales
dominate the transport. In this example, the resulting spectral
analysis is plotted in the x direction for a 1283 anticyclonic
flow with RΩ = −1.024 and Re = 20 000, showing that more
than 99% of the transport comes from scales larger than 1/10
of the box size; this range corresponds to the length-scales of
the self-sustaining process (see Sect. 4.4.2). Similar results are
found for spectral analyzes in the y and z directions, consis-
tently with the picture discussed here. This is expected anyway
if the inertial spectrum is Kolmogorovian, as confirmed from
the spectral analysis of Sect. 4.4.29 .

There are two loose ends in this discussion. First, hysteresis
is usually experimentally observed in subcritical transitions to
turbulence: the measured transition Reynolds number is higher
when moving “up” from the laminar to turbulent states than
when moving “down” from the turbulent to laminar ones. This
suggests that the laminar-turbulent boundary is separated by
some sort of barrier in the appropriate phase-space (defined,
e.g., by the amplitudes and phases of the Fourier modes). This
(along with the fact that the arguments developed here apply
only in order of magnitude) may well explain the existence of
the constant of order 5 that one finds in Eqs. (19) and (20) with
respect to Eq. (24). Secondly, the arguments presented here
ignore the existence of marginal stability thresholds. This, as
pointed out in Sects. 3.3 and 3.4, may explain the presence of
the constant at the denominator of these relations, as the equiv-
alent global subcritical transition Reynolds number that one

9 The true nature of the inertial spectrum might be affected by the
anisotropy generated by the the shear and the Coriolis force, but these
anisotropies must become negligible at small scale, due to the shorter
and shorter eddy turnover time.

can define in the supercritical regime is orders of magnitude
smaller than in the subcritical regime.

To conclude, let us point out the relation of this picture with
the numerical results presented in Fig. 7. The fact that higher
resolutions are required to faithfully represent the physics at
higher rotation numbers indicates that the ratio d/lM increases
with rotation number. Indeed, if the resolution is too low, so
that the relative scale lM/d is not resolved, the energy transfer
loop represented in Fig. 9 cannot take place, and turbulence
is not self-sustained. Furthermore, at the transition Reynolds
number, the inertial spectrum is nearly inexistent, as pointed
out above, and lM ∼ ld. Consequently, the most critical scale
ratio in this problem is expected not to be the Kolmogorov one,
but the self-sustaining mechanism one (d/lM).

4.2. Implications for Keplerian flows

Actual disks are vertically stratified, whereas stratification is ig-
nored in our experiments. Stratification provides us with a local
macroscopic scale (the disk scale height H). With appropriate
provisos relating to the possible stabilizing or destabilizing role
of stratification10, one can tentatively identify this scale height
with our simulation box size: H = d. This assumption is made
throughout this section. In the same way, the Shakura-Sunyaev
αS S parameter is defined such that νt = αS S csH � αS SΩH2.
Equation (22) then implies that αS S = 2α/|RΩ| � α (the last
equality holds within a factor of order unity for the rotation
number range of interest in this work).

Using the numerical results shown in Figs. 7 and 8, one
can deduce a few properties of Keplerian flow subcritical shear
turbulence, based on various conservative extrapolations of our
numerical data. First, the transition Reynolds number Rg de-
pendence on the rotation number RΩ is well-fitted by a power
or an exponential law. Using these laws, one can get a first set
of estimates of the transition Reynolds number for Keplerian-
like flows (RΩ = −4/3): Rg = 1.1 × 1010 and Rg = 1.3 × 1026,
respectively. The last estimate leads to the absence of subcrit-
ical turbulence in accretion disks whereas the first one allows
for its existence11. Secondly, let us note that, for both cyclonic-
ity, the Coriolis force induces a steeper and steeper increase of
the transition Reynolds number when moving away from the
marginal stability boundary. This suggests that one can find a
lower bound for Rg by linearly extrapolating the power law
fit beyond the last known point (RΩ = −1.032). One find this

10 If stratification is destabilizing, the momentum transport induced
by the resulting convective motions is in the wrong direction, as re-
called in the introduction, and must be counterbalanced by another
process; ignoring stratification in this case therefore makes life eas-
ier for this other process (here, subcritical turbulence). If stratification
is stabilizing, this also most likely results in an increased difficulty
in finding the transition to turbulence, and a related increase in the
transition Reynolds number. These arguments suggest that ignoring
the dynamical stratification altogether maximizes the overall outwards
transport in our problem.

11 We assume that accretion disk Reynolds numbers lie between 1010

and 1015 for definiteness. The Reynolds number definition used in this
evaluation is Re = S H2/ν where H is the local disk scale height,
consistently with the H = d identification made earlier.
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Table 1. Extrapolated transition Reynolds numbers, values of α, and
required simulations resolution, for Keplerian flows, under various as-
sumptions (see text for details).

exponential power-law cyclonic linear

Rg 1.3 × 1026 1.1 × 108 2 × 107 1.8 × 106

α n/a 5 × 10−10 2.6 × 10−7 3.1 × 10−6

(d/δ)3 n/a 70003 30003 9003

way Rgmin = 1.8×106. As a final hypothesis, one may envision
that the Rg(RΩ) relation would be more or less symmetric with
respect to RΩ = 0 if there were no supercritical domain. This
would explain why the actual relation of Fig. 7 is so steep: in
this picture, the system tries to reach back as fast as possible
the high values of transition Reynolds number expected from
this hypothetical symmetry, after which the Reynolds depen-
dence with rotation number would be much less steep. Under
this assumption the expected transition Reynolds number for
Keplerian flows would be Rg = 2. × 107 (a power-law fit of the
cyclonic data has been used in this extrapolation).

This information is summarized in Table 1, along with the
corresponding values of α, obtained from the asymptotic rela-
tion α = 〈vxvy〉 = 5.5/Rg found for cyclonic and anticyclonic
flows in the previous section. The last line shows the resolution
required to successfully simulate Keplerian flow turbulence, for
the various Reynolds numbers (see Sect. 4.4.1). One sees that
even the most optimistic α bound (αmax = 3.1×10−6), obtained
with the linear extrapolation, is substantially smaller than the
values required in astrophysical accretion disks (as summa-
rized, e.g., in Papaloizou & Lin 1995). Note finally that, even
without any extrapolation, our results exclude subcritical tur-
bulent transport at the α � 3 × 10−4 level.

4.3. Role of the Coriolis force in uniform shear flows

Two different but related issues have been raised in the liter-
ature concerning the role of the Coriolis force in subcritical
systems.

First, for linearly stable flows, Balbus et al. (1996) point
out that the Coriolis force plays a conflicting role in Eqs. (4)
and (5). More precisely, they make the following point: as
S 〈vxvy〉 > 0 for turbulence to exist (see Sect. 2.2), the terms in
which the shear S has been factored out in these equations have
opposite signs for linearly stable flows, while they have the
same sign for linearly unstable flows (note that this is true inde-
pendently of the flow cyclonicity). They conclude from this that
a stabilizing rotation prevents turbulence to show up in subcrit-
ical shear flows, except possibly in the vicinity of marginal sta-
bility. Somewhat relatedly, the recent Reynolds stress-closure
model of Ogilvie (2003) and Garaud & Ogilvie (2005) predicts
relaminarization for large enough deviations from the marginal
stability limit. In particular, for the authors’ standard choice
of parameters, it predicts relaminarization for RΩ ∼ 0.2 for
cyclonic rotation. However, as can be seen in Fig. 4, both the
Balbus et al. (1996) argument and the Garaud & Ogilvie (2005)
result conflict with our simulations: subcritical turbulence is

maintained away from marginal stability on the cyclonic side,
at least up to RΩ � 0.3. Note that we could have pushed the
search for transition to turbulence beyond what is shown on
this graph, especially by using higher resolutions, but did not
do it due to computer resources limitations. As discussed in the
next subsection, the absence of turbulence in the Keplerian flow
simulations of Balbus et al. (1996) and Hawley et al. (1999) is
a problem of resolution.

The second issue relates to the asymmetry between cy-
clonic and anticyclonic rotation. The stress-closure model just
mentioned depends on the rotation number only through the
combination RΩ(RΩ + 1) which implies a symmetry with re-
spect to RΩ = −1/2. This symmetry is clearly violated by our
numerical results (compare Figs. 4 and 7), a point which re-
quires some comments.

First, note that the linearized Navier-Stokes Eq. (1) exhibits
this symmetry for perturbations with vanishing pressure vari-
ation (δπ = 0). In this case, the linearized equation can be
written:

∂w

∂t
= S · y∂w

∂x
+ S ·

(
(RΩ + 1)wyex − RΩwxey

)
+ ν∆w. (26)

The cyclonic-anticyclonic symmetry appears when exchanging
the x and y directions. Indeed, upon the following change of
variables:

R′Ω = −RΩ − 1,

w′x = wy, e′x = ey,

w′y = wx, e′y = ex,

w′z = wz, e′z = ez,

so that

w′ = w′xe′x + w′ye
′
y + w

′
ze
′
z

= w,

the form of Eq. (26) should be invariant, which is indeed the
case:

∂w′

∂t
= S · y∂w

′

∂x
+ S ·

(
(R′Ω + 1)w′ye

′
x − R′Ωw

′
xey
)
+ ν∆w′. (27)

This symmetry can also be extended to compressible motions
by adding δπ′(x, y, z) = δπ(y, x, z) to the list of change of
variables.

Because the perturbations defining the linear stability limit
also exhibit this symmetry (Appendix A), it has often been as-
sumed in closure-stress models in the past. However, this is
not a symmetry of the full Navier-Stokes equation (Speziale
& Mhuiris 1989; Speziale 1991; Salhi & Cambon 1997), nor
of the ∇ · w = 0 equation). This is also apparent in a direct
inspection of the structure of simulated turbulent flows. The
RΩ = 0, wall-bounded turbulent flows contain large stream-
wise rolls living for about a hundred shear times (Hamilton
et al. 1995). We have also found rolls more or less aligned in
the streamwise direction in our RΩ = 0 shearing sheet simu-
lations, although we did not try to precisely quantify their sur-
vival time. Furthermore, at the anticyclonic marginal stability
limit (RΩ = −1), we did observe sheared shearwise rolls (i.e.
rolls in y direction) in our simulations, as one might expect
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from the symmetry of the linearized Navier-Stokes equation.
The anticyclonic roll survival time is observed to be rather short
compared to their cyclonic counterpart, as they are tilted by the
shear and loose their coherence in a few shear times at most.
This roll lifetime is the main difference we found between the
cyclonic and anticyclonic side. This is related to the fact that a
streamwise roll does not reduce the shear on the anticyclonic
subcritical domain (in opposition to the cyclonic one).

In any case, we have found turbulence away from the
marginal stability limit in cyclonic flows, and the symmetry
with respect to RΩ = −1/2 is violated both in our simulations,
and in supercritically rotating shear flow turbulence (see, e.g.,
Salhi & Cambon 1997 and references therein). This make the
predictions of the stress-closure model of Ogilvie (2003) and
Garaud & Ogilvie (2005) unreliable in both subcritical and su-
percritical flows.

4.4. Resolution, effective Reynolds number and scale
invariance

The results of Sects. 3.3 and 3.4 involve fairly high Reynolds
numbers, and one might ask if our simulations are resolved
enough in these regimes. This question has a priori two dif-
ferent aspects, as one can guess from Fig. 9: resolving the self-
sustaining process smallest relative scale d/lM, and resolving
the relative dissipation scale d/ld.

For the problem considered in this paper, resolving the first
scale is a sine qua non condition: if it is not satisfied, turbulence
does not show up, independently of the simulation Reynolds
number, because the required scale coupling shown in Fig. 9
for the self-sustaining process to exist cannot take place. This
shows up in Fig. 7 as the vertical transition limit from turbulent
to laminar that we obtained for any given resolution, for large
enough Reynolds numbers.

Resolving the dissipation scale is important to ascertain that
direct numerical simulations such as the ones performed here
are not biased by (the presence or absence of) numerical dis-
sipation, and this issue is often raised in the fluid mechanics
literature. For the time being, we note that, at the transition
Reynolds number, the inertial domain should be non-existent or
extremely reduced, so that lM � ld and both resolution require-
ments should be directly related (this point, used in Sect. 4.4.1
is justified in Sect. 4.4.2). We can therefore consider that the
“effective Reynolds number” Reeff of our simulations is the
largest transition Reynolds number Rg correctly determined at
a given resolution12, as discussed in Sect. 3.4.

Note that this effective Reynolds number is problem-
dependent: the self-sustaining process qualitative and quanti-
tative characteristics both depend on the considered problem;
furthermore, in simulations of isotropic turbulence, the self-
sustaining process is absent, and replaced by a forced ampli-
tude of the largest Fourier modes, so that the effective Reynolds
number in this case is the one related to the dissipation scale.

12 With all the provisos discussed in Sect. 3.2 about the role of the
choice of the initial conditions and turbulence minimal survival life-
time.

Let us now examine the two requirements mentioned above
in more detail.

4.4.1. Resolving the self-sustaining process

First, we would like to qualitatively comment on the difference
of resolution requirements between cyclonic and anticyclonic
flows.

As discussed in Sect. 4.5, the nature of the shearwise
boundary condition has apparently only a small influence
on the results; this is exemplified by the similar transition
Reynolds numbers found in our simulations and in experi-
ments on rotating shear flows (see Fig. 14). This suggests that
at least some of the characteristics of the self-sustaining pro-
cess of non-rotating plane Couette flows are relevant here. At
the cyclonic marginal stability limit, this self-sustaining pro-
cess has a time-scale tSSP ∼ 100S −1 (Hamilton et al. 1995;
Waleffe 1997). The requirement that, at the transition Reynolds
number, the viscous time scale at scale lM exceeds tSSP reads
l2M/ν >∼ 100S −1, i.e., lM/d <∼ (100/Rg)1/2 ∼ 1/4 for Rg ∼
1500 (Longaretti & Dauchot 2005). This probably explains
why the resolution requirement is so low on the cyclonic side.
Conversely, we have mentioned at the end of the previous sub-
section that rolls (which are an apparently ubiquitous ingre-
dient in subcritical turbulence) do not survive more than a
few shear times in anticyclonic flows. Therefore, the anticy-
clonic self-sustaining process time-scale cannot exceed a few
shear times as well, whatever its nature. The same reasoning
as the one exposed above leads to lM/d <∼ a few (1/Rg)1/2 ∼
a few ×1/70, an already much more demanding constraint. It
is obviously related to the larger transition Reynolds number
found at the anticyclonic marginal stability, compared to the
cyclonic one.

As mentioned several times already, the self-sustaining pro-
cess is identified and understood only at the cyclonic marginal
stability limit in wall-bounded Couette flows. Consequently, it
is difficult to explain why the resolution demand grows so much
faster with rotation number “distance” to marginal stability for
anticyclonic flows than for cyclonic ones. However, we spec-
ulate that this is connected to the fact the rotation time scale
is only a fraction of S −1 for cyclonic flows, whereas it always
exceeds S −1 for anticyclonic ones.

Next, let us try to quantify the resolution that would be
needed to successfully simulate Keplerian flows. The phe-
nomenology of subcritical turbulence developed by Longaretti
(2002) predicts that d/lM ∼ Rg1/2 and 〈vxvy〉 ∝ 1/Rg. This phe-
nomenology implicitly assumes that the relevant time-scale of
the self-sustaining process is ∼S −1, so that it would need to be
modified to be applied to cyclonic flows, but it should be ade-
quate for anticyclonic ones, with appropriate modifications. In
particular, we have already pointed out in Sect. 4.1 that the last
relation needs to be amended into 〈vxvy〉 ∝ 1/(Rg − Rc) with
Rc � 3000 on the anticyclonic side. This suggests that

δ

d
� γ

(Rg − Rc)1/2
(28)

is the appropriately generalized scale relation (δ being the
smallest scale accessible to the simulation, i.e., the resolution).
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Table 2. Resolution, effective Reynolds number and γ factor for the
Fourier code on the anticyclonic side.

(d/δ)3 Reeff γ

323 6000 1.71

643 12 000 1.48

1283 38 000 1.46

Table 2 gives the values of γ and Reeff for the three different
resolutions of our anticyclonic simulations.

Although the statistics is a little poor to draw firm conclu-
sions, it appears that γ is nearly constant compared to the vari-
ations in both resolution and transition Reynolds number, and
our simulations are therefore consistent with Eq. (28). The res-
olution needed to simulate Keplerian flows has been computed
based on the estimate Eq. (28), with γ = 1.5 (the Rc correction
has little influence on these estimates). The results are shown
in Table 1. For comparison purposes, note that the largest tur-
bulence simulation ever performed was 40003, but was not run
for hundreds or thousands of dynamical times. Although the
results gathered here are probably only indicative, as they are
based on guess work, they strongly suggest that simulating sub-
critical turbulence in Keplerian flows is beyond present day
computer capabilities, and support the idea that the subcriti-
cal Keplerian flows simulations performed to date were limited
by numerical resolution, as suggested by Longaretti (2002).

4.4.2. Resolving the dissipation scale

In statistically steady turbulence, the dissipation scale can be
defined from the balance between input and dissipation de-
scribed by Eq. (8). The energy input is provided by S 〈vxvy〉.
The Fourier analysis of this quantity is shown in Fig. 10, and
is dominated by the large scales. Conversely, the Fourier con-
tent of ε, Eq. (7), is dominated by the small scales (large k),
comparable to the dissipation scale, as illustrated below.

Resolving the dissipation scale is important with Fourier
codes in order to prevent energy accumulation at the smallest
scales, which may bias the results, or lead to code crash13.

The general definition of the dissipation wavelength kd fol-
lows from the evaluation of Eq. (7) in Fourier space:

ε = 2ν
∫ kd

0
k2E(k)dk (29)

where it is assumed that E(k) is cut-off at kd, either abruptly,
or through some modelling of the dissipation range (see e.g.
Lesieur 1990).

In simulations of homogeneous and isotropic turbulence,
the energy input is imposed from the outside: the amplitude of
the largest Fourier mode is held fixed, and Fig. 9 reduces to
the inertial and dissipation range. In this context, the inertial
spectrum reduces to the Kolmogorov spectrum given by:

EK(k) = CKε
2/3k−5/3, (30)

13 One may also include an hyper-viscosity term to prevent code
crash, but this turned out not to be necessary.

where the Kolmogorov constant CK � 1. Cutting off this spec-
trum at wavelength kd and injecting it in the definition Eq. (29)
leads to the well-known expression of the Kolmogorov wave
number, kK = (ε/ν3)1/4. The related Kolmogorov scale (inverse
of the wave number) is a largely used estimate of the dissipa-
tion scale.

In the fluid mechanics community one often requires that
the Kolmogorov scale be resolved, even if the considered turbu-
lence is not isotropic and homogeneous, as, e.g., in shear flow
turbulence (see, e.g., Pumir 1996). However, in our simula-
tions, the observed spectrum is substantially different from the
Kolmogorov one, especially at the transition Reynolds num-
ber (see top panel of Fig. 12). Indeed, at the turbulent-laminar
transition, one does not expect nor observe the presence of an
inertial domain in the spectrum. One may therefore ask what
relation the Kolmogorov scale bears to the dissipation scale of
the problem.

Consider, e.g., the 323 and 643 energy spectra obtained
at a Reynolds number Re = 6000 and a rotation number
set to −1.016. These spectra are shown on the top panel of
Fig. 12. The concordance of the spectra at both 323 and 643 res-
olutions indicates that the dissipation scale in the 323 sim-
ulation is resolved (this is consistent with the shape of the
spectrum at the smallest 323 resolved scales, much steeper than
Kolmogorov). It appears that the largest distance to marginal
stability |RΩ + 1| reliably accessible at a given resolution on the
laminar-turbulent transition (as checked by higher resolution
simulations) corresponds to the various vertical line of transi-
tion displayed in Fig. 7 for this resolution. In other words, the
Re = 6000, RΩ = −1.016 point at 322, and the Re = 12 000,
RΩ = −1.024 at 643, are resolved. This feature makes us con-
fident that the transition point determined at 1283 is the correct
one, although we did not cross-check it at 2563, due to the lim-
itations in the available computational resources.

We have thus determined the largest transition Reynolds
number where the dissipation scale is confidently resolved in
these anticyclonic runs at the various resolutions we have used
(323, 643 and 1283). In other words, we know the effective
dissipation scale of these simulations, as it must be compara-
ble to the largest wave number available in the simulation14:
kd � 31/2πN/d, where N is the resolution. Furthermore, we
can compute the Kolmogorov wave number kK for these runs,
as ν = Re/S d2, and as ε follows from Eq. (8) and the transport
(e.g., with the help of the transport/transition-Reynolds-number
correlation displayed in Fig. 8). The resulting ratio R = kd/kK

is given in Table 3.
Although the values of the ratio R quoted in Table 3 are

of order unity, a systematic trend seems to appear, indicating
that resolving the Kolmogorov wave number is possibly not
the relevant concept at the transition Reynolds number, as it is
not stringent enough; nevertheless, the required resolution de-
rived from the Kolmogorov wave number is apparently semi-
quantitatively correct, at least for the rotation numbers explored

14 This expression corrects a misprint in Pumir (1996) for the diag-
onal of a cube in Fourier space; although this largest wave number is
resolved only in discrete directions, this definition is adopted here for
ease of comparison with this earlier work.
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Table 3. Resolution, dissipation to Kolmogorov wave number ratio,
and corresponding transition Reynolds number (see text for details).

N R = kd/kK Rg

32 1.23 6000

64 1.73 12 000

128 2.66 35 000
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Fig. 11. Cumulative mean dissipation spectrum for a 643 simulation
at Re = 6000 for RΩ = −1.016.

here. Of course when going to Reynolds numbers well in ex-
cess of Rg at a given RΩ, the Kolmogorov wave number should
always give the right estimate of the dissipation scale, as the
inertial range becomes more and more prominent in the overall
spectrum.

To conclude this aspect of the discussion, we note that
both the non-Kolmogorovian shape of the spectrum at transi-
tion and the relatively small values of ε at the various transition
Reynolds numbers used here, most probably combine in the
end to explain why we can reach rather large Reynolds num-
bers at rather moderate resolutions.

In order to have a better grasp on which scales contribute
most to the dissipation, we have computed a quantity, τd(k),
defined by

τd(k) = 2ν
∫ k

−k
dkx

∫ k

−k
dky

∫ k

−k
dkz

(
k2

x + k2
y + k2

z

)
E(kx, ky, kz). (31)

Comparing with Eq. (29), it appears that τd(k) represents the
fraction of dissipation due to scales |kx| < k, |ky| < k and |kz| <
k. This quantity is plotted in Fig. 11 with the 643 simulation
spectrum. It appears that more than 95% of the total dissipation
is due to k < 1/2kmax (i.e., the 323 resolution). Also, comparing
Fig. 11 with the top panel of Fig. 12 indicates that most of
the dissipation comes from the part of the spectrum which is
steeper than the Kolmogorov spectrum, as one would expect.

It is also instructive to examine the spectral behavior at
Reynolds number larger than the transition Reynolds number,
as shown in Fig. 12.

This figure displays energy spectra of the velocity devi-
ation from the laminar flow. The rotation number is fixed
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Fig. 12. Energy spectra (of the velocity deviation from the laminar
flow), for two different resolutions (322 and 643). The rotation number
is RΩ = −1.016 in all cases. Top panel: Re = 6000. Middle panel: Re =
12000. Bottom panel: Re = 20 000. At this resolution only the top
panel simulations are resolved, as expected. See text for discussion.

at RΩ = −1.016 for all spectra, and they have been averaged
over a 200 shear time period to reduce the noise. From top to
bottom, the Reynolds number is 6000, 12 000 and 20 000 re-
spectively. The 323 simulations are resolved only in the top
panel, while the 643 simulations should be resolved in the top
two panels. Comparing the second panel with the first reveals a
couple of interesting points:

– The 643 simulation shows an extension of the spectrum,
compatible with a small inertial range (this is difficult to
ascertain because of the remaining noise in the simulation),
while still resolving at least the top of the dissipation range,
but marginally so.
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Fig. 13. Energy budget for a 643 Re = 20 000 run with our Fourier
code. Each plot represent a term in Eq. (8). The numerical dissipation
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that numerical dissipation is about 1% of the total dissipation. NB:
Vertical axis of the three first plots is in logarithmic scale.

– The 323 simulation begins to significantly deviate from the
643 simulation, although the trend is similar.

The third panel also displays a fairly relevant piece of informa-
tion. The 643 simulation shows both the self-sustaining mecha-
nism scales and the inertial spectra. However, the dissipation
scale does not seem to be resolved. This is not unexpected,
since increasing the Reynolds number necessarily increases
the inertial spectrum, and therefore decreases the dissipation
scale. Apparently, the dissipation scale is probably not far off
the resolved scales, so that the simulation nevertheless does
not noticeably deviate from the expected behavior. But note
that the 323 simulation is clearly strongly unresolved, with en-
ergy accumulating in the small scales in order for a statisti-
cally steady equilibrium to be achieved: indeed, as this simula-
tion resolves the self-sustaining mechanism scale, turbulence is
present; however, as the smallest resolved scale is significantly
larger than the dissipation scale, the spectrum must be strongly
deformed to achieve a dissipation which is consistent with the
energy input due to the turbulence self-sustaining mechanism.

These simulations illustrate that if the dissipation scale is
not resolved, the simulated flow does not necessarily relami-
narize, but the deformation of both the amplitude and shape of
the spectrum most likely results in, e.g., unreliable estimates
of the turbulent transport. In particular, the reliability of finite
difference simulations where no viscous term is explicitly in-
cluded in the code is unclear15.

On the other hand, this point is related to the fact that
the numerical dissipation in a Fourier code is extremely weak,
so that the deformation of the spectrum may be quite large.
To compute the numerical dissipation explicitly, we have esti-
mated its effect on the turbulent energy budget.

15 We did not further investigate this question here.

We plot an example of such an energy budget in Fig. 13,
where all the terms in Eq. (6) are evaluated, so that the remain-
ing difference measures the code dissipation. One should note
that these plots are integrated over 2 shear times, so that they
include the numerical dissipation due to the desaliazing pro-
cedure (done at each time loop) and losses from the remap-
ping procedure (done each shear time). The presented result is
generic: for all our simulations, numerical dissipation is found
to be at most a few percent of the total dissipation.

In summary, we have tried as much as possible to ensure
that our determination of the transition Reynolds number and
turbulent transport do not suffer from lack of resolution of
the dissipation scale. Note also that the results of the Fourier
and finite difference codes are consistent with each other. This
makes us confident that our simulations faithfully represent the
relevant physics, down to and including the dissipation scale,
within the relevant (Re,RΩ) domain determined at each resolu-
tion in Fig. 7.

4.4.3. Shearing sheet simulations and scale
invariance

Recently, Balbus (2004) has argued that the scale invariance
of the inviscid form of the Navier-Stokes equation used here
makes any small scale solution exist at large scales as well.
This argument seems to imply that simulations of the kind per-
formed here should not be resolution limited. However, neither
the simulations of Balbus et al. (1996), Hawley et al. (1999),
the ones performed here, nor a real disk, are scale invariant. In
shearing sheet simulations, the box size defines a scale; in a real
disk, the disk scale height does. Furthermore, we point out that
the mechanism analyzed by Waleffe (1997), whose qualitative
and semi-quantitative relevance to the present work has been
pointed out hereabove, is somewhat insensitive to the nature of
the imposed boundary condition. Along with the results found
in this paper, this suggests that only a scale rather than a spe-
cific boundary condition needs to be imposed for statistically
stationary turbulence to show up in numerical simulations, as
exemplified in Sect. 3.4. Finally, the role of an increasingly
dominant Coriolis force is not to define another scale, which
it cannot, but to modify the relative range of scales that are re-
quired for turbulence to exist (most likely because of its more
and more stringent time-scale requirement), so that numerical
resolution does play an important role in subcritical turbulence
detection, as can be seen from Fig. 7.

4.5. Boundary conditions and aspect ratio

Assessing the role of boundary conditions on the existence and
properties of subcritical turbulence is an important question,
since real accretion disk boundary conditions are not repro-
ducible in experimental flows. However, the resolution demand
in the local shearing box is already so large for a Keplerian flow
that a global simulation of a subcritical Keplerian disk flow is
totally out of reach. The best we can do is to compare numer-
ical experiments with shearing sheet and rigid/periodic bound-
ary conditions with one another, and with experimental results.
This is the object of this section.
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Fig. 14. Rg(RΩ) plot from experimental data (Tillmark & Alfredsson
1996, crosses), and our numerical simulations using 643 Fourier code
(circles) and 643 finite difference code (triangles) with cubic box and
shearing sheet boundary conditions.

Before doing so, let us point out some important differences
between the two types of boundary conditions:

– In the semi-Lagrangian variables defined by Eqs. (10), the
only difference is that the velocity deviation from the lami-
nar flow cancels on the rigid boundary in the rigid/periodic
case, while it is periodic in the shear direction (as in the oth-
ers) in the shearing sheet case. This results in a suppression
of the boundary layer in the shearing sheet case.

– Characteristic sizes are the same in both cases. However,
while for rigid/periodic conditions, structures are forced to
remain more or less stationary with respect to the walls on
average, this is not the case with shearing sheet boundary
conditions, where structures can move at random through
the boundary. As a consequence, a long-lasting mean flow
distortion is apparent with rigid/periodic boundary condi-
tions (due to the matching of turbulently enhanced trans-
port with the viscous one in the boundary layer), while
in shearing-sheet simulations, although such a distortion is
usually locally found at any given time, it averages out over
time, due to its random localization.

– This relates to a profound difference between accretion
disks and actual experiments. In the latter, the flow pro-
file adjusts to the imposed boundary condition through a
pressure redistribution, and a stationary state is reached. In
the former, this cannot take place, and the disk is never sta-
tionary, due to the resulting turbulent transport of mass and
angular momentum.

In spite of these differences, we shall nevertheless argue that
the choice of boundary conditions has only a limited impact on
some of our qualitative and semi-quantitative results. This sug-
gests that the underlying mechanisms are reasonably closely re-
lated in both settings, although much more work than what has
been possible to do here is required to ascertain this conclusion.

4.5.1. Cyclonic rotation

Figure 14 displays a comparison of our numerical results with
the Tillmark & Alfredsson (1996) data, in the range of rotation
number where these data were collected.

The agreement between the two is fair, with the Fourier
code results being sensibly more compatible with the data than

0 0,002 0,004 0,006 0,008 0,01

2000

3000

4000

5000

6000

Ω
R

Rg

Fig. 15. Rec as a function of RΩ for cyclonic rotating plane couette
flow.

the finite difference code ones, at the larger rotation numbers.
This follows because, at the same “resolution”, a Fourier code
is physically more resolved than a Finite difference code. Note
also that some 1283 simulations were performed using the
Fourier code and the same transition thresholds were found
as for the 643 simulations. This supports the idea that the
643 Fourier code results are not resolution limited.

We have also made a few runs using rigid (shearwise direc-
tion) and periodic (other directions) boundary conditions with
our ZEUS-like code. At each rotation number, we made a few
tries with different Reynolds numbers to locate the transition
threshold. Each run was computed from the same initial con-
dition for 400 shear times with 80 × 80 × 40 grid points and
a Lx = 1.75π Ly = 1 Lz = 1.2π aspect ratio box (correspond-
ing to the “minimal flow unit” aspect ratio, i.e. the smallest
box in which turbulence can be sustained with these bound-
ary conditions: see Hamilton et al. 1995, for details). The error
bars upper bounds correspond to the lower Reynolds for which
turbulence is found and the lower bound the higher Reynolds
number for which turbulence is lost. The numerical data are
shown in Fig. 15; the error bars reflect our poor sampling, not
intrinsic fluctuations in the transition Reynolds number. These
data are fitted by a linear law:

Rg = 1400 + 4 × 105RΩ, (32)

the slope of which is 15 times steeper than the one found from
the experimental data.

This dramatic difference in transition Reynolds number
with respect to the experimental and shearing sheet results is
in fact controlled by the choice of the simulation box aspect
ratio. For example, let us choose a longer box in the z direction
(i.e. Lx = 1.75π Ly = 1 Lz = 2.4π). With such a choice, turbu-
lence is sustained at RΩ = 0.01 and Re = 2400, much closer
to the expected transition Reynolds of Fig. 14 than what is pre-
dicted by Fig. 15. Finally, Komminaho et al. (1996), using a
very elongated simulation box in the flow direction, found tran-
sition right at the experimentaly determined Reynolds number
(Rg = 3000, RΩ = 0.06).

These result show the important role of aspect ratio in
subcritical turbulence simulations with rigid/periodic bound-
ary conditions. Apparently, the use of shearing sheet boundary
conditions relaxes this constraint. This is reasonable since the
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Fig. 16. Rg(RΩ) plot from experimental data on Taylor-Couette flows
(Richard 2001, crosses), and the various numerical simulations results
and related fits shown in Fig. 7.

shearing sheet box allows more freedom than rigid boundary
conditions. In actual experiments, the aspect ratio is not an is-
sue since usually very large Lx/Ly and Lz/ly are used, so that
the turbulence coherence length can freely adjust itself in these
directions.

These results also indirectly suggest that the turbulence sat-
uration mechanism is not strongly affected by the use of shear-
ing sheet boundary conditions. One would nevertheless expect
that the reduction of the shear in the middle of the flow, due
to the mean velocity profile modification which occurs with
rigid/periodic boundary conditions, produces a reduced turbu-
lent transport. This is indeed the case: e.g., the turbulent trans-
port at marginal stability (RΩ = 0) is 〈vxvy〉 � 2 × 10−3(S d)2

for the rigid/periodic boundary conditions16, while one has
〈vxvy〉 � 0.4(S d)2 throughout the flow with the shearing sheet
boundary conditions, although the transition Reynolds number
is the same in both instances. These features most probably
find a natural explanation if the turbulence amplitude satura-
tion mechanism is primarily controlled by the system nonlin-
earities, and not by the mean profile deformation.

4.5.2. Anticyclonic rotation

The comparison of our numerical results with Richard (2001)
data is shown in Fig. 16.

The discrepancy between the experimental and numerical
data is striking, especially at the light of the remarkable con-
sistency observed for cyclonically rotating flows. In particular,
the increase in transition Reynolds is considerably steeper in
the numerical data than in the experimental ones. Note however
that the numerical and experimental data seem to give the same
transition Reynolds number at the marginal stability boundary.

Longaretti & Dauchot (2005) have argued that the flow cur-
vature plays no role in the anticyclonic flow data of Richard
(2001), so that the origin of the large discrepancy between the

16 This is measured in the middle of the flow where the turbulent
transport is maximized, and viscous transport negligible.

numerical and experimental results must be found elsewhere17.
In this respect, note that experimental secondary flow distor-
tions are much more likely to induce a linear instability some-
where in the flow on the anticyclonic side as on the cyclonic
one. Indeed, recall that the stability limit is defined by Eq. (9).
Consider the cyclonic marginal stability limit first (RΩ = 0),
and assume that one moves away from it by imposing a small
change in rotation δΩ. The required change in shear profile δS
to locally achieve 2δΩ/(S (y) + δS ) < 0 is large: δS ∼ S (y) is
needed. Conversely, at the anticyclonic marginal stability limit
(RΩ = −1, i.e., S = 2Ω), upon a small change δΩ of the ro-
tation rate, a change δS � 2δΩ � S suffices to locally make
2Ω/S > −1 and produce a linear instability somewhere in the
system. This argument shows that the presence of secondary
flows, such as Ekmann’s circulation, can easily make the flow
more unstable than it would be in its absence in anticyclonic
flows, whereas this is much more difficult to achieve in cy-
clonic ones. This may easily explain the discrepancy between
numerical and experimental results shown in Fig. 16, while the
agreement is remarkable at the marginal stability boundary.

5. Summary and conclusions

The central results of this paper are displayed in Figs. 4, 5, 7−9,
and their significance and implications are discussed in
Sects. 3.3, 3.4, 4.1−4.4. The main implications of these results
are summarized in the abstract. In the course of the discussion,
we have found that a number incorrect statements have been
made in the literature, most notably concerning the existence
and importance of subcritical turbulence in presence of a dy-
namically significant Coriolis force. We have also found that
resolution is a key issue for subcritical anticyclonically rotat-
ing flows (including Keplerian ones), and have quantified the
relation between resolution, rotation and Reynolds number. In
relation to this, we believe that the question of resolution of
the dissipation scale is not emphasized enough in the astro-
physics literature, and the potential effects of this problem are
most probably underestimated.

Our simulations do not faithfully represent a real disk: nei-
ther vertical stratification, nor, more critically, realistic vertical
boundary conditions have been implemented. A real (hydrody-
namic disk) moves either in vacuum, or, more probably, in a
hot corona. In both cases, one expects the real vertical bound-
ary condition in the disk to be (nearly) stress-free. We have
made some very preliminary simulations of ah stratified disk-
corona system to test this idea, where most of the inertia lies
in the disk. Although a strong numerical mixing of the corona
and the disk at the interface prevents us to evolve the system
for a long time (50ts max), no significant difference in the over-
all dynamics of the disk did show up. However this problem
probably requires more careful investigations to validate this
conclusion.

Overall, the outcome of this investigation still leaves us
with the issue of transport unresolved in MHD-inactive flows

17 In any case, the flow curvature always increases the transition
Reynolds number, so that including curvature in the analysis of this
problem can only make it worse, not better.
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(and possibly in some MHD-active ones), and we will briefly
comment the various ways out of this conundrum.

We first note that an efficient enough local instability should
lead to a large enough turbulent transport, because the tran-
sition to fully developed turbulence usually occurs to signif-
icantly lower Reynolds numbers in these systems than the
ones found here. This is true, e.g., in rotating shear flows
of the type considered here, in the linearly unstable regime.
However, no such instability has yet been found in hydrody-
namical Keplerian flows, either stratified or not, as discussed
in the introduction. It remains to be seen whether another such
instability can operate in hydrodynamic disks, but the list of po-
tential driving agents has by now significantly been narrowed.

In what concerns the YSO disks dead-zone in particular,
it may be that the disk stirring due to the MRI above and be-
low the dead-zone itself (Fleming & Stone 2003) might provide
enough transport in the end if it excites large enough large scale
2D disturbances of the right type (Ioannou & Kakouris 2001)
in the disk. However, this option remains to be worked out in
detail.

It has often been noted that transport in disks may not be
due to turbulence but to waves (see, e.g., Papaloizou & Lin
1995 for an introduction to the subject). Recent results on the
existence of vortices in stratified disks (Barranco & Marcus
2005) and on the coupling of waves to vortices resulting in effi-
cient transport in 2D dynamics (Bodo et al. 2005 and references
therein) support this idea.

Appendix A: Displaced particle analysis
for rotating flows

The following line of argument closely follows Tritton &
Davies (1981) and Tritton (1992). Let us consider a rotating
shear flow, whose dynamics is controlled by Eq. (1). As in
Sect. 2.1, x is the direction of the flow, y the direction of the
shear, and z the direction perpendicular to the x, y plane, in
which the rotationΩ is applied. The laminar equilibrium veloc-
ity uL = (U(y), 0, 0) generates a Coriolis force in the y direction
of magnitude −2ρΩU (in algebraic value), which is balanced
by the equilibrium generalized pressure gradient −dπ/dy.

Let us further consider two fluid “rods” of infinite ex-
tent in the streamwise direction x, and located at positions y1

and y2 = y1+δy. The streamwise velocities of these rods are U1

and U2, respectively. Let us assume that one displaces the rod
at y1 to location y2, without disturbing the pressure distribution.
Although the total work of the Coriolis force vanishes, there is
a net partial work due to the force component in the x direction
which originates in the velocity v of this displacement in the
y direction. Because of this partial work, the rod experiences
a change of x momentum, and therefore of x velocity, which
reads

U ′1 − U1 =

∫
2Ωvdt = 2Ωδy, (A.1)

so that the velocity U ′1 of the rod when it reaches location
y2 differs from the equilibrium velocity U2, and correlatively,
the x component of the Coriolis force acting on this displaced

Fig. A.1. Sketch of the effect of the Coriolis force on the displaced
particle (see text).

rod, −2ρΩU ′1 (in algebraic value) differs from the equilibrium
one, −2ρΩU2 (see Fig. A.1).

Consequently, the net result between the equilibrium pres-
sure gradient and the Coriolis force will tend to restore the dis-
placed rod to its equilibrium position18 if U ′1 > U2, or displace
it further if U′1 < U2. From Eqs. (A.1) and (3), one obtains

U ′1 − U2 = 2Ωδy − dU
dy
δy = S (RΩ + 1)δy, (A.2)

where S = −dU/dy is the shear. From this result, the net force
(Coriolis and pressure) on the displaced rod reads

2ρΩ(U2 − U ′1) = −ρS 2RΩ(RΩ + 1)δy. (A.3)

This shows that equilibrium is always restored when RΩ > 0 or
RΩ < −1 and destroyed otherwise (equality holds at marginal
stability). This is the result quoted in Sect. 2.1. This result can
also be directly derived from the linearized eulerian equation
of motion with the use of spatially uniform perturbations of the
pressure and the velocity.
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