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ABSTRACT

Context. MRI turbulence is a leading mechanism for the generation of an efficient turbulent transport of angular momentum in an
accretion disk through a turbulent viscosity effect. It is believed that the same process could also transport large-scale magnetic fields
in disks, reshaping the magnetic structures in these objects. This process, known as turbulent resistivity, has been suggested and used
in several accretion-ejection models and simulations to produce jets. Still, the efficiency of MRI-driven turbulence to transport large-
scale magnetic fields is largely unknown.
Aims. We present new analytical and numerical results aiming at quantifying the turbulent resistivity produced by MRI-driven turbu-
lence in accretion disks.
Methods. We investigate this problem both analytically and numerically. We introduce a linear calculation of the MRI in the presence
of a spatially inhomogeneous mean magnetic field. We show that, in this configuration, MRI modes lead to an efficient magnetic field
transport, on the order of the angular momentum transport. We next use fully non linear simulations of MRI turbulence to compute
the turbulent resistivity in several magnetic configurations.
Results. We find that the turbulent resistivity is on the order of the turbulent viscosity in all our simulations, although somewhat lower.
The variations in the turbulent resistivity are correlated with the variation in the turbulent viscosity as a function of the imposed mean
field. Finally, the turbulent resistivity tensor is found to be highly anisotropic with a diffusion coefficient 3 times greater in the radial
direction than in the vertical direction.
Conclusions. These results support the possibility of driving jets from turbulent disks; the resulting jets may not be steady.
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1. Introduction

After several decades of debate, and in spite of significant
progress, the origin and efficiency of angular momentum trans-
port remains a central problem in accretion disks physics.
Turbulence is one of the major physical mechanism through
which the observationally well-constrained anomalous transport
can be achieved; indeed, the first α model (Shakura & Sunyaev
1973) already assumed a strong level of turbulence, leading to
an effective viscosity orders of magnitude higher than molecu-
lar viscosity. However, the physical origin of this turbulence in
disks is still largely discussed.

Various sources of turbulence, both hydrodynamical and
magneto-hydrodynamical, have been proposed. Subcritical tur-
bulence (Richard & Zahn 1999, and references therein), if
present, is too inefficient (Lesur & Longaretti 2005; Ji et al.
2006). Convection is also too inefficient and transports angular
momentum in the wrong direction (Cabot 1996; Stone & Balbus
1996). Two-dimensional turbulence driving by small-scale, in-
coherent gravitational instabilities (Gammie 1996) or baroclinic
instabilities (Klahr & Bodenheimer 2003) is a possible option,
although the last one is still highly controversial (Johnson &
Gammie 2006; Petersen et al. 2007).

In a seminal paper, Balbus & Hawley (1991) indentify
an MHD instability, the magnetorotational instability (MRI)
that drives turbulence in the nonlinear regime. This instability

provides the most extensively studied transport mechanism,
mainly with the help of local unstratified (Hawley et al. 1995)
and stratified (Stone et al. 1996) 3D simulations, and global
(Hawley 2000) disk simulations. These simulations have shown
that MRI turbulence is an efficient way to transport angular
momentum, although the role of microphysical processes has
largely been underestimated (Lesur & Longaretti 2007; Fromang
et al. 2007).

MRI turbulence may also produce resistive transport1 (trans-
port of magnetic fields through a “turbulent resistivity” process)
in disks. This transport is a key ingredient of accretion-ejection
models (see, e.g., Ferreira 1997; Casse & Ferreira 2000, and ref-
erences therein). The related turbulent resistivity ηT is parame-
terized with the Shakura-Sunyaev ansatz as ηT = αηVAH (VA
is the Alfvén speed based on the mean field); stationary accre-
tion ejection models require an anisotropy of the turbulent re-
sistivity transport of few; furthermore, a very efficient turbulent
transport with αη � 1 is required to produce stationary struc-
tures. Less efficient transport would not prevent the launching of
jets from disks, but these structures would then be nonstation-
ary. The question of whether turbulent resistivity is an adequate
source of field line slippage through the gas to launch a jet is

1 In this paper, a transport process refers to any physical mechanism by
which a magnetic field line is moved from one place to another, without
assuming anything about flux-freezing conditions.
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still controversial in the literature, and is further discussed in the
concluding section of this paper.

In any case, turbulent resistivity is an issue in its own right,
and in this paper, we present new numerical results aimed at
quantifying more precisely the resistive transport due to MRI
turbulence. Our approach differs from the method recently intro-
duced by Brandenburg, Rädler, Schrinner and coworkers to com-
pute the turbulent resistivity tensor (see Schrinner et al. 2005;
Brandenburg et al. 2008, and references therein). Their method
relies on an expansion of the mean electromotive force with re-
spect to the mean field and its derivatives, and makes use of ap-
propriately chosen test field, whose evolution is computed along
with the turbulent flow. Our approach is also different from the
one used by Guan & Gammie (2009), in which a magnetic struc-
ture is imposed as an initial condition, and the resistive proper-
ties of the background turbulent flow are deduced from the decay
time of this structure. The method we adopt here is described in
Sect. 2, and the physical content of the two methods is discussed
there. More generally, Sect. 2 describes the physics and the nu-
merical methods we have used to study turbulent resistivity in
disks. Section 3 presents a linear analysis of the model, which
sheds some light on the numerical findings described in Sect. 4.
Section 5 discusses the astrophysical implications of these re-
sults along with some future line of work.

2. Shearing-box equations and numerical method

MRI-related turbulence has been extensively studied in the lit-
erature, but little attention has been devoted to the question of
turbulent-driven resistivity yet. One of the major advances of the
recent years has been the realization that an accurate determina-
tion of turbulent transport properties requires an accurate repre-
sentation of all scales down to the dissipation scales (Lesur &
Longaretti 2007; Fromang et al. 2007), although this accuracy
has not yet been achieved for astrophysically relevant magnetic
Prandtl and Reynolds numbers regimes. We do not imply that
actual astrophysical Reynolds numbers need to be resolved in
simulations to obtain reliable results, an obviously hopeless task
anyway; but for large enough Reynolds and magnetic Reynolds
numbers, one expects the dissipation scale to be decoupled from
the transport scales, in which case one could use a closure model
without resolving the dissipation scales. However, today simula-
tions don’t seem to have reached this regime yet.

Shearing box simulations offer a particularly convenient set-
ting to quantify turbulent resistivity; however, the boundary con-
ditions prevent the existence of the large scale gradients of mean
magnetic field required for characterizing the transport of this
mean field produced by turbulence. We bypass this difficulty by
a prescription whose physical motivation and formulation will be
described later on in this section. For the time being, we briefly
recall the basic equations for the shearing-box model, which
has been largely studied and used in the literature. The reader
may consult Hawley et al. (1995), Balbus (2003) and Regev &
Umurhan (2008) for an extensive discussion of the properties
and limitations of this model.

Since MHD turbulence in disks is essentially subsonic, we
will work in the incompressible approximation, which allows us
to eliminate sound waves and density waves from the problem.
Although density waves are excited in shearing box turbulence
(Heinemann & Papaloizou 2008b) they should not have a big
impact on the turbulence spectrum itself or on turbulent trans-
port as their amplitude decays exponentially fast when one goes
to small scales (Heinemann & Papaloizou 2008a). This has also
been confirmed by direct comparison between incompressible

and compressible simulations (Fromang et al. 2007). We also ne-
glect vertical stratification, consistently with the local shearing-
box model (Regev & Umurhan 2008). Explicit molecular vis-
cosity and resistivity are included in our description.

The shearing box equations follow from a local approxima-
tion. We chose a Cartesian box centered at r = R0, rotating with
the disk at angular velocity Ω = Ω(R0) and having dimensions
(Lx, Ly, Lz) with Li � R0. Assuming R0φ→ x and r − R0 → −y,
one eventually obtains the shearing box equations:

∂tU + ∇ · (U ⊗ U) = −∇Π + ∇ · (B ⊗ B)

−2Ω × U + 2ΩS yey + νΔU, (1)

∂t B = ∇ × (U × B) + ηΔB, (2)

∇ · U = 0, (3)

∇ · B = 0. (4)

The boundary conditions associated with this system are peri-
odic in the x and z direction and shearing-periodic in the y direc-
tion (Hawley et al. 1995). In these equations, we have defined
the mean shear S = −r∂rΩ, which is set to S = (3/2)Ω, assum-
ing a Keplerian rotation profile. The generalized pressure termΠ
includes both the gas pressure term P/ρ0 and the magnetic one
B2/2ρ0. This generalized pressureΠ is actually a Lagrange mul-
tiplier enforcing Eq. (3), and is therefore computed by solving a
Poisson equation. Note also that the magnetic field is expressed
in Alfvén-speed units, for simplicity.

The steady-state solution to these equations is the local
Keplerian profile U = S yex. In this paper, we will consider only
the turbulent deviations from this Keplerian profile. These may
be written as V = U − S yex, leading to the following equations
for V:

∂tV + ∇ · (V ⊗ V) = −∇Π + ∇ · (B ⊗ B) − S y∂xV
+(2Ω − S )Vyex − 2ΩVxey + νΔV, (5)

∂tB = −S y∂xB + S Byex

+∇ × (V × B) + ηΔB, (6)

∇ · V = 0, (7)

∇ · B = 0. (8)

Following Hawley et al. (1995), one can integrate the induction
Eq. (6) over the volume of the box, leading to:

∂〈B〉
∂t
= S 〈By〉ex, (9)

where 〈〉 denotes a volume average. Therefore, the mean mag-
netic field is conserved, provided that no mean radial field is
present. In this work, the mean field will be either vertical or
azimuthal.

To numerically solve the shearing-box equations, we use a
spectral Galerkin representation of Eqs. (5)–(8) in the sheared
frame (see Lesur & Longaretti 2005). This frame allows us to
use a Fourier decomposition since the shearing-sheet bound-
ary conditions are transformed into perfectly periodic boundary
conditions. Moreover, this decomposition allows us to conserve
magnetic flux to machine precision without any modification,
which is an advantage compared to finite-difference or finite-
volume methods (the total magnetic flux created during one
simulation is typically 10−11). Equations (7) and (8) are en-
forced to machine precision using a spectral projection (Peyret
2002). The nonlinear terms are computed with a pseudospec-
tral method, and aliasing is prevented using the 3/2 rule. To
always compute the physically relevant scales in the sheared
frame, we use a remap method similar to the one described by
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Umurhan & Regev (2004). This routine redefines the sheared
frame every Tremap = Lx/(LyS ) and we have checked that none
of the behaviour we describe in this paper was related to this
numerical timescale. Since spectral methods are very little dis-
sipative by nature, we check that numerical dissipation is kept
to very small values, computing the total energy budget at each
time step (see Lesur & Longaretti 2005, for a discussion of this
procedure). We therefore ensure that numerical dissipation is re-
sponsible for less than 3% of the total dissipative losses occur-
ring in these simulations.

To quantify the dissipation processes in the simulations, we
use dimensionless numbers defined as:

– the Reynolds number, Re = S L2
z/ν, comparing the nonlinear

advection term to the viscous dissipation;
– the magnetic Reynolds number, Rm = S L2

z/η, comparing
magnetic field advection to the Ohmic resistivity;

– the magnetic Prandtl number, defined as the ratio of the two
previous quantities Pm = Rm/Re = ν/η, which measures
the relative importance of the dissipation processes, and, cor-
relatively, is related to the ratio of the viscous and resistive
dissipation scales.

In the following we use S −1 as the unit of time and S Lz as the
unit of velocity. One orbit corresponds to Torb = 3πS −1. For
simplicity, we keep the same notation for dimensionless and di-
mensional quantities.

2.1. Turbulent resistivity definition

Our aim is to test to which extent the effect of MRI turbulence on
the mean field can be modelled as a turbulent resistivity on large
scales, and characterize inasmuch as possible the resulting tur-
bulent resistivity tensor. We therefore distinguish the large scale
mean field B and velocity V and the fluctuating (turbulent) fields
b and u. We assume 〈b〉 = 0 and 〈u〉 = 0 where 〈〉 denotes an
ensemble (or time, under the ergodic hypothesis) average. The
induction equation reads:

∂t B = ∇ × (V × B) + ∇ × E (10)

where we have defined the mean electromotive force (EMF) E =
〈u × b〉. The turbulent resistivity hypothesis assumes:

Ei = βi jk∂xk B j. (11)

Our main objective is to test and quantify this assumption. We
keep no term proportional to B (α-like effect), as we found out
that they are not produced in our simulations.

At this point, two different routes are open to study the tur-
bulent diffusion of the magnetic field.

– In the first one, Eq. (11) is assumed. One can split Eq. (6) into
an equation for the mean field B and one for the deviation
from the mean b. As the induction equation is linear in the
field, b formally depends on the mean and turbulent veloc-
ity fields and mean magnetic field only. One then introduces
extraneous magnetic fields bpq, whose equation of evolution
is the same as for b, except for the mean field B which is re-
placed by a ad hoc test field B

pq
. It is then possible to derive

the EMF associated to this test field Epq = 〈u × bpq〉.
One can deduce some of the components of βi jk using several
test fields and computing the correlations between Bpq and
Epq. By construction, this method probes the velocity field u
with a test field Bpq which is different from the real field B

entering in the Lorentz force. Therefore, one assumes implic-
itly that the properties of βi jk don’t depend on the topological
properties of B, which might not be true for subcritical dy-
namos (see e.g. Lesur & Ogilvie 2008) or turbulence driven
through the Lorentz force like MRI turbulence. This method
is detailed in Schrinner et al. (2005) and Brandenburg et al.
(2008) and references therein.

– Alternatively, one can impose the constancy of some large
scale component of the magnetic field gradient throughout
the evolution and test if Eq. (11) accurately represents the
effect of turbulence on field diffusion. As in the previous ap-
proach, adequate choices of the imposed field configuration
allow us to characterize various elements of the diffusivity
tensor. This approach is adopted here and specified in more
detail in the following subsection.

These two approaches do not quite probe the same physical as-
pects of the problem. This first one is justified inasmuch as the
mean field hypothesis Eq. (11) holds, provided that the turbu-
lent resistivity tensor does no depend on the field topology. The
second one is justified without assumption if the turbulent dif-
fusion of the field is much slower than the other time-scales as-
sociated to the turbulence dynamics. However, even if this re-
quirement is not satisfied, the physical content of this second
approach can be grasped by comparing the questions of mag-
netic field and momentum transfer. Consider for example a sim-
ple unmagnetized plane Couette flow. With shearing box bound-
ary conditions, the turbulent flow is unable to react of the shear
(velocity gradient) imposed on the flow through the boundary
conditions. As shown by Lesur & Longaretti (2005), the flow
nevertheless becomes turbulent above some transition Reynolds
number Rc and produces a shearwise transport characterized by
Rc. Alternatively, one can let the flow react on the imposed ve-
locity gradient by adopting e.g. wall boundary conditions in the
shearwise direction. This changes has little effect on the transi-
tion Reynolds numbers (at least for cyclonic rotation: see Lesur
& Longaretti 2005), and does not appear to affect much the di-
mensionless transport, as suggested by the numerical results of
Lesur & Longaretti (2005) and the experimental results com-
piled in Dubrulle et al. (2005). These considerations make it
plausible that the turbulent diffusion of the magnetic field with
an imposed field gradient or with a self-consistently evolving
one should be similar, although a more systematic study is re-
quired to ascertain this statement.

In practice, we chose field configurations such that only one
component of the field gradient is non vanishing at any given
time, so that the current is directly proportional to this non-
vanishing gradient. In this situation, one can dispense with the
third order tensor and use

Ei = −ηi jJ j (12)

instead, where J = ∇ × B is the mean electric current and η is
a constant tensor, but the reader should keep in mind that there
is no reason that ηi jk should be antisymmetric in the relevant
indices. Similarly, η has no reason to be diagonal for MRI tur-
bulence. In this work, we explore this model looking for linear
correlations between the components E j and Ji, and computing
the related resistivity tensor coefficients.

To keep in line with the logic of the α parameterization
as adapted to an incompressible fluid (see Lesur & Longaretti
2007), one may introduce an α tensor relating to the turbulent η
tensor:

αηi j �
ηi j

S L2
z
· (13)
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With our choice of units (S = 1 and Lz = 1), one has αηi j = ηi j,
and the distinction between the two quantities is usually dropped
in the remainder of the paper.

2.2. Numerical protocol

To compute the turbulent resistivity, one needs a mean current,
which is not present in local (shearing box) simulations. We ob-
tain this current by imposing a large scale and non homogeneous
field in the box. This is done with the help of our Galerkin rep-
resentation by forcing the largest Fourier mode in one direction
to a constant value ΔB0. To trigger the MRI, we impose a mean
field B0 which can be either azimuthal or vertical. The aspect
ratio is Lx × Ly × Lz = 4 × 2 × 1 where x = φ, y = −r and
z = z. The factor 2 in Ly allow us to trigger more easily sec-
ondary instabilities in the strong mean vertical field cases (see
Goodman & Xu 1994; and Bodo et al. 2008). The resolution
used is 128×128×64, similar in cell size to the one used in Lesur
& Longaretti (2007). The Reynolds number is kept constant at
Re = 1600 as well as the magnetic Prandtl number, which is
fixed at unity: Pm = 1. This corresponds to a Elsasser number
Λ ≡ V2

A/ηΩ = 24 for B0 = 0.1 andΛ = 1.5 for B0 = 0.025. Each
simulation is integrated over 500 shear times (to obtain meaning-
ful time averages), and the average are computed from 400 last
shear times (to avoid initial conditions artifacts).

To postprocess the results, we first compute the time average
of B and E j. We then use a script which extracts the mean cur-
rent and compute the correlation with the emfs, giving in the end
one component of the η tensor for one run. Note that using this
procedure, we can compute resistivity associated with Bz(y) (ra-
dially varying vertical field), Bx(y) (radially varying azimuthal
field) and Bx(z) (vertically varying azimuthal field) configura-
tions. Imposing a constant radial field By would lead to a linear
growth of the azimuthal field Bx, which may not have any physi-
cal meaning. We cannot compute turbulent resistivity associated
with non axisymmetric structures because of the shearing-sheet
boundary conditions.

The runs we have performed do not test all the dependencies
of the dimensionless turbulent resistive transport with respect to
all the dimensionless parameters of the problem, but only a sub-
set of them, namely:

– the role of the mean field orientation B0, and of the orienta-
tion the imposed field varying component ΔB0;

– the role of the relative amplitude of the mean and imposed
varying field components ε = ΔB0/B0. In the process, only
a few components of the turbulent resistivity tensor are
probed;

– the role of the relative mean field amplitude, characterized
by2 β = (4πρS 2H2)/B2

0 = B−2
0 (the last equality follows from

our choice of units).

No characterization with respect to the dissipation parameters
has been attempted (most notably the magnetic Prandtl number),
a problem requiring substantial efforts and that will be addressed
elsewhere.

Our local simulation box physical size is on the order of
the scale height at most. As such, one would expect to mimic
the effect of large scale gradients of the magnetic field by small
values of ε. However sizeable (but of limited extent) local field

2 Our β parameter is akin to the usual plasma beta parameter, as both
differ only by a factor of order unity in a stratified disk in vertical hy-
drostatic equilibrium.

gradients may also be present in disks as a result of the dynam-
ics, and it is of some interest to explore values of ε of order unity
as well.

3. Analytic results

It is of some interest to look into the linear behavior of the in-
stability first, as it does provide some insight into the turbulent
problem that we discuss in the next section. Indeed, there is evi-
dence that the channel mode (both a linear and nonlinear solution
to the incompressible equations) plays some role in the overall
transport properties of the MRI-driven turbulent states.

For this reason, we want to test the turbulent resistivity hy-
pothesis (Eqs. (10) and (11)) in the linear regime. This is done
assuming the fluctuations v and b are infinitely small compared
to the averaged fields. We then calculate v and b by a classi-
cal linear analysis and deduce the EMF E which is a quadratic
quantity in this limit3. The same procedure can be used for
Maxwell and Reynolds stresses, allowing one to compute “ef-
fective” transport coefficients in the linear regime.

To make comparisons easier, we investigate one of the con-
figurations which is simulated in the next section of this paper,
namely we impose a vertical mean field of the form

BT (y) = B0
[
1 + ε cos(k0y)

]
, (14)

where k0 = 2π/L (=2π in our choice of units) and ε measures
the relative amplitude of the sinusoidal component of the mean
field, and is to be taken as a small expansion parameter later on
in some of the analytic expressions. Other configurations would
lead to a similar qualitative behavior, which is the point of inter-
est here.

Assuming that the development of the instability is fast com-
pared to the viscous and resistive time-scales, we neglect the
corresponding terms in Eqs. (5) and (6) in this linear analysis.
Under this approximation, the system Eq. (5) to (7) admits a sim-
ple equilibrium with constant pressure and varying equilibrium
azimuthal velocity4 profile to balance the magnetic pressure gra-
dient:

V(y) = S y − 1
4Ω0

dB2
T

dy
· (15)

This leads us to introduce the total shear S T:

S T = S − 1
4Ω0

d2B2
T

dy2
· (16)

It turns out that only channel-like mode present correlations of
the EMF that behave as expected under the resistivity hypothe-
sis, so we specialize from the onset to that type of modes. First
order linear deviations from the mean stationary solution de-
scribed above are referred to as U1, B1, P1, and one considers
only axisymmetric perturbations of the form

X1(y, z, t) = x(y) exp(iωt − ikz), (17)

3 For this reason, this approach is also called “quasi-linear”.
4 An actual disk is indeed expected to react to the presence of a super-
imposed magnetic pressure gradient at some initial time by first adjust-
ing its velocity profile instead of its gas pressure profile. Nevertheless,
we have also explored the converse situation, where the magnetic pres-
sure variation is balanced by a variation of the gas pressure, without
modification of the Keplerian profile (a behavior expected in an incom-
pressible fluid). This change of equilibrium has little effect on the results
reported in this section.
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where X, x refers to the velocity, magnetic, and gaz pressure
fields.

It is useful to distinguish the poloidal and toroidal compo-
nents of the velocity and magnetic fields:

u = u⊥ + vxex, (18)

b = b⊥ + bxex. (19)

Because, of the assumed axisymmetry, on can introduce poten-
tial fields ψ and ϕ for these poloidal components such that

u⊥ = ikψey +
dψ
dy

ez, (20)

b⊥ = ikϕey +
dϕ
dy

ez· (21)

All variables can be expressed in terms of ψ, which leads to a
second order ODE for ψ. One obtains:

(ω2 − V2
Ak2

z )ψ′′ − 2V2
b k3

zψ
′

+

⎡⎢⎢⎢⎢⎣(ω2 − V2
Ak2

z ) − κ
2
Tω

2 + 2Ω0S TV2
Ak2

z

ω2 − V2
Ak2

z

⎤⎥⎥⎥⎥⎦ k2
zψ = 0, (22)

where VA(y) and Vb(y) are local Alfvén speed type quantities,
and κT(y) is a local epicyclic frequency, defined by

V2
A = B2

T, (23)

V2
b =

BTB′t
kz

, (24)

κ2
T = 2ω0(2Ω0 − S T). (25)

The magnetic field b and the azimuthal velocity vx can be ex-
pressed in terms of ψ as follows:

bx = −kzBT

ω
vx − k2

z S TBT

ω2
ψ, (26)

by = −i
k2

z BT

ω
ψ, (27)

bz = −kzBT

ω
ψ′ − kzB′T

ω
ψ, (28)

vx = −kzψ
ω2(S T − 2Ω0) − S TV2

Ak2
z

ω(ω2 − V2
Ak2

z )
· (29)

We have solved Eq. (22) numerically with periodic radial bound-
ary conditions5. Analytic solutions can be found in terms of
series expansion in ε in the form ψ = ψ0 + ψ1 + ψ2 . . . and
ω2 = ω2

0 + ω
2
1 + ω

2
2 . . .; the first order solution is rather straight-

forward to derive, but the explicit form of this solution is not par-
ticularly illuminating and will not be given in detail, except for
some relevant features that will be mentioned whenever needed.

Solutions in the ε = 0 limit are the usual MRI modes, i.e.
simple sinusoidal modes ψ0 ∝ exp(±ikyy). Solutions for arbi-
trary ε generalize these modes. It turns out that only the node-
less mode (ky = 0) produces a mean emf that correlates with
the imposed current6, and in the following, only these modes are
studied.

5 No boundary condition is implied vertically so that the modes are not
discretized in this direction. In this section, the unit of length is set to
Ly, but this has no incidence on the results or on the rest of the paper.
6 The reason for this can be understood by looking at the equation
for the first order correction ψ1, which shows that the correct radial
behavior for coupling occurs only in this case.
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Fig. 2. Ratio of the mean emf Eφ and mean Reynolds stress tensor (r, φ)
component due to the most unstable channel mode.

For definiteness, we show results pertaining to the fastest
growing mode, for β = 100 and ε = 0.3. Similar results are ob-
tained for other sets of parameters, and for other purely vertical
modes.

Following the quasi-linear analysis procedure, we define the
quadratic emf as:

〈E(y)〉 = 1
2

[
u × b†

]
(30)

where 〈〉 denotes in this case a vertical average of the fluctu-
ations, and the dagger stands for complex conjugation. As the
channel mode is exponentially growing in time, the exponential
prefactor has been left out (or equivalently, a time-dependent E
would be required in the above equation). The various compo-
nents of the emf due to the unstable mode, as well as the best fit
of Eq. (11) with the imposed current are shown in Fig. 1.

It is of some interest to compare the efficiency of the “resis-
tive” and “viscous” transport due to the instability, i.e., the value
of ηφφ = em f /current deduced here to the value of νrφ = ν =
(Reynolds + Maxwell stress)/shear due to the same mode. This
is shown in Fig. 2 for the same mode and for two different values
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Fig. 3. Zeroth and first order components of the poloidal magnetic and velocity fields for the fastest growing channel mode (β = 100, ε = 0.3).
The coupling of zeroth (resp. first) order component of the velocity field to the first (resp. zeroth) order component of the magnetic field gives rise
to the transport of magnetic field by the channel mode.

of β and a range of values of ε. Note that this ratio is constant
throughout the growth of the mode. The analytic result for this
ratio in the limit of small ε is ηφφ/νrφ = 27/16 � 1.7. Apparently,
the relative efficiency of resistive and viscous transports due to
the instability are of similar magnitude, more or less indepen-
dently of the amplitude of the imposed field variation and mean
field strength.

The comparable efficiency of the two transport effects due to
the channel mode comes somewhat as a surprise. From a ther-
modynamical point of view, the instability sets in because of the
imposed velocity shear and tries to restore a thermodynamical
equilibrium by transporting momentum to reduce this shear. At
first sight, there is no reason that it should also try to suppress a
gradient in magnetic field with about the same efficiency.

However, if one considers the second-order correlation ap-
proximation used in mean field electrodynamic, one finds (e.g.
Rädler & Rheinhardt 2007):

βi j ∼ 1
3
〈u2〉τ, (31)

where τ is a typical correlation timescale of the small scale
turbulence. This kind of result can be understood as a mixing
length theory for magnetic fields involving velocities of the or-
der of v and a length on the order of τv. Although the second-
order correlation approximation is not entirely justified in the
quasi-linear theory used here, at least some of the terms of the

induction equation provide a mixing length behavior. This sug-
gests that with a typical timescale on the order of the shear time,
the dimensionless turbulent resistivity should be of the order of
the turbulent transport (the turbulent transport being of the or-
der of the turbulent kinetic energy). Pushing this argument one
step further, we note that in general in numerical simulations,
〈bxby〉 ∼ 3〈vxvy〉, implying that one should observe βi j ∼ α/4.
This is not consistent with the analytic result, but it agrees very
well with the numerical results of the next section for a verti-
cal field and a radial field variation; however it does not capture
the origin of the significant anisotropy of the resistivity tensor
observed in these simulations.

The analytic results as well as the preceding argument imply
that the motion and magnetic field deviations due to the varying
field should be coupled. An illustration of the efficiency of these
couplings leading to this high resistive transport can be obtained
from the analytic solution in the small ε limit. In this limit, the
correlation arises from the correlation of zeroth and first order
quantities in ε, 〈u × b〉 = 〈uo × b1 + u1 × b0〉. Figure 3 shows
the four involved poloidal fields for the most unstable channel
mode (β = 100, ε = 0.3). Direct inspection indeed shows that
the relevant fields do exhibit a significant level of correlation.

Having gained this understanding of the transport due to the
linear modes of the instability, we now turn to the full nonlinear
problem.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912272&pdf_id=3
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Table 1. Main results from the Bz(y) (vertical field with a radial depen-
dency) case in the presence of a mean vertical field B0

z .

Model B0
z δB0 ηxx ηyx α

ZZY1 0.1 0.01 3.6 × 10−2 2.9 × 10−2 1.5 × 10−1

ZZY2 0.1 0.02 3.7 × 10−2 8.5 × 10−2 1.5 × 10−1

ZZY3 0.1 0.03 3.6 × 10−2 6.8 × 10−2 1.5 × 10−1

ZZY4 0.1 0.04 2.4 × 10−2 5.6 × 10−2 1.3 × 10−1

ZZY5 0.1 0.08 1.1 × 10−2 1.1 × 10−2 7.8 × 10−2

ZZY6 0.025 0.0025 4.1 × 10−3 2.6 × 10−2 3.7 × 10−2

ZZY7 0.025 0.005 1.2 × 10−2 −1.2 × 10−2 3.3 × 10−2

ZZY8 0.025 0.0075 7.0 × 10−3 2.8 × 10−2 3.7 × 10−2

ZZY9 0.025 0.01 5.1 × 10−3 2.4 × 10−2 3.5 × 10−2

ZZY10 0.025 0.015 8.4 × 10−3 1.5 × 10−2 3.9 × 10−2

ZZY11 0.025 0.02 8.5 × 10−3 1.5 × 10−2 3.3 × 10−2

4. Numerical results

We have simulated three different configurations, which com-
bine a mean vertical and/or azimuthal field with a varying field
component in the vertical or azimuthal direction, the direction of
variation being either vertical or radial. This allows us to charac-
terize a number of components of the turbulent resistivity tensor.

To classify our numerical results, we use the following nam-
ing convention: the first letter indicates the direction of the mean
field, the second letter indicates the direction of the varying field
and the third letter corresponds to the direction of the spatial de-
pendency. We finally add a number to identify the simulations
done in the same configuration but with different field intensity.
For instance, run XZY7 have a mean field in the x direction, a
varying field in the z direction with a spatial dependency in the
y direction.

The various configurations and results are presented in the
corresponding subsections. They are then compared in the con-
cluding subsection.

4.1. Vertical field with radial dependency Bz (y)

In this case, we force the following structure for the mean mag-
netic field:

〈Bz〉 = B0
z + δB0 cos

(2πy
Ly

)
· (32)

The mean current is then written:

〈J〉 = 〈Jx〉ex = −δB0 2π
Ly

sin
(2πy

Ly

)
ex. (33)

We are therefore looking for a correlation between Jx and E. We
show in Fig. 4 an example of a simulation result with B0

z = 0.1
and δB0 = 0.04 (ε = 0.4). The profiles are computed from an
average in time and in the (x, y) plane. From this figure, one gets
a classical diagonal resitivity term of ηxx ∼ 5.6 × 10−2. We also
find an non diagonal term ηyx = 8 × 10−2. We have repeated this
kind of experience for various sets of parameters as summarized
in Table 1.

The extraneous EMF component was already present at the
linear level, as noted in the previous section, but with the oppo-
site sign. We have not been able to understand the significance of
this sign difference. In our simulations, this component plays no
physical role (its rotational vanishes). This may not be a generic
feature, in particular in more complex stratified settings. This
component shows anyway that the turbulent state is anisotropic.

Table 2. Main results from the Bx(y) (toroidal field with a radial depen-
dency) case for several toroidal and vertical mean fields B0

j .

Model B0
z B0

x δB0 ηzz α

ZXY1 0.1 0.0 0.01 9.0 × 10−2 1.4 × 10−1

ZXY2 0.1 0.0 0.02 8.6 × 10−2 1.6 × 10−1

ZXY3 0.1 0.0 0.03 8.8 × 10−2 1.5 × 10−1

ZXY4 0.1 0.0 0.04 8.8 × 10−2 1.4 × 10−1

ZXY5 0.1 0.0 0.06 8.2 × 10−2 1.6 × 10−1

ZXY6 0.1 0.0 0.08 8.0 × 10−2 1.5 × 10−1

XXY1 0.0 0.1 0.01 7.4 × 10−3 7.6 × 10−3

XXY2 0.0 0.1 0.02 1.6 × 10−2 8.1 × 10−3

XXY3 0.0 0.1 0.03 1.4 × 10−2 9.1 × 10−3

XXY4 0.0 0.1 0.04 1.4 × 10−2 9.2 × 10−3

XXY5 0.0 0.1 0.06 1.3 × 10−2 8.9 × 10−3

XXY6 0.0 0.1 0.08 2.0 × 10−2 1.3 × 10−2

XXY7 0.0 0.1 0.10 2.1 × 10−2 1.6 × 10−3

One may note a decrease of the turbulence efficiency in mod-
els ZZY4-ZZY5, which may be due to the fact that increasing
δB0 to high values leads to strong modification of the back-
ground field. Since B0

z = 0.1 corresponds to the maximum of
the growth rate for the kz = 2π/Lz mode, increasing δB0 always
weakens the instability, which might explain these results. As
expected, this effect is not observed in B0

z = 0.025 models, for
which this explanation doesn’t hold.

According to these results, and anticipating on the result of
the last subsection where the correlations are compared in detail,
we point out that, on average

ηxx ∼ 0.235α. (34)

The resulting ratio η/ν (ν = α with our choice of units) is sub-
stantially smaller than its linear counterpart, and consistent with
the argument exposed in the previous section.

4.2. Toroidal field with a radial dependency Bx (y)

In this case, we impose the following field:

〈Bz〉 = B0
z , (35)

〈Bx〉 = B0
x + δB0 cos

(2πy
Ly

)
· (36)

The mean current is then defined by:

〈J〉 = 〈Jz〉ez = δB0 2π
Lt

sin
(2πy

Ly

)
· (37)

As in the previous case, we look for a correlation between Jz

and E. We show in Fig. 5 an example of such a correlation for
B0

z = 0.1, B0
x = 0 and δB0 = 0.02, from which we get ηzz ∼ 0.08.

Note that the other components of the EMF are poorly corre-
lated with the imposed large scale field, indicating that either
no correlation exists or that the turbulent viscosity model does
not capture its physics; as a consequence, we have not quantified
off-diagonal components of the resistivity tensor. As previously,
we reproduce this kind of run for a range of parameters (see
Table 2).

Comparing turbulent transport coefficient turbulent resistiv-
ity with the Bz(y) case, we note that no turbulence weakening
occurs in the present case, consistently with the linear justifica-
tion (the expected linear growth rate is not modified by a varying
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Fig. 5. Mean field (left) and emfs (right) from run ZXY5 (Bx(y) case) with a mean vertical field B0
z = 0.1 and δB0 = 0.06. The right plot shows the

best fit corresponding to the turbulent resistivity model. We find in this case ηzz = 8.2 × 10−2.

toroidal field). Although other experiments for larger values of β
would allow a better determination of the resistivity, we can still
approximate

ηzz ∼ 0.57α (38)

with a mean vertical field and

ηzz ∼ 1.7α (39)

with a mean toroidal field.

4.3. Toroidal field with a vertical dependency Bx (z)

We define the mean field by:

〈Bz〉 = B0
z , (40)

〈Bx〉 = B0
x + δB0 cos

(2πz
Lz

)
· (41)

The mean current is then found to be:

J = Jyez = ∂zBx (42)

〈J〉 = 〈Jy〉ey = −δB0 2π
Lz

sin
(2πz

Lz

)
· (43)

Looking for a correlation between Jy and E is more problematic
in this case. Indeed, if B0

z � 0, the imposed Bx(z) excites a chan-
nel flow solution, leading to the production of a large scale By(z)
(see Fig. 6). The existence of a persistent channel flow solution
also leads to a double periodEz(z), as observed in the simulation.

These complications induce the existence of off-diagonal
components of the resistivity tensor, which cannot be quanti-
fied with the simple method adopted in this paper. Nevertheless,
in spite of these difficulties, the procedure used in the previous
subsections yields reasonable results for the diagonal compo-
nent, as can be seen in Fig. 6:

ηyy ∼ 0.08α. (44)
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Fig. 6. Mean field (left) and emfs (right) for a case with B0
z = 0.1 and δB0 = 0.03 and varying Bx(z).

Table 3. Main results from the Bx(z) (toroidal field with a vertical de-
pendency) case with a mean vertical field B0

z .

Model B0
z δB0 ηyy α

ZXZ1 0.1 0.01 4.8 × 10−3 4.4 × 10−2

ZXZ2 0.1 0.02 2.5 × 10−3 4.3 × 10−2

ZXZ3 0.1 0.03 3.7 × 10−3 4.6 × 10−2

ZXZ4 0.1 0.04 4.8 × 10−3 4.8 × 10−2

ZXZ5 0.1 0.06 6.8 × 10−3 5.1 × 10−2

ZXZ6 0.1 0.08 3.2 × 10−3 7.2 × 10−2

Table 4. Main results from the Bx(z) (toroidal field with a vertical de-
pendency) case for various toroidal B0

x.

Model B0
x B0

z δB0 ηyy α

XXZ1 0.1 0.0 0.01 5.1 × 10−3 6.6 × 10−3

XXZ2 0.1 0.0 0.02 5.0 × 10−3 7.8 × 10−3

XXZ3 0.1 0.0 0.03 5.6 × 10−3 7.6 × 10−3

XXZ4 0.1 0.0 0.04 5.5 × 10−3 8.1 × 10−3

XXZ5 0.1 0.0 0.06 5.1 × 10−3 9.6 × 10−3

XXZ6 0.1 0.0 0.08 6.2 × 10−3 1.2 × 10−2

XXZ7 0.1 0.0 0.1 6.0 × 10−3 1.3 × 10−2

This value of η is more uncertain than the other ones derived in
this work, on the order of 30% to 50%. The correlation with α is
also not quite satisfied (see next subsection), but remains accept-
able at the level of precision of determination of this quantity.

The value of ηyy is more precisely derived when B0
z = 0

which prevent channel flow formation. We present in Fig. 7 an
example of the profiles obtained from such a simulation and the
resistivity values for several runs in Table 4.

Interestingly, ηyy seems to be constant although α varies sig-
nificantly, contrarily to previous cases. We can still approximate:

ηyy ∼ 0.72α · (45)

We note however that this relation doesn’t mean that the dif-
fusive process is very strong in the vertical direction compared
to that in the horizontal direction, as the turbulence intensity is

weaker with a mean toroidal field than with a mean vertical field
(compare for instance the values of α in Table 4 with models
ZXY in Table 2). However, comparing only mean toroidal field
simulations (X** models), we can state that on average the ηyy
coefficient is significantly smaller than ηzz.

4.4. Parameter and configuration dependence
of the turbulent resistivity tensor

It is of interest to compare the effect of the field configuration
and magnitude on the various turbulent resistivity tensor compo-
nents that we have characterized, most notably concerning the
radial and vertical diffusion of vertical and azimuthal field com-
ponents. To this effect, the various dependencies have been rep-
resented in Fig. 8.

The most significant trend is due to the direction of the mean
field. As for turbulent viscous transport (but somewhat less dra-
matically), the turbulent resistive transport in the radial direction
is substantially reduced when the mean field is azimuthal with
respect to a vertical mean field, by nearly an order of magnitude;
however, and somewhat surprisingly, no such trend is visible for
the diffusion in the vertical direction (bottom left subplot). Our
simulations with a mean toroidal field may suffer (as all others)
from a lack of resolution of the relevant small scale modes, a
point that has apparently never been adequately checked in the
literature.

Another important trend, and the most critical one for the
issue of jet driving from accretion disks, concerns the relative
efficiency in the radial diffusion of vertical and azimuthal field
components (top right subplot). The diffusion of the azimuthal
field is more efficient by a factor of order 2 to 3.

There is apparently some influence of the magnitude on the
mean field on the efficiency of transport in the radial direction
(top left subplot). This trend is the same as for the turbulent vis-
cous transport, as shown on the bottom right subplot. The sim-
plest explanation for this trend is that the transport is magneti-
cally driven, whereas the usual adimensionalization of quantities
(which we have more or less followed in our definitions) scales
transport with the sound speed and the scale height: within fac-
tors of order unity, ν = αcsH ∼ αΩH2 and similarly for the
various η components. With this scaling, the various simulations
available in the literature imply that α � 3β−1/2. If a scaling with
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Fig. 7. Mean field (left) and emfs (right) for a case with a mean toroidal flux B0
x = 0.1, B0

z = 0, δB0 = 0.06 and varying Bx(z). We deduce from this
plot ηyy = 5.1 × 10−3.

Fig. 8. Dependence of the turbulent diffusivity tensor components that we were able to measure on β (relative field strength) and ε (relative
amplitude of the varying field component), for various field configuration. The top left figure represents ηxx for two different values of β. The
bottom left one shows the role of the mean field orientation on ηzz. The top right compares ηxx and ηzz. The bottom right figure shows the ratio of
the relevant turbulent η component over the turbulent viscosity. The symbols are the same as on the other subplots.

the Alfveén speed were chosen instead, i.e., ν = αAvAH, the
characteristic dimensionless number αA is independent of β (at
least until B0 is so weak that the zero mean field MRI dynamo
process takes over). It has been noted in the first subsection that
the decrease with ε for the largest value of β is most likely a sat-
uration process linked to the fact that this choice of β is close to
the marginal stability limit of the instability.

The last subplot (bottom right) indicates that β (amplitude
of the mean field) and ε (amplitude of the field variation) influ-
ence in much the same way the turbulent resistive and turbulent
transport. To some extent, this is also true of the spatial orienta-
tion of the underlying quantities, and not only their magnitudes.
Overall, the turbulent resistive transport has an efficiency which
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is smaller but comparable to the turbulent viscous one, within a
factor of order 2 or 3.

5. Discussion

We have presented a systematic method to determine the tur-
bulent resistivity associated with MRI turbulence in accretion
disks. We have exemplified this method in the configuration ra-
dially and vertically varying vertical magnetic fields, using non-
linear spectral simulations of turbulence. We have also analyzed
the resistive transport due to channel modes in the linear limit,
in the presence of a radially varying vertical fields. Both the lin-
ear calculations and the fully nonlinear simulations show that the
turbulent resistive transport is large, comparable to the turbulent
viscous transport, albeit a factor of 2 to 4 smaller. This feature
contradicts the heuristic model developed by Shu and coworkers
(Shu et al. 2007) for turbulent resistive transport in YSOs accre-
tion disks, thereby removing an obstacle to the launching of jets
by accretion disks.

More precisely, we find that the turbulent resistivity ηT is
largely correlated to the turbulent viscosity νT over a wide range
of variations of the dimensionless parameters of the problem (but
we have not explored the dependency on the dissipation num-
bers, which needs an extensive study in itself). As a matter of
fact, we may define a turbulent Prandtl number PmT = νT/ηT,
which is found to be on the order of 2–5. Second, we find that
the turbulent resistivity is an anisotropic tensor. In particular, the
toroidal field (Bx) diffuses about 3 times more rapidly than the
poloidal field (Bz), in the radial as well as the vertical directions.
We also find that non diagonal terms of the turbulent resistivity
tensor are non zero. As shown by Lesur & Ogilvie (2008), such
terms might play an important role for disk dynamos and large
scale magnetic field generation.

It is often argued that a turbulent Prandtl number νT/ηT on
the order of R/H is required for turbulent disks to be able to
launch jets (see van Ballegooijen in Belvedere 1989, and Lubow
et al. 1994). In fact, because the accretion velocity in jet-driving
disks is larger than in standard accretion disks, this requirement
overestimates the necessary turbulent resistivity, which turns out
to be comparable to the turbulent viscosity in self-consistent
accretion-ejection models (see e.g. Casse & Ferreira 2000; see
also Rothstein & Lovelace 2008 and Lovelace et al. 2009, for
a simplified version of the same argument). This large turbulent
Prandtl number argument is also often invoked to justify that an
outer standard disk cannot transform into an inner jet-launching
one in the accretion process, but the validity of this conclusion
relies heavily on the assumed vertical structure of the models
considered (in particular the magnetic structure of the corona),
a point that has not been appropriately taken into account in the
literature up to now.

On the basis of these results, it seems quite plausible that
accretion disks have the ability to launch non stationary jets.
Although the turbulent resistivity we find is somewhat too weak
to allow for the existence of stationary accretion-ejection struc-
ture, the anisotropy is in the right range. Nevertheless, further
work is required to get a complete characterization of the turbu-
lent resistivity. In particular, the correlation with turbulent vis-
cous transport needs to be more precisely studied, as well as
the impact of the (molecular) Prandtl number, which is known
to be strong on the momentum transport efficiency (Lesur &
Longaretti 2007).

While we were writing this paper, a similar study in shearing
box with the ZEUS code has appeared on the astro-ph ArXiV

by Guan and Gammie (Guan & Gammie 2009), and some dis-
cussion of the connection between the two investigations is in
order. In their paper, they impose of mean toroidal field, wait for
turbulence to reach a stationary state. They superimpose then a
sinusoidally varying field component whose decay rate is used
to quantify the turbulent resistivity. Instead, we impose a con-
stant sinusoidal component of the field and study the correlation
between the resulting emf and the current in the insuing statis-
tically stationary turbulent regime. Guan and Gammie have also
made some resolution studies, which we have not performed, as
previous experience with the dimensionless numbers used in this
work has shown us that the dissipation scales are adequately re-
solved with our adopted resolution. Finally, Guan and Gammie
have looked into the effect of the box aspect ratio, which was
held fixed here. Conversely, our parameter study is somewhat
more extensive than theirs for the type of configurations we have
looked into. The majority of the runs performed by Guan and
Gammie have been made for vertical sinusoidal component su-
perimposed on the mean toroidal field, a configuration we have
not investigated, so that these runs are not directly comparable
to ours. Note however that using a mean vertical field instead of
a mean toroidal one is more relevant to the question of flux dif-
fusion for accretion-ejection models. Nevertheless, some of the
runs of Guan & Gammie (2009) have been performed with both
the mean and sinusoidal component in the azimuthal direction,
which are comparable to the ones presented here in Sect. 4.3.
Their turbulent resistivity and viscosity values are systematically
larger than ours, but note that their ε parameter in these runs
is four times larger than the larger one we have used (and be-
lieve to be more relevant to disk physics). As there is a clear
trend towards a significant increase of the turbulent resistivity
and viscosity with increasing ε at the larger values of ε shown
in Table 4, we conclude that the two results are reasonably com-
patible. More generally speaking, in order of magnitude, both
studies are rather complementary and agree on the fact that the
turbulent resistivity and viscosity are comparable, but runs in
similar settings would be required to make a full comparison be-
tween the two methods.
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