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ABSTRACT

Context. In the recent years, MRI-driven turbulent transport hasi\feand to depend in a significant way on fluid viscositand
resistivity through the magnetic Prandtl numkbem = v/5. In particular, the transport decreases with decreaBmpif persistent
at very large Reynolds numbers, this trend may lead to quretitie role of MRI-turbulence in YSO disks, whose Prandtl haris
usually very small.

Aims. In this context, the principle objective of the present Btigation is to characterize in a refined way the role of gisson.
Another objective is to characterize thieet of linear (channel modes) and quasi-linear (parasitides) physics in the behavior of
the transport.

Methods. These objectives are addressed with the help of a numbecofmipressible numerical simulations. The horizontal exten
of the box size has been increased in order to capture alari¢fastest growing) linear and secondary parasiticalmhstmodes.
Results. The major results are the following:

i- The increased accuracy in the computation of transpatages shows that the dependence of transport on physisipation
exhibits two diferent regimes: foPm < 1, the transport has a power-law dependence on the magratioRis number rather than
on the Prandtl number; fd?m > 1, the data are consistent with a primary dependencBroffor large enough~ 10°) Reynolds
numbers.

ii- The transport-dissipation correlation is not clearfysamply related to variations of the linear modes growtlesat

iii- The existence of the transport-dissipation correlatiepends neither on the number of linear modes capturée isimulations,
nor on the ect of the parasitic modes on the saturation of the linearanadowth.

iv- The transport is usually not dominated by axisymmetcitapnel) modes.
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1. Introduction probably identified the root of this debate by pointing ow th

nonlinear nature of the instability; also the resulting tiaas

Disks evolve on time-scales _that are orders of magnltuq%u'd be subject to 3D instabilities (Lesur & Papaloizou 200
smaller than expected from microphysical transport preegs

and various suggestions have been made over the years to exBalbus & Hawley (1991) have proposed that the magnetoro-
plain this discrepancy. Turbulent transport, in particuias fig- tational |nstab|llty (MRI) is a_potentlallyfﬁment source of tur-
ured among the leading candidates since the inception af-thebulent transport in the nonlinear regime, an expectatianso
disk paradigm, and a number of hydrodynamic and MHD turb@orne outin numerlcal SImuIat_lons. This instability pndm; by
lent transport mechanisms have been proposed in the literat "OW the most extensively studied transport mechanismugiro

On the hydrodynamic side, subcritical turbulence (Riclard local unstratified (Hawley et al. 1995), _strat!fled (_Stoneabt
Zahn 1999 and references therein), if present, is appgreal 1996), and global (Hawley 2000) 3D disk simulations. These
inefficient (Lesur & Longaretti 2005; Ji et al. 2006). Convectioffitial simulations as well as the numerous ones followimgrt
was up to now found too irfcient and to transport angu-have shown that MRI turbulence is affieient way to transport _
lar momentum in the wrong direction (Cabot 1996; Stone gngular momentum, in the presence or absence of a mean verti-
Balbus 1996), but a recent reinvestigation of the probledi in Cal or toroidal field, with an overall transporffieiency depend-
cates that this might be an artifact of these simulationagpeilnd on the field configuration and strength. However, the sig-
performed too close to the stability threshold (Lesur & @igil Nificant role played by microphysical dissipation in theales
2010). Two-dimensional weak turbulence driven by smaakesc tions accesglble to date had largely been underestimagsli(L
incoherent gravitational instabilities (density waves)an op- & Longaretti 2007; Fromang et al. 2007).
tion (Gammie 1996). Alternatively, the baroclinic instétli By now, both the field strength and dissipation dependence
(Klahr & Bodenheimer 2003) may generate vorticity, and $ranof the simulated turbulent transport have been studied foeso
port through the coupling with density waves, but its caiod  extent (and only in unstratified local shearing box settfiog¢he
of existence are still controversial (Johnson & Gammie 200Rtter one). The dependence of the Shakura-Sunypavameter
Petersen et al. 2007), although Lesur & Papaloizou (20¥ hdas been characterized very early on by Hawley et al. (1986) w
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showed that momentum transpers~Y/2 both for a net vertical with respect to more horizontally extended boxes. Thisdall

or toroidal field (albeit with very diferent éficiencies in the two a reassessment of the Prandtl number dependence of MRIrdriv
configurations), a scaling further confirmed in later sintinlas, transport in horizontally extended simulation boxes withean

as summarized in Pessah et al. (2007). vertical field.

Until recently, the &ect of physical viscosityy) and resis- More generally, it is still unclear whether this dependence
tivity () on the transport had been neglected, under the implioit the transport on physical dissipation is a consequendtiesof
assumption that these should not matter too much once innited Reynolds numbers that can be achieved on present day
tial turbulent scales are resolved in the simulations. H@ame computers. In particular, none of the published simulaibas
Lesur & Longaretti (2007) have shown that, in the presence loéen able to capture the existence of a significant ineaiege in
a mean vertical field, the MRI-driven turbulent transpod ek- the kinetic or magnetic energy spectrum, which makedfitodilt
hibit a substantial dependence on the magnetic Prandtl eumto address this issue. The question here revolves mostiyndro
Pm = v/n, with no clear trends with respect to either viscosity dhe direction and locality of transfers and fluxes in Fousjeace,
resistivity aloné. Recently, Simon & Hawley (2009) found sim-and will be addressed elsewhere.
ilar results in shearing boxes with a mean toroidal fieldaadt For the time being, we focus the potential role of the channel
of a mean vertical one. and parasitic modes in théfieiency of turbulent transport. This

When the mean magnetic flux vanishes, the transport behig/explored by numerical simulations in the shearing shewt, |
ior is more complex. The initial investigation by Hawley ét a with a net vertical magnetic flux, and with horizontally exted
(1996) concluded that the transport was converging to aefingimulation boxes. The paper is organized in the following.wa
value, but Gardiner & Stone (2005) found that the transplert éOur numerical method, setup, and run parameters are dedcrib
ficiency was dependent on the simulation resolution. More r@ section 2. Relevant aspects of the theory of channel modes
cently, the role of the magnetic Prandtl numiim has been are summarized in section 3. Section 4 is the core of thisrpape
identified in this setting (Fromang et al. 2007): turbuleegists and discusses our numerical results; the issues bearinigeon t
only for magnetic Prandtl numbers larger than about 2, whighsolved linear and secondary modes are also discusset ther
requires the explicit inclusion of viscous and resistivenig in  The implications of these results are presented in the fatdicn
the fluid equations for numerical simulations to correctipture  along with some possible future lines of work.
the physics of the problem. The disappearance of turbulahce
low Pm, as well as the need of large enough amplitudes in the .
initial conditions atPm > 2, indicate that the zero net flux mag2- Numerical model
netized shearing box is a subcritical system rather thareatly ; P
unstable one (Lesur & Ogilvie 2008a.b). 2.1. Shearing box model and equations:

Thus it appears that in all configurations explored to datepllowing the initial investigation of 3D MRI turbulent ppe
the magnetic Prandtl number plays a significant role on the eties by Hawley et al. (1995), we base our simulations on the
istence angbr efficiency of the turbulent transport, at least at thehearing sheet local approximation and the related shehadr
resolutions accessible on present day computers (or dgnilya  model. Most if not all local studies of disk turbulence haeeb
the accessible Reynolds and magnetic Reynolds numbeis). Terformed in this framework. Local simulations are uneabég
raises a number of issues. to examine in any detail the structure and transport pragsert

For one, the exact role played by channel modes and pa(péMRl turbulence; indeed, even within a local model, présen
sitic modes is unclear. Although they exist only when a medly computers are still too limited to reach the resolutias
vertical field is present, they are simpler to analyze anii tee quired to understand the magnetic Prandtl issue summairized
havior may provide insight into the generic mechanism raspdhe introduction, and it is certainly hopeless to tackls thiob-
sible for saturation of the linear instability. Channel rasdare lem directly in global simulations.
the axisymmetric unstable modes of the MRI (Balbus & Hawley To some extent, a shearing box biases the role of the channel
1991; Pessah & Chan 2008), and are often observed both in@de in turbulent transport, e.g. through the correlatiotrs-
and 3D simulations with a mean vertical field; their nameweyri duced by the periodic boundary conditions. Note howevat, th
from their vertically layered characteristic channeklikadial in purely hydrodynamic turbulence, the shearing box seems t
flow. They were quickly recognized to be also nonlinear solgapture some of the correct physical properties of actyagiex
tion of the problem by Goodman & Xu (1994); the same authot®ental systems, such as the transition Reynolds number-o t
found them to be unstable with respect to a secondary itisgabibulence as a function of rotation (see, Lesur & Longaret®3)0
(parasitic modes). A few recent papers have focused on the pé any case, it is very dicult to formulate a well-posed local
sibility that the saturation of the channel mode by this pitia Problem that does not rely on the shearing box framework. The
instability might be the mechanism explaining the magrétatl reader is referred to Hawley et al. (1995), Balbus (2003) and
the turbulent transport in MRI simulations, with divergiogn- Regev & Umurhan (2008) for more detailed discussions of the
clusions (Pessah & Goodman 2009; Latter et al. 2009). properties and limitations of this model.

In relation to this, the role of the aspect ratio of the simula MHD turbulence in discs is essentially subsonic, and we
tions has probably been underestimated in the past. Bostas Wyill work in the incompressible approximation, which allsw
an aspect rati® : Z = 1 : 1 do not allow for the fastest para-us to eliminate local and transient density fluctuations e w
sitic modes to grow, and Bodo et al. (2008) pointed out that n@s sound waves and density waves from the problem. Density
row boxes tend to overemphasize the role of the channel mo¥@yes are excited in shearing box turbulence (Heinemann &

Papaloizou 2008b), but they appear to have little impachen t

1 The definition of3 (ratio of gas to magnetic field pressure) is baseftroulent transport (Heinemann & Papaloizou 2008a). This h
on the mean field, a conserved quantity in the settings usedese Peen confirmed by direct comparison between incompressible

simulations. and compressible simulations (Fromang et al. 2007). As agson
2 The linear stability dependence on viscosity and restgtigitotally —quence, we feel reasonably justified to assume incompiiigsib
different. Explicit molecular viscosity and resistivity are included
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The shearing box equations are well-known; we reproduEeurier components and the physically relevant ones. toair
them here to introduce our notations. We chose a Cartesian lent this problem, we use a remap method similar to the one de-
centered at = Ry, rotating with the disc at angular velocityscribed by Umurhan & Regev (2004). This routine redefines the
Q = Q(Ry) and having dimensiond {, Ly, L) with L; <« Ro. sheared frame eveftemap= Lx/(LyS), and none of the results
By convention hereRy¢ = x andr — Ry = -y, leading to the presented here seems to be related to this time scale. 8pectr
following form of the shearing sheet equations: methods are very little dissipative by nature; numericasiga-

tion is kept to very small values, as can be seen by computing
the total energy budget at each time step (see Lesur & Lotigare

WU +V-(URU) = -VII+V -(BQ® B) 2005 for a discussion of this procedure).
-2Q x U + 2QSye, + vAU, Q)
0B = V x (U x B) +nAB, (2) 2.2. Dimensionless numbers:
V.U =0, (3) Al our simulations are performed in horizontally extended
V-B =0. (4) boxes, with aspect ratiby : Ly : L, = 4 : 4 : 1, with a non

vanishing mean vertical field of varying strength.

where the magnetic field is measured in units of Alfvén speed Our shearing box set up is characterized by a number of di-
The mean shea® = -rg,Q is set to a Keplerian flow value mensionless numbers. Our simulations explore the deperden
S = (3/2)Q. The generalized pressure teffrincludes both the Of the turbulent transport with respect to three of them
gas pressure teri®y/po and the magnetic onB?/2pq. This gen- ) ) ) )
eralized pressurd is fixed by the incompressibility condition — The magnitude of the imposed mean vertical field measured
Eq. (3), and computed by solving a Poisson equation. The mag- by
netic field is expressed in Alfvén-speed units, for sinmipfic S22

The steady-state solution to these equations is the local g = z
Keplerian profilelJy = Sye... Our code computes the (turbulent) VA
deviations from this Keplerian profile. Defining= U - Uy, and
b = B — By, one obtains the following equations forandb:

(10)

where is the Alfvén speed due to this mean field. This def-
inition mimics the usual plasma in vertically stratified
disk obeying the vertical hydrostatic equilibrium constta

Cs ~ QL,.

dw = —v- Vv - VII+B-Vb- Sy — The Reynolds number,

+(2Q - S)we, — 2Qvyey + VAW, (5) )
- SL
ob = —v-Vb+ B - Vv Re= 2. (11)
—Sydxb + Sbye, + nAb, (6) v
V.v =0, (7) comparing the nonlinear advection term to the viscous-dissi
V-b=0. 8 pation.
® — The magnetic Reynolds number,
The boundary conditions associated with this system are pe- SL2
riodic in thex andz direction and shearing-periodic in tiyedi- Rm= —2, (12)
rection (Hawley et al. 1995) (fay andb). n
~ Following Hawley et al. (1995), one can integrate the induc- comparing magnetic field advection to the Ohmic resistivity
tion equation (6) over the volume of the box, leading to: — Alternatively to one of the two Reynolds numbers, the mag-
XB) netic Prandtl number
ot - >Brrex ®  pp_RO_r (13)
Re 17

where() denotes a volume average. Therefore, the mean mag—O dv he d d fth bul
netic field is conserved, provided that no mean radial field is ur study focuses on the dependence of the turbulent trans-

present. In this work, a mean vertical fielj is imposed, and port ong, Re andRm, but other combinations of the Reynolds
conserved by virtue of Eq. (9). numbers will be used when necessary. Note however that un-
The numerical resolution makes use of a spectral Galerlaﬁat'f'ed shearing boxes are also characterized by twor othe

representation of equations (5)—(8) in the sheared frame (Qumbers that are constant for our simulations:
Lesur & Longaretti 2005). In this fram_e, the shearlngjs_heei The Mach number
boundary conditions are transformed into perfectly pecod

boundary conditions, and Fourier transforms can be usetl in a _SL,
three directions. Moreover, this decomposition allowsousan- T oCs
serve magnetic flux to machine precision (the total magietic o . . ) )
created during one simulation is typically2€). Equations (7) ~ (vanishing for our incompressible simulations)
and (8) are enforced to machine precision using a specwal pr— A Rossby-like numbeg defined by

Ma

(=0), (14)

jection (Peyret 2002). The nonlinear terms are computeld avit S
pseudospectral method, and aliasing is prevented using2he q= e (15)
rule.

The sheared frame representation of the spectral domainwhich is fixed at the keplerian value/23. The sign ofg in-
would eventually produce a mismatch between the computed dicates the flow cyclonicity.
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In the following we usé&~* as the unit of time an8L, as the channel modes that is required in order to analyze the simula
unit of velocity. One orbit correspondsTg,, = 37S™* ~ 10S™!;  tions presented in the next section.
our simulation lengths are to be divided by about 10 to compar
them with simulations scaled in orbit times, as is common
done by other workers in the field. For simplicity, in what-fol
lows, we keep the same notation for dimensionless and dimeme physics of viscous and resistive channel modes has been

I . . .
g.l. Dispersion relation

sional quantities. examined in Lesur & Longaretti (2007) and their propertiageh
Our dimensionless transport dbeiente is defined as been characterized in detail in Pessah & Chan (2008) (Sano &
Miyama 1999 have also explored the role of resistivity on MRI
_ (bxby — viwy) (16) in the absence of viscosity). Since non axisymmetric MRI esod
sz are transiently growing structures in non ideal MHD (BalBus

Hawley 1992), the axisymmetric modes give a good grasp of the
where the average is taken over the volume of the simulatiprear stability properties of the shearing box.
box. Within a factor of order unity, this is analogous to there
common prescription for the turbulent viscosity= acsH if one

identifiesL, with the disc thickneskl. 10°

3. Channel mode physics: a summary of relevant
information:

As recalled in the introduction, it has been noted in a nunober
earlier MRI simulations in a shearing box with a mean vettice
field that channel modes constitute somewhat recurrergrnpatt

Pm=1/4 7

Maximum growth rate

of the turbulent flow, and appear to be more prominent at tt i:zi
maxima in the fluctuations of the turbulent transport. Clehnn
modes do transport angular momentum with roughly the rigl
order of magnitude if their amplitude is comparable to the rm
fluctuation in the field close to a maximum of the transport.
This has suggested a picture of turbulent transport in she: 10 , ,
ing boxes with a mean vertical field that is sketched on Fig. 1. 107 10° 10" 10°
E
n
_ _ Channel _ Fig. 2. Maximal growth ratery /S as a function of the resistive dissi-
Linear inst. = mode Sec. inst. = pation, for the various values of the Prandtl number usedrstmula-
source sink tions. Also shown are asymptotic analytic approximatisee(text).
? We recall here the dispersion relation of theses modes and a
Small amplitude o p— Parasitic number of other features that will be of use in the next sactio

random motions mode Looking for solutions of the linearized equations of moson
Nonlinear transfer in the formv = vy, e_xp(o-t —ikyy — ikz). andblz b exp(o-t —ik2)
leads to the following fourth order dispersion relation:

Fig. 1. Cartoon of the process that may be at the origin of the sabarat

of the transport in shearing box simulations of MRI with a vettical 4 +2k20-3(17 +v) + 0-2(a+ k4(772 +2 4 dnv) + b)

field (see text).

+0'(2k6(771/2 +vn?) + ak?(v +n) + 2br]k2)

According to this picture, the channel modes linearly grow

from random noise; at some amplitude, their growth is halted +v2?k® + avnk® + b’k* — ¢ = 0, 7)

by a secondary instability (parasitic mode) which destriins .

channel mode. Presumably, the parasitic modes themsetves Yth

cay into small scale turbulence, which may then producedbd s

for the random fluctuations out of which the channel mode grow o2\ (18)

in the first place. In this scenario, the channel mode(s)a&vbal = ~— =724

responsible for most of the transport, in particular neaxima b = «%y?, (29)

of the transport fluctuations. c = KV2(2QSy? - K2V3), (20)
One of the objectives of this paper is to examine the rele-

vance of this picture of MRI turbulence. Even if such a scenargng wherer = [2Q(2Q - S)]¥2 is the epicyclic frequency/a =

i_s not_gene_ric (it d_epend_s dir_ectly on t_he presence O_f amean B, is the Alfvén speed based on the imposed mean verticatfield
tical field), if confirmed, it might provide an interestingalto  gng,2 = k2/(K2 + k2). Channel modes havg = 0 so thaty = 1.

analyze dfferent situations. Another related objective it to as-  Thjs equation is used later on to compute the channel mode
sess the relevance of this scenario to the question of th@l®ragrowth rates in the conditions of our numerical simulatidtis

number dependence of MRI-driven transport. To tiisa, we
gather here the relevant pieces of information on the pbysfic 2 We measure the magnetic field in units of Alfvén speed.
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Fig. 3. The dimensionless turbulent transperas a function of time (in units 1) for a vertical magnetic field strength= 1000 and various
levels of viscous and resistive dissipatiBe andRm. Insets on a given line correspond to constant magneticd®@nammber,Pm = 1/4, 1 and 4
from top to bottom. The Reynolds humiRe is constant on rows (800, 1600, 3200, and 6400 respectiVhb/transport averages are computed
over the last 400 shear times of the simulations. The blwerkpresents the Reynolds stress, the green line the Mastnedls, and the red line
the total stress (these last two are almost indistinguishab

most conveniently solved in dimensionless form, wiitls unit  3.2. Stability limits
of time andVa/S as unit of length. We introduce* = o/S,
k* = k/S, k* = Vak/S; defining the viscousH,) and resistive
(E,) Elsasser-like numbers by

In the dissipation-free limit, the dispersion relation tersolved
exactly. The magnetic tension stabilizes the instabiliylf >
ki = (2Q9)Y2 = (2/9)¥2. In a box of finite vertical extent,,
the vertical modes wavelengths are multiplekgf, = 2r/L,.
Axisymmetric MRl modes are therefore stabilized when<

V2 Re A Kmin, Which translates intg > 8. = 27°S/Q =~ 30. The maxi-
E, = 2 =—=2, (21) mum growth rate in the dissipation-free regirog, = S/2, is

Sv B q achieved for a wavenumbky ~ k./2.

Vi Rm A, Resistivity and viscosity modify the marginal stabilityniit
E, = S8 g (22) in the Re, Rm, ) space. Numerical investigation indicates that

only one of the four roots is unstable fgr < 2, so that the
marginal stability limits obtains when theindependent term of
the dispersion relation is equal to zero. Also, as shown lsute
& Longaretti (2007), fo3 > 100 andRe > 400 (two conditions
2(2 - g)]¥2/q. Our definitions of the Elsasser numbers (anfiiat are satisfied in the present investigation), the matgita-
E)tger d?glen/s?onless quantities)feir from the usual onesz\(v( bility limit is nearly independent of the Reynolds numbenist
andA,, see e.g. Pessah & Chan 2008 and Pessah & GoodrlEafis to the following expression of the marginal stabllityit
2009) by a factoS/Q. This choice has several motivatiors: B B \"* 2n B 1o

rather thanQ is the relevant time-scale of linear growth ratedfm = §( ) =— 7~ 3B 12 (23)
this definition is more consistent with our previous choi¢e o B=Be V3 (B -Fe)

units; and it makes the connection between the Elsasser avitbre the second equality applies for keplerian flows. The la
Reynolds numbers simpler. approximation holds only wheis large enough, and was given

one hasv* = 1/E, andn* = 1/E,. Note that with a power-
law velocity profile in a diskQ « r79), Q* = 1/q and«* =
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Fig. 4. Transport standard deviation as a function of the timevialear  Fig. 5. The dimensionless turbulent radial momentum transpas a
used to bin the transport data, for a given run (in this cRees 3200, function of the Prandtl numbé?m and the field strength for various
Rm = 800, ang3 = 100). This information is used to quantify the erroiReynolds numbers. blaclg = 10?; blue: 8 = 10%; red: g = 10*; o:

in the transport from the fik 7~Y/2 that is expected to hold for large Re = 400;+: Re = 800;¢: Re = 1600;0: Re = 3200;x: Re = 6400; the

enough binning time (see text for details). green starred data points correspond to the three moreveglsains at
Re = 20000 angs = 10°. Power law fits are also shown for each value
of B.

in Lesur & Longaretti (2007); the first expression is new and
sensibly more precise.

The maximum growth rate achieved by the instability i€onsequently, we have explored Reynolds numbers in theerang
modified when viscosity and resistivity become importamt, i 400 — 6400 and magnetic Reynolds numbers in the range 400 —
when eithelE, or E, < 1. Pessah & Chan (2008) give an asympt2800. The magnetic Prandtl number of the simulations fieeit
totic form of the growth rate in the dissipation regime foradim 1/4, 1 or 4. A smaller valueRm = 1/16) has also been reached
or of order unityPm (see their Fig. 5 and their Eqg. 91); it readwith one of our higher resolution runs witke = 20000.
owm = 200E,/3 whereoq = S/2 is the dissipation-free growth ~ We have performed simulations for thredféeient vertical
rate. The range of, and Pm examined in this work spansfield strengthsg = 10?, 10°, and 10. This range is constrained
the transition from a dissipative to a non dissipative regior by two considerations. On the low end (large field), one must
the linear instability. The corresponding variation of rmaxm  stay away from the marginal stability limit due to the magnet
growth rate with bottE, andE, (through the Prandtl number)tension. Indeed, when the incompressible MRI works tooeclos
is shown on Fig. 2, along with the asymptotic expressiors jus this stability threshold, the flow is strongly biased by fres-
recalled. ence of channel modes (affiect that incompressible simulations
are more prone to capture, as exemplified in Lesur & Longarett
2007). On the large end (weak field), one is limited by the fact
that at some point, the flow is going to be dominated by the
In order to explore a significant range of parameters, most 2gro flux transport process, whose dependence on the viscous
our runs are performed at a standard resolutidn Ny, N,) = and resistive dissipation might be sensiblffetient. If one sim-
(256, 128, 64) in real space. All simulations have an aspeict r Ply assumes that one shifts from one regime to the other when
R:¢:z=4:4:1;as argued earlier, this aspect ratio allow§e ficiency of the transport processes are equal, one finds that
us to capture the fastest growing channel and parasitic sod&e transition between the mean field and zero net field reggime
Three simulations have been performed at a resolution tagceshould be in the range~ 10° — 10% this limit applies toPm > 2
large (512, 256, 128) in order to reach a higher Reynolds mumtfas the zero net flux transport vanishes for lower Prandtlberm
(Re = 20000), and lower Prandtl numbers (dowrPro = 1/16). values), and should be somewhat dependeoms discussed
Note that spectral codes are intrinsically more resolved it later on, for our weakest fielgg(= 10%) and smallest Prandtl
nite difference codes with the same number of points; as a céRm = 4), the flow also tends to become bidimensional for low
sequence, one needs to adopt resolutions larger by a facor €nough Reynolds number.
in all directions in a finite dference code such as ZEUS, Athena
or RAMSES to obtain the Same regults, a point to bea_r i.n miQf.jl. Transport time histories and standard deviation
when comparing our conclusions with those published inithe |
erature with finite dference codes (see e.g. Fromang et al. 200Higure 3 displays the behavior of the turbulent transparttie
for an explicit comparison). runs we have performed At= 1000. The simulations are typi-

The simulations performed in this work are in the largeally run for 500 shear times, and the transport averagesisa
Reynolds number limit (400< Re < 20000). The relevant on the last 400. In our horizontally extended simulationdsyx
marginal stability limit depends only oRm and is precisely the transport fluctuations are substantially reduced vetipect
given by Eq. (23). When the magnetic Reynolds number is té@ narrower boxes. Typically, fluctuations of a factor~oR are
close to this limit, nonaxisymmetric perturbations damp and observed, whereas m: z = 1 : 1 boxes, fluctuations of an or-
the flow becomes nearly identical to an axisymmetric one. Vder of magnitude or more are common. This reduction provides
have checked that none of the simulations discussed belowriere precise averages for the transport, even though thegve
affected by this issue. ing time is somewhat smaller than what is used for boxes with

With our adopted standard resolution, we can confiden®yR : Z = 1 : 1 aspect ratio. This aspect ratio dependence is re-
resolve the dissipative scales up to Reynolds numbef€*. lated to the prominence of channel modes in the large trahspo

4. Numerical results
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right one. The green stars correspond to the three morevesbnins aRe = 20000 (see text).

bursts observed in the narrow boxes (Bodo et al. 2008), arieat
related to the fact that width of the narrow box is comparable
the correlation length of turbulent fluctuations in the korital

direction (Guan et al. 2009). -
The transport time history can be used to quantify the error

in the determination of in the following way. From the raw

time history, one can define a series of binned time histories

with a binning timer ranging from 1 to 100 shear tinfegrom
these binned time histories, one can define a transportasténd

deviation in the usual way, i.ez;, = [ (o — @)?/N]Y? where —

N is the number of binsy; itself being the average value of the
transport in bin. The resulting dependeneg,(7) is shown on
Fig. 4 for one of our runs. Two regimes can be distinguished. F
7 < 10 — 20S™1, the deviation decreases sharply withthis is
seen directly on Fig. 3, where the transport typical vasiatime
scale is precisely in this range. For large values, tifie transport
is less and less correlated with itself. Consequently, ape&ts

law. For comparison with our previous work, power-law fits
are computed. The exponents ard.3, 0.7 and 08 for the
three values 08, in increasing order.

The three more resolved runs confirm this trend: the trans-
port is substantially larger than other runs at the same field
strength g = 10°), but thePm dependence is consistent with
the other runs at the sange this Pm dependence does not
seem to saturate even though a lower Prandtl number has
been achieved (16).

At a given Prandtl number, the transport is decreasing with
decreasing field strength (increasifp This trend is ex-
pected from the scaling « 5~/ that was first pointed out in
the initial work of Hawley et al. (1995). However, the varia-
tion of the index of the Prandtl number dependence with field
strength just discussed induces deviations from thisrsgali

— There is a weaker, but systematic and significant increase of

the transport with increasing Reynolds number at any given

that it should behave more or less as a random walk, so that thefield strength and Prandtl number. ThiBeet is real: for most

standard deviation should scale like*/2. A fit of this type is

of our runs, this increase is larger than the standard dewiat

performed on Fig. 4, and appears to represent reasonablly wel in the transport, as quantified in the previous subsectids. |

the trend, in spite of the crudeness of the approximation.

From this approximation we find that the relative error in
the computation of the transport over 400 shear times isen th
range 3—10%. There is no clear tendency for the larger values
the relative error to correspond to higher transport, andlear

also larger for the smaller Prandtl number values. This-indi
cates that the Prandtl number does not capture all the ghysic
of the correlation between transport and physical dis&ipat
this point is further discussed below.

trend with either the magnetic Prandtl or magnetic Reynolds Our previous investigation was limited = 100. In the
number. On average,,/a ~ 5%. present work, the Prandtl number dependence of the transpor
for this field strength is consistent with our earlier finding
However, the transport observed here is reduced by a fac2or

this is a direct consequence of the reduced role played by the

The dependence of the transport on the dissipation for warigchannel mode in our horizontally extended S|mul_at|on boxes
field strengths is presented on Fig. 5 for all our standarolues ~ For the lowest Prandtl number/d) and lowest field strength
tion runs. This figure significantly extends the results regbin (8 = 10%), only one point is reported in the graph. Our other
(Lesur & Longaretti 2007). Several trends can be observed: runs for this parameter have lower Reynolds numbers, and are
too close to the linear stability threshold of Eq. (23) totairs
— For a given field strength, the dependence on the magndHll 3D turbulent motions. These runs show 2D or quasi-2D be-
Prandtl numbePm seems to follow an approximate powefavior, with very diferent transportféciency and behavior. The
data point we have retained might still be weakljeated by
4 Forr < S°1, the transport statistics depends very little on the birsUch éfects.
ning time, while forr > 100571, the statistics is too poor to be mean- ~ As pointed out above, Fig. 5 indicates that the spread with
ingful. Reynolds number at a given Prandtl number increases with de-

4.2. Physical dissipation and transport
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Fig. 7. Composite figures showing the dimensionless growthaafof the channel mode for most of the various runs performed fasction of

the dimensionless wavenumbétk,/S. Each subplot is labelled by its Reynolds number and fie&hgth 3). The various curves in each subplot
correspond td®m = 1/4, 1, 4, respectively (the growth rate increases with irgirepPrandtl number). The crosses indicate the modes that ar
represented in our simulation boxes, as a result of the yrmbnditions (see text for a discussion).

creasing Prandtl number. In fact, twofférent regimes can be clearly that the dispersion of the points at any given Regsol
noted, one foPm < 1 and one foPm = 4. number is substantially larger iRe (with varying Rm) than

At Pm = 4, the transport seems to be only weakly dependdft Rm (with varying Re). The largest Reynolds number data
on Re (or Rm), at least for large enough Reynolds number: th@rongly support this conclusion. Furthermore, the®fiat the
transport increases by 10% to 50% (depending)pwhile the transportas a function &tmindicate theRm dependence of the
Reynolds number is multiplied by a factor of 4. This trend caiansport forPm < 1 is very similar to itsPm dependence as
also be found in the work of Simon & Hawley (2009), wherénown on Fig. 5. This strongly suggests thatFmedependence
the MRI turbulent transport in presence of a toroidal fielthis ©Pserved on this figure is in fact mostlyRin dependence for
vestigated with more emphasis on tRen > 1 regime. Their Pm < 1. Including thePm = 4 data destroys this correlation,
Figs. 6 and 7 show that, f&*m = 2 and 4 at least (the only oneswhich strengthens the idea that there are two regimes, depen
with enough data in them > 1 regime), the transport increasedd on the Prandtl number (a feature that may be related to the

steadily with the Reynolds number f&e < 1000 and much €xistence of a transition arouriin = 2 in zero net flux shear-
more weakly foiRe > 1000. ing box simulations). The relevant results of Simon & Hawley

(2009); although less detailed, are consistent with theskniys

On the contrary, the spread in Reynolds numbeFior< 1 (see their Fig. 7).

is substantial, and systematic. Such a spread was not elétact
our earlier investigation, due to the larger fluctuationsréms-
port related to the box aspect ratio, as discussed earliéct,
this dispersion seems to be affieet of the magnetic Reynolds
number. To illustrate this point, the transport is représgmon
Fig. 6 as a function oRm (left panel) andRe (right panel), for
Pm < 1; the colors describe filerent field strengthg(= 10°to 5 The Re = 20000 data points have not been included in this fit to
10* from top to bottom). The statistics in the number of pointsake the comparison between the two dependences in the sautie ¢
at any givenRe or Rmis rather low; however, it appears quitetions.
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5. Role of channel and parasitic modes There is a sharp behaviorftirence of the transport with re-
) , spect to the linear MRI growth rate between the nearly ideal s
5.1. Linear physics and turbulent transport ulations performed g = 100 and the loweg values, as is ap-

Lesur & Longaretti (2007) concluded that there was no direRRr€Ntwhen comparing the left and right panels of Fig. aam,f
connection between the Prandtl dependence of MRI-driven ti{'€ Whole spectrum of possible behaviors is covered hese fr
bulent transport and the linear growth rate of channel modéé'bStﬁm'al valrla;tlon oflthe transport \IN'th \t/)ery W.e?kllyy_\ra%
However, the transport was substantially less precisetgrde 9roWth rates (left panel), or conversely substantial vamigo

mined than in the present investigation, and the issue ishwol1€ 9rowth rate while the transport is only weakly or mildly
reinvestigating changing Pm = 4 data on the right panel) and intermediate situ-

To this dfect, one needs to compute the linear instabilitatlons where the two are more strongly correlated (the athkx

growth rates for the various runs we have performed. We f oints on the right panel). Therefore, although this siarats

cus on the growth rate of the channel mode; for one thing, ité ore contrasted than indicated in Lesur & Longaretti (200%)

I o . Bnclusion stands: there is no clear and direct relatiowéet
? guideline for the.stab|llty .behavllor of aII_ unstable quﬂ.ﬂ the dfects of dissipation on linear physics and the nonlinear tur-
or another, there is a particular interest in the behavidhis bulent saturation mechanism
specific mode. The resulting growth rates are numericalfg-co '
puted from the dispersion relation recalled in section 3id a
represented in Fig. 7. The important features to note frae th; » oyasi-linear physics and turbulent transport:
figure are the following:
As indicated in the introduction and in section 3, it is oftes:
— The largest growth rate in the continuum limit is always repsumed that the channel mode is responsible for most of the MRI

resented or very nearly represented in the simulation,jta spdriven turbulent transport in the presence of a net vertiuad-

of the discreteness imposed by the vertical boundary confgtic field. In particular Pessah & Goodman (2009) argue that
tion (the corresponding modes are shown by crosses on e saturation of the channel mode by its parasites may fgelp u
figure). This ensures that the fastest growing channel mo@eunderstand the transport. In this section, we make userof o
is always present in our simulations. numerical results to investigate these issues.

— For the largest field strengtlB (= 100), the growth rates  We first disprove the first statement: the channel mode does
of all our simulations is very close to the ideal MHD limitnot clearly dominate transport, especially at the maximthef
(o = S/2). This is especially true of the two largest Reynoldsansport, as should in the scheme depicted on Fig. 1. This is
numbers Re = 3200 andRe = 6400). Note in particular for shown explicitly in Fig. 9. A one-dimensional Fourier trans
these runs that the growth rate changes by at most 10% wHdem of both the Maxwell and Reynolds stress along the az-
the transport varies by a factor of more than 3 (see left panluthal direction is shown in this figure. These transformes a
of Fig.. 8). As a consequentt®e existence of the Prandtl and  performed at a typical minimum and maximum of transport in
magnetic Reynolds number dependences of the transport is  the transport history of two of our runs, namely the runs with
not related to the variation of the growth rate with physical Re = Rm = 6400 at3 = 100 ands = 10% respectively. The
dissipation. transform is shown in terms of the wavenumbet k,L,/2x;

— For g = 1000, and for the two largest Prandtl numberms = 0 corresponds to the transport due to the axisymmetric
(Pm = 1 andPm = 4) and largest Reynolds numbersnodes (channel modes) present in the simulations, for thie va
(Re = 3200 andRe = 6400), the growth rate is again almosbus captured,. The other wavenumbera & 0) correspond to
independent of the dissipation. As there is only one captureon-axisymmetric modes. Channel modes dominate over other
channel mode for thg = 100vs four or five forg = 1000, individual wavenumbers fgg = 100. However, the cumulated
the Pm, Rm dependence is not related to the number of cap-  contribution of hon-axisymmetric modes is dominant by adac
tured channel modes in the simulation. < 2 at the maximum of transport for thi and does not exceed
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the non-axisymmetric contribution by more thar80% at min- dissipation regime was made possible by the increasedaggur
imum transport. Fo8 = 10%, the cumulated non-axisymmetricwith respect to our previous work, in the determination a th
are always dominant by a facter6. Forg = 10° (not shown), transport averages. In the small Prandtl regime, in conteas
the situation is somewhat intermediate between the twemdr the large one, our most resolved simulations show no sign of
values presented in the figure, but the non-axisymmetritreon convergence with respect to dissipation, although valfi¢s

bution is again always dominant by a factor several.

up to 20000 have been reached.

In summary, except for minimum transport for the largest The role of linear physics and parasitic modes on transport
field strength where axisymmetric and non-axisymmetric- coproperties has also been investigated, and the major sesuilt

tributions to the transport are comparable, the non-axisgtric
contribution is always larger by a facter5. As a result, it seems
necessary at least to include non-axisymmetric modes iprthe
cess sketched on Fig. 1.

these questions can be summarized as follows:

— The existence of the dependence of turbulent transport on
dissipation is not related to the role of dissipation ondine

Furthermore, the analysis of Pessah & Goodman (2009) is modes growth rates.

inconsistent with our results, both from a qualitative andrmt
titative point of view. Our simulations always capture thstést

growing channel mode, or very nearly so (see Fig. 7). Duedo th

choice of aspect ratio, the fastest growing parasitic mades
always captured as well. Finally, f@r = 100 andRe = 3200
and 6400 (even 1600 for the two largeém values), the variation

of the transport witlPm is quite substantial, whereas Pessah &

Goodman (2009) conclude that in these conditions, the s
is independent of dissipation (see the left plot in Fig. 2hsfit

paper; the three Reynolds numbers values mentioned corrdsp —

to the three largest Elsasser numbers of their graph).

6. Discussion and conclusion

Perhaps the most significant new result of this work, digdos

— The existence of the correlation of transport with dissgrat

is not related to the number of channel modes captured in the
simulations.

Saturation of the channel modes growth by parasitic modes
is not the responsible for correlation of transport with-dis
sipation. This is hardly surprising as both the channel and
parasitic modes are large scale modes, that are expected to
be little afected by dissipation, whereas the trends of the
transport with dissipation are substantial.

Furthermore, the transport is usually not dominated by ax-
isymmetric modes; these modes contribute at most at the
same level as non-axisymmetric modes for the strongest
fields investigated, and have negligible contributionstifer
weakest fields.

on Figs. 5 and 6, is the existence of a double regime separatedNote that all these results were obtained while the fastest

by a critical magnetic Prandtl numbEBm; ~ 1. ForPm < Pm,
at a given field strength, the transport correlates mostly Rin;
for Pm > Pm, the transport seems to depend mostlyRim

growing channel and parasitic modes were always captueed, s
that they do not depend on limitations on this front.

It is worth pointing out that our results do not totally dis-

and only weakly on eitheRe or Rm (onceRe » 10°), although qualify a saturation of the unstable linear modes by thegiica
a larger number oPm values need to be probed on this issuenodes; only the relevance of this process to the relationdxat
It is tempting to assum@m. =~ 2, as this is the critical value transport and physical dissipation has been disproved.

for the zero mean field problem, but this identification regsii

The role of the Prandtl number disclosed in this investiga-

further work to be substantiated. The identification of tosible tion makes more physical sense than a direct dependence of th

10
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transport onPm. Indeed, it is very likely that the critical value Aluie, H. & Eyink, G. L. 2009, ArXiv e-prints
Pm. relates to the switching of the magnetic and kinetic disggalbus, S. A. 2003, ARA&A, 41, 555
pations scalek, andk, in Fourier space: foPm < Pm (resp. Sg:gﬂz’ g ﬁ'gﬂleg’ j E Bg;' ﬁﬁﬂ’ %SY éig
Pm > Pm), k’] <k (resp.l_<,, > kv)j For Pm < 1, k’i <k, the Bodo, G., Mignone, A., Cattaneo, F., Rossi, P., & Ferrari2B08, A&A, 487, 1
flow at scalek > or > k;, in Fourier space is therefore purelycabot, w. 1996, ApJ, 465, 874
hydrodynamic. As information flows from smédlto largek in ~ Fromang, S., Papaloizou, J., Lesur, G., & Heinemann, T. 2083, 476, 1123
this scale range, the flow should be independe®epo that in Ga’gf"'e' $£ ;9;5 Apj-fﬂ57210305é5J | of Computati 5. 205, 500
this regimee = (8, Rm) is expected. The transport may evergﬁgd'”megh S e o soa A 3 na of Computatid ysics, 205,
become independent &m at large enougikm in the absence guan, x., Gammie, C. F., Simon, J. B., & Johnson, B. M. 2009],494, 1010
of backreaction of the small scales on the large ones, and if @lawley, J. F. 2000, ApJ, 528, 462
ergy exchanges are not strongly nonlocal in Fourier spaee. WIW:ey, j E gamm!e, g E g Sa:gus, 2 ﬁ- iggg, ﬁpj, jg% g;‘r

P [ awley, J. F., Gammie, C. F., albus, S. A. , ApJ,
.merely nOte. here that in the context of homogeneous, Ismrpq::einemann, T. & Papaloizou, J. C. B. 2008a, Accepted in MNRASIv eprint
incompressible MHD turbulence, all energy transfers areadli 5715 >068
(from smallk to largek); exchanges between magnetic and Kideinemann, T. & Papaloizou, J. C. B. 2008b, Accepted in MNRASIv eprint
netic energy are nonlocal in Fourier space (Alexakis etG0.73,  0812.2471
although this nonlocality seems to be of finite (albeit large- Ji: H-, Burin, M., Schartman, E., & Goodman, J. 2006, Natd#st, 343

. : T "~ Johnson, B. M. & Gammie, C. F. 2006, ApJ, 636, 63
tent (Aluie & Eyink 2009). The situation is more complex ireth Klahr, H. H. & Bodenheimer, P. 2003, ApJ, 582, 869

large Prandtl regime, as non-local transfers and smaléstyd | atter, H. N., Lesire, P., & Balbus, S. A. 2009, MNRAS, 394, 715
namo action might take place at scales smaller than thewdscaesur, G. & Longaretti, P.-Y. 2005, A&A, 444, 25

dissipation scale, and further investigations are requivehar- Lesur, G. & Longaretti, P.-Y. 2007, MNRAS, 378, 1471

; ; ecination imit Lesur, G. & Ogilvie, G. 1. 2008a, MNRAS, 391, 1437
acterize the properties of the small dissipation limit, amtjzular Lesur. G. & Ogilvie. G. I. 2008b. A&A, 488, 451

concerning the locality of transfers. _ Lesur, G. & Ogilvie, G. I. 2010, Accepted in MNRAS
The behavior of MRI-driven turbulence with respect to thesesur, G. & Papaloizou, J. C. B. 2009, A&A, 498, 1

various issues will be reported elsewhere, through theyaisadf Lesur, G. & Papaloizou, J. C. B. 2010, Accepted in A&A
energy transfers in Fourier space. More generally, ingastig Ezzzgn m E 8& ﬁ;‘g”vccl-(‘k- ;g‘;i’ltgpfj 6285‘6 749A8 1 668, L51
t_he possmle independence of transport with respect tap_drss Pessah. M. E. & Goodman. J. 2009, ApJ. 698, L7p2’ ’
tion in thePm < Pmc or Pm > Pm limits requires to achieve petersen, M. R., Stewart, G. R., & Julien, K. 2007, ApJ, 65521
a double scale separation: one must first separate in FouAeyret, R. 2002, Spectral Methods for Incompressible Visddow (Springer)
space the smallest injection scales (the scales whichibatgrto E'e?\evaob&&ugql#ha;ﬁ%é 'g'- 52%8'33§LA7' 3451- 21
the Reynolds and Maxwell stresses) from the largest dltce_rpals';nc‘ir{ &.Miya?ng,, 5. M. 1009, ApJ, 515, 776
scales, and then the two dissipation scales themselves.idhigjmon, . 8. & Hawley, J. F. 2009, ArXiv e-prints
extremely demanding in terms of resolution. Our simulation stone, J. M. & Balbus, S. A. 1996, ApJ, 464, 364
the small Prandtl regime are consistent with a separatiaiisof Stone, J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1998, 463, 656
sipation scales nearly achieved. As a first step at smalldBrarPmurhan, O. M. & Regev, O. 2004, A&A, 427, 855
(the most critical regime for YSO disks), one can achieve one
or the other of the two scales separation. Such investigatoe
underway and will be reported elsewhere.
These questions are critical for astrophysical disk dyeami
where the Reynolds numbers are always very laRgex( 10'°,
while the Prandtl number spans very smalli0~°, YSO disks)
to very large valuesy 10°, AGN disks). Addressing these is-
sues requires to overcome a humber of limitations in the sim-
ulations. Besides the questions of scale separation anid-non
cality of transfers in Fourier space just mentioned, the iafl
compressibility and vertical stratification on these resutust
be quantified. These questions can certainly be investigate
shearing boxes, but global simulations are probably stifjély
out of reach, due to the resolution demand. Also (and prgbabl
as much importantly), éierent dissipation regimes must be an-
alyzed in the context of YSOs, namely the ambipolar and Hall
regime, which are known to have substanttéet on the linear
development of the MRI, while being relevant for large fracs
of YSO disks.
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