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ABSTRACT

Context. In the recent years, MRI-driven turbulent transport has been found to depend in a significant way on fluid viscosityν and
resistivityη through the magnetic Prandtl numberPm = ν/η. In particular, the transport decreases with decreasingPm; if persistent
at very large Reynolds numbers, this trend may lead to question the role of MRI-turbulence in YSO disks, whose Prandtl number is
usually very small.
Aims. In this context, the principle objective of the present investigation is to characterize in a refined way the role of dissipation.
Another objective is to characterize the effect of linear (channel modes) and quasi-linear (parasitic modes) physics in the behavior of
the transport.
Methods. These objectives are addressed with the help of a number of incompressible numerical simulations. The horizontal extent
of the box size has been increased in order to capture all relevant (fastest growing) linear and secondary parasitic unstable modes.
Results. The major results are the following:
i- The increased accuracy in the computation of transport averages shows that the dependence of transport on physical dissipation
exhibits two different regimes: forPm . 1, the transport has a power-law dependence on the magnetic Reynolds number rather than
on the Prandtl number; forPm > 1, the data are consistent with a primary dependence onPm for large enough (∼ 103) Reynolds
numbers.
ii- The transport-dissipation correlation is not clearly or simply related to variations of the linear modes growth rates.
iii- The existence of the transport-dissipation correlation depends neither on the number of linear modes captured in the simulations,
nor on the effect of the parasitic modes on the saturation of the linear modes growth.
iv- The transport is usually not dominated by axisymmetric (channel) modes.
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1. Introduction

Disks evolve on time-scales that are orders of magnitudes
smaller than expected from microphysical transport processes,
and various suggestions have been made over the years to ex-
plain this discrepancy. Turbulent transport, in particular, has fig-
ured among the leading candidates since the inception of theα-
disk paradigm, and a number of hydrodynamic and MHD turbu-
lent transport mechanisms have been proposed in the literature.

On the hydrodynamicside, subcritical turbulence (Richard&
Zahn 1999 and references therein), if present, is apparently too
inefficient (Lesur & Longaretti 2005; Ji et al. 2006). Convection
was up to now found too inefficient and to transport angu-
lar momentum in the wrong direction (Cabot 1996; Stone &
Balbus 1996), but a recent reinvestigation of the problem indi-
cates that this might be an artifact of these simulations being
performed too close to the stability threshold (Lesur & Ogilvie
2010). Two-dimensional weak turbulence driven by small-scale,
incoherent gravitational instabilities (density waves) is an op-
tion (Gammie 1996). Alternatively, the baroclinic instability
(Klahr & Bodenheimer 2003) may generate vorticity, and trans-
port through the coupling with density waves, but its conditions
of existence are still controversial (Johnson & Gammie 2006;
Petersen et al. 2007), although Lesur & Papaloizou (2010) have

probably identified the root of this debate by pointing out the
nonlinear nature of the instability; also the resulting vortices
would be subject to 3D instabilities (Lesur & Papaloizou 2009).

Balbus & Hawley (1991) have proposed that the magnetoro-
tational instability (MRI) is a potentially efficient source of tur-
bulent transport in the nonlinear regime, an expectation soon
borne out in numerical simulations. This instability provides by
now the most extensively studied transport mechanism, through
local unstratified (Hawley et al. 1995), stratified (Stone etal.
1996), and global (Hawley 2000) 3D disk simulations. These
initial simulations as well as the numerous ones following them
have shown that MRI turbulence is an efficient way to transport
angular momentum, in the presence or absence of a mean verti-
cal or toroidal field, with an overall transport efficiency depend-
ing on the field configuration and strength. However, the sig-
nificant role played by microphysical dissipation in the resolu-
tions accessible to date had largely been underestimated (Lesur
& Longaretti 2007; Fromang et al. 2007).

By now, both the field strength and dissipation dependence
of the simulated turbulent transport have been studied to some
extent (and only in unstratified local shearing box settingsfor the
latter one). The dependence of the Shakura-Sunyaevα parameter
has been characterized very early on by Hawley et al. (1995) who
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showed that momentum transport∝ β−1/2 both for a net vertical
or toroidal field1 (albeit with very different efficiencies in the two
configurations), a scaling further confirmed in later simulations,
as summarized in Pessah et al. (2007).

Until recently, the effect of physical viscosity (ν) and resis-
tivity (η) on the transport had been neglected, under the implicit
assumption that these should not matter too much once iner-
tial turbulent scales are resolved in the simulations. However,
Lesur & Longaretti (2007) have shown that, in the presence of
a mean vertical field, the MRI-driven turbulent transport did ex-
hibit a substantial dependence on the magnetic Prandtl number
Pm = ν/η, with no clear trends with respect to either viscosity of
resistivity alone2. Recently, Simon & Hawley (2009) found sim-
ilar results in shearing boxes with a mean toroidal field instead
of a mean vertical one.

When the mean magnetic flux vanishes, the transport behav-
ior is more complex. The initial investigation by Hawley et al.
(1996) concluded that the transport was converging to a finite
value, but Gardiner & Stone (2005) found that the transport ef-
ficiency was dependent on the simulation resolution. More re-
cently, the role of the magnetic Prandtl numberPm has been
identified in this setting (Fromang et al. 2007): turbulenceexists
only for magnetic Prandtl numbers larger than about 2, which
requires the explicit inclusion of viscous and resistive terms in
the fluid equations for numerical simulations to correctly capture
the physics of the problem. The disappearance of turbulenceat
low Pm, as well as the need of large enough amplitudes in the
initial conditions atPm > 2, indicate that the zero net flux mag-
netized shearing box is a subcritical system rather than a linearly
unstable one (Lesur & Ogilvie 2008a,b).

Thus it appears that in all configurations explored to date,
the magnetic Prandtl number plays a significant role on the ex-
istence and/or efficiency of the turbulent transport, at least at the
resolutions accessible on present day computers (or equivalently,
the accessible Reynolds and magnetic Reynolds numbers). This
raises a number of issues.

For one, the exact role played by channel modes and para-
sitic modes is unclear. Although they exist only when a mean
vertical field is present, they are simpler to analyze and their be-
havior may provide insight into the generic mechanism respon-
sible for saturation of the linear instability. Channel modes are
the axisymmetric unstable modes of the MRI (Balbus & Hawley
1991; Pessah & Chan 2008), and are often observed both in 2D
and 3D simulations with a mean vertical field; their name derives
from their vertically layered characteristic channel-like radial
flow. They were quickly recognized to be also nonlinear solu-
tion of the problem by Goodman & Xu (1994); the same authors
found them to be unstable with respect to a secondary instability
(parasitic modes). A few recent papers have focused on the pos-
sibility that the saturation of the channel mode by this parasitic
instability might be the mechanism explaining the magnitude of
the turbulent transport in MRI simulations, with divergingcon-
clusions (Pessah & Goodman 2009; Latter et al. 2009).

In relation to this, the role of the aspect ratio of the simula-
tions has probably been underestimated in the past. Boxes with
an aspect ratioR : Z = 1 : 1 do not allow for the fastest para-
sitic modes to grow, and Bodo et al. (2008) pointed out that nar-
row boxes tend to overemphasize the role of the channel modes

1 The definition ofβ (ratio of gas to magnetic field pressure) is based
on the mean field, a conserved quantity in the settings used inthese
simulations.

2 The linear stability dependence on viscosity and resistivity is totally
different.

with respect to more horizontally extended boxes. This calls for
a reassessment of the Prandtl number dependence of MRI-driven
transport in horizontally extended simulation boxes with amean
vertical field.

More generally, it is still unclear whether this dependence
of the transport on physical dissipation is a consequence ofthe
limited Reynolds numbers that can be achieved on present day
computers. In particular, none of the published simulations has
been able to capture the existence of a significant inertial range in
the kinetic or magnetic energy spectrum, which makes it difficult
to address this issue. The question here revolves mostly around
the direction and locality of transfers and fluxes in Fourierspace,
and will be addressed elsewhere.

For the time being, we focus the potential role of the channel
and parasitic modes in the efficiency of turbulent transport. This
is explored by numerical simulations in the shearing sheet limit,
with a net vertical magnetic flux, and with horizontally extended
simulation boxes. The paper is organized in the following way.
Our numerical method, setup, and run parameters are described
in section 2. Relevant aspects of the theory of channel modes
are summarized in section 3. Section 4 is the core of this paper,
and discusses our numerical results; the issues bearing on the
resolved linear and secondary modes are also discussed there.
The implications of these results are presented in the final section
along with some possible future lines of work.

2. Numerical model

2.1. Shearing box model and equations:

Following the initial investigation of 3D MRI turbulent prop-
erties by Hawley et al. (1995), we base our simulations on the
shearing sheet local approximation and the related shearing box
model. Most if not all local studies of disk turbulence have been
performed in this framework. Local simulations are unescapable
to examine in any detail the structure and transport properties
of MRI turbulence; indeed, even within a local model, present
day computers are still too limited to reach the resolutionsre-
quired to understand the magnetic Prandtl issue summarizedin
the introduction, and it is certainly hopeless to tackle this prob-
lem directly in global simulations.

To some extent, a shearing box biases the role of the channel
mode in turbulent transport, e.g. through the correlationsintro-
duced by the periodic boundary conditions. Note however, that,
in purely hydrodynamic turbulence, the shearing box seems to
capture some of the correct physical properties of actual exper-
imental systems, such as the transition Reynolds number to tur-
bulence as a function of rotation (see, Lesur & Longaretti 2005).
In any case, it is very difficult to formulate a well-posed local
problem that does not rely on the shearing box framework. The
reader is referred to Hawley et al. (1995), Balbus (2003) and
Regev & Umurhan (2008) for more detailed discussions of the
properties and limitations of this model.

MHD turbulence in discs is essentially subsonic, and we
will work in the incompressible approximation, which allows
us to eliminate local and transient density fluctuations as well
as sound waves and density waves from the problem. Density
waves are excited in shearing box turbulence (Heinemann &
Papaloizou 2008b), but they appear to have little impact on the
turbulent transport (Heinemann & Papaloizou 2008a). This has
been confirmed by direct comparison between incompressible
and compressible simulations (Fromang et al. 2007). As a conse-
quence, we feel reasonably justified to assume incompressibility.
Explicit molecular viscosity and resistivity are included.
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The shearing box equations are well-known; we reproduce
them here to introduce our notations. We chose a Cartesian box
centered atr = R0, rotating with the disc at angular velocity
Ω = Ω(R0) and having dimensions (Lx, Ly, Lz) with Li ≪ R0.
By convention here,R0φ = x andr − R0 = −y, leading to the
following form of the shearing sheet equations:

∂tU +∇ · (U ⊗U ) = −∇Π +∇ · (B ⊗B)

−2Ω×U + 2ΩS yey + ν∆U , (1)

∂tB = ∇× (U ×B) + η∆B, (2)

∇ ·U = 0, (3)

∇ ·B = 0. (4)

where the magnetic field is measured in units of Alfvén speed.
The mean shearS = −r∂rΩ is set to a Keplerian flow value
S = (3/2)Ω. The generalized pressure termΠ includes both the
gas pressure termP/ρ0 and the magnetic oneB2/2ρ0. This gen-
eralized pressureΠ is fixed by the incompressibility condition
Eq. (3), and computed by solving a Poisson equation. The mag-
netic field is expressed in Alfvén-speed units, for simplicity.

The steady-state solution to these equations is the local
Keplerian profileU0 = S yex. Our code computes the (turbulent)
deviations from this Keplerian profile. Definingv = U−U0, and
b = B −B0, one obtains the following equations forv andb:

∂tv = −v ·∇v −∇Π +B ·∇b − S y∂xv

+(2Ω − S )vyex − 2Ωvxey + ν∆v, (5)

∂tb = −v ·∇b +B ·∇v

−S y∂xb + S byex + η∆b, (6)

∇ · v = 0, (7)

∇ · b = 0. (8)

The boundary conditions associated with this system are pe-
riodic in thex andz direction and shearing-periodic in they di-
rection (Hawley et al. 1995) (forv andb).

Following Hawley et al. (1995), one can integrate the induc-
tion equation (6) over the volume of the box, leading to:

∂〈B〉
∂t
= S 〈By 〉ex, (9)

where〈〉 denotes a volume average. Therefore, the mean mag-
netic field is conserved, provided that no mean radial field is
present. In this work, a mean vertical fieldB0 is imposed, and
conserved by virtue of Eq. (9).

The numerical resolution makes use of a spectral Galerkin
representation of equations (5)–(8) in the sheared frame (see
Lesur & Longaretti 2005). In this frame, the shearing-sheet
boundary conditions are transformed into perfectly periodic
boundary conditions, and Fourier transforms can be used in all
three directions. Moreover, this decomposition allows us to con-
serve magnetic flux to machine precision (the total magneticflux
created during one simulation is typically 10−11). Equations (7)
and (8) are enforced to machine precision using a spectral pro-
jection (Peyret 2002). The nonlinear terms are computed with a
pseudospectral method, and aliasing is prevented using the3/2
rule.

The sheared frame representation of the spectral domain
would eventually produce a mismatch between the computed

Fourier components and the physically relevant ones. To circum-
vent this problem, we use a remap method similar to the one de-
scribed by Umurhan & Regev (2004). This routine redefines the
sheared frame everyTremap= Lx/(LyS ), and none of the results
presented here seems to be related to this time scale. Spectral
methods are very little dissipative by nature; numerical dissipa-
tion is kept to very small values, as can be seen by computing
the total energy budget at each time step (see Lesur & Longaretti
2005 for a discussion of this procedure).

2.2. Dimensionless numbers:

All our simulations are performed in horizontally extended
boxes, with aspect ratioLx : Ly : Lz = 4 : 4 : 1, with a non
vanishing mean vertical field of varying strength.

Our shearing box set up is characterized by a number of di-
mensionless numbers. Our simulations explore the dependence
of the turbulent transport with respect to three of them

– The magnitude of the imposed mean vertical field measured
by

β =
S 2L2

z

V2
A

, (10)

where is the Alfvén speed due to this mean field. This def-
inition mimics the usual plasmaβ in vertically stratified
disk obeying the vertical hydrostatic equilibrium constraint
cs ∼ ΩLz.

– The Reynolds number,

Re =
S L2

z

ν
, (11)

comparing the nonlinear advection term to the viscous dissi-
pation.

– The magnetic Reynolds number,

Rm =
S L2

z

η
, (12)

comparing magnetic field advection to the Ohmic resistivity.
– Alternatively to one of the two Reynolds numbers, the mag-

netic Prandtl number

Pm =
Rm
Re
=
ν

η
. (13)

Our study focuses on the dependence of the turbulent trans-
port onβ, Re andRm, but other combinations of the Reynolds
numbers will be used when necessary. Note however that un-
stratified shearing boxes are also characterized by two other
numbers that are constant for our simulations:

– The Mach number

Ma =
S Lz

cs
(= 0), (14)

(vanishing for our incompressible simulations)
– A Rossby-like numberq defined by

q = − S
Ω
, (15)

which is fixed at the keplerian value (3/2). The sign ofq in-
dicates the flow cyclonicity.
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In the following we useS −1 as the unit of time andS Lz as the
unit of velocity. One orbit corresponds toTorb = 3πS −1 ≃ 10S −1;
our simulation lengths are to be divided by about 10 to compare
them with simulations scaled in orbit times, as is commonly
done by other workers in the field. For simplicity, in what fol-
lows, we keep the same notation for dimensionless and dimen-
sional quantities.

Our dimensionless transport coefficientα is defined as

α =
〈bxby − vxvy〉

S 2L2
z

, (16)

where the average is taken over the volume of the simulation
box. Within a factor of order unity, this is analogous to the more
common prescription for the turbulent viscosityνt = αcsH if one
identifiesLz with the disc thicknessH.

3. Channel mode physics: a summary of relevant
information:

As recalled in the introduction, it has been noted in a numberof
earlier MRI simulations in a shearing box with a mean vertical
field that channel modes constitute somewhat recurrent patterns
of the turbulent flow, and appear to be more prominent at the
maxima in the fluctuations of the turbulent transport. Channel
modes do transport angular momentum with roughly the right
order of magnitude if their amplitude is comparable to the rms
fluctuation in the field close to a maximum of the transport.

This has suggested a picture of turbulent transport in shear-
ing boxes with a mean vertical field that is sketched on Fig. 1.

Channel 
mode

Parasitic 
mode

Small amplitude
random motions

Linear inst. =
source

Sec. inst. =
sink

Nonlinear transfer

?

Fig. 1.Cartoon of the process that may be at the origin of the saturation
of the transport in shearing box simulations of MRI with a netvertical
field (see text).

According to this picture, the channel modes linearly grow
from random noise; at some amplitude, their growth is halted
by a secondary instability (parasitic mode) which destroysthe
channel mode. Presumably, the parasitic modes themselves de-
cay into small scale turbulence, which may then produce the seed
for the random fluctuations out of which the channel mode grows
in the first place. In this scenario, the channel mode(s) would be
responsible for most of the transport, in particular near maxima
of the transport fluctuations.

One of the objectives of this paper is to examine the rele-
vance of this picture of MRI turbulence. Even if such a scenario
is not generic (it depends directly on the presence of a mean ver-
tical field), if confirmed, it might provide an interesting lead to
analyze different situations. Another related objective it to as-
sess the relevance of this scenario to the question of the Prandtl
number dependence of MRI-driven transport. To this effect, we
gather here the relevant pieces of information on the physics of

channel modes that is required in order to analyze the simula-
tions presented in the next section.

3.1. Dispersion relation

The physics of viscous and resistive channel modes has been
examined in Lesur & Longaretti (2007) and their properties have
been characterized in detail in Pessah & Chan (2008) (Sano &
Miyama 1999 have also explored the role of resistivity on MRI
in the absence of viscosity). Since non axisymmetric MRI modes
are transiently growing structures in non ideal MHD (Balbus&
Hawley 1992), the axisymmetric modes give a good grasp of the
linear stability properties of the shearing box.
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Fig. 2. Maximal growth rateσM/S as a function of the resistive dissi-
pation, for the various values of the Prandtl number used in the simula-
tions. Also shown are asymptotic analytic approximations (see text).

We recall here the dispersion relation of theses modes and a
number of other features that will be of use in the next section.

Looking for solutions of the linearized equations of motions
in the formv = vl exp(σt − ikyy − ikz) andb = bl exp(σt − ikz)
leads to the following fourth order dispersion relation:

σ4 +2k2σ3(η + ν) + σ2
(

a + k4(η2 + ν2 + 4ην) + b
)

+σ

(

2k6(ην2 + νη2) + ak2(ν + η) + 2bηk2
)

+ν2η2k8 + aνηk4 + bη2k4 − c = 0, (17)

with

a = 2k2
z V2

A, (18)

b = κ2γ2, (19)

c = k2
z V2

A(2ΩS γ2 − k2
z V2

A), (20)

and whereκ = [2Ω(2Ω − S )]1/2 is the epicyclic frequency,VA =

B0 is the Alfvén speed based on the imposed mean vertical field3,
andγ2 = k2

z /(k
2
y + k2

z ). Channel modes haveky = 0 so thatγ = 1.
This equation is used later on to compute the channel mode

growth rates in the conditions of our numerical simulations. It is

3 We measure the magnetic field in units of Alfvén speed.
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Fig. 3. The dimensionless turbulent transportα as a function of time (in units ofS −1) for a vertical magnetic field strengthβ = 1000 and various
levels of viscous and resistive dissipationRe andRm. Insets on a given line correspond to constant magnetic Prandtl number,Pm = 1/4, 1 and 4
from top to bottom. The Reynolds numberRe is constant on rows (800, 1600, 3200, and 6400 respectively.The transport averages are computed
over the last 400 shear times of the simulations. The blue line represents the Reynolds stress, the green line the Maxwellstress, and the red line
the total stress (these last two are almost indistinguishable).

most conveniently solved in dimensionless form, withS as unit
of time andVA/S as unit of length. We introduceσ∗ = σ/S ,
κ∗ = κ/S , k∗ = VAk/S ; defining the viscous (Eν) and resistive
(Eη) Elsasser-like numbers by

Eν =
V2

A

S ν
=

Re
β
=
Λν

q
, (21)

Eη =
V2

A

S η
=

Rm
β
=
Λη

q
, (22)

one hasν∗ = 1/Eν and η∗ = 1/Eη. Note that with a power-
law velocity profile in a disk (Ω ∝ r−q), Ω∗ = 1/q and κ∗ =
[2(2 − q)]1/2/q. Our definitions of the Elsasser numbers (and
other dimensionless quantities) differ from the usual ones (Λν
andΛη, see e.g. Pessah & Chan 2008 and Pessah & Goodman
2009) by a factorS/Ω. This choice has several motivations:S
rather thanΩ is the relevant time-scale of linear growth rates;
this definition is more consistent with our previous choice of
units; and it makes the connection between the Elsasser and
Reynolds numbers simpler.

3.2. Stability limits

In the dissipation-free limit, the dispersion relation canbe solved
exactly. The magnetic tension stabilizes the instability for k∗ >
k∗c ≡ (2Ω∗)1/2 = (2/q)1/2. In a box of finite vertical extentLz,
the vertical modes wavelengths are multiple ofkmin = 2π/Lz.
Axisymmetric MRI modes are therefore stabilized whenkc <
kmin, which translates intoβ ≥ βc ≡ 2π2S/Ω ≃ 30. The maxi-
mum growth rate in the dissipation-free regime,σM = S/2, is
achieved for a wavenumberkM ≃ kc/2.

Resistivity and viscosity modify the marginal stability limit
in the (Re, Rm, β) space. Numerical investigation indicates that
only one of the four roots is unstable forq < 2, so that the
marginal stability limits obtains when theσ-independent term of
the dispersion relation is equal to zero. Also, as shown by Lesur
& Longaretti (2007), forβ ≥ 100 andRe & 400 (two conditions
that are satisfied in the present investigation), the marginal sta-
bility limit is nearly independent of the Reynolds number. This
leads to the following expression of the marginal stabilitylimit

Rm =
κβ

S

(

βc

β − βc

)1/2

=
2π
√

3

β

(β − βc)1/2
∼ 3β1/2, (23)

where the second equality applies for keplerian flows. The last
approximation holds only whenβ is large enough, and was given
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Fig. 4. Transport standard deviation as a function of the time interval τ
used to bin the transport data, for a given run (in this case,Re = 3200,
Rm = 800, andβ = 100). This information is used to quantify the error
in the transport from the fit∝ τ−1/2 that is expected to hold for large
enough binning timeτ (see text for details).

in Lesur & Longaretti (2007); the first expression is new and
sensibly more precise.

The maximum growth rate achieved by the instability is
modified when viscosity and resistivity become important, i.e.
when eitherEν or Eη . 1. Pessah & Chan (2008) give an asymp-
totic form of the growth rate in the dissipation regime for small
or of order unityPm (see their Fig. 5 and their Eq. 91); it reads
σM = 2σ0Eη/3 whereσ0 = S/2 is the dissipation-free growth
rate. The range ofEη and Pm examined in this work spans
the transition from a dissipative to a non dissipative regime for
the linear instability. The corresponding variation of maximum
growth rate with bothEη andEν (through the Prandtl number)
is shown on Fig. 2, along with the asymptotic expressions just
recalled.

4. Numerical results

In order to explore a significant range of parameters, most of
our runs are performed at a standard resolution (Nr, Nφ, Nz) =
(256, 128, 64) in real space. All simulations have an aspect ratio
R : φ : z = 4 : 4 : 1; as argued earlier, this aspect ratio allows
us to capture the fastest growing channel and parasitic modes.
Three simulations have been performed at a resolution twiceas
large (512, 256, 128) in order to reach a higher Reynolds number
(Re = 20000), and lower Prandtl numbers (down toPm = 1/16).
Note that spectral codes are intrinsically more resolved than fi-
nite difference codes with the same number of points; as a con-
sequence, one needs to adopt resolutions larger by a factor≃ 2
in all directions in a finite difference code such as ZEUS, Athena
or RAMSES to obtain the same results, a point to bear in mind
when comparing our conclusions with those published in the lit-
erature with finite difference codes (see e.g. Fromang et al. 2007,
for an explicit comparison).

The simulations performed in this work are in the large
Reynolds number limit (400< Re < 20000). The relevant
marginal stability limit depends only onRm and is precisely
given by Eq. (23). When the magnetic Reynolds number is too
close to this limit, nonaxisymmetric perturbations damp out, and
the flow becomes nearly identical to an axisymmetric one. We
have checked that none of the simulations discussed below is
affected by this issue.

With our adopted standard resolution, we can confidently
resolve the dissipative scales up to Reynolds numbers≃ 104.
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Fig. 5. The dimensionless turbulent radial momentum transportα as a
function of the Prandtl numberPm and the field strengthβ for various
Reynolds numbers. black:β = 102; blue: β = 103; red: β = 104; �:
Re = 400;+: Re = 800;♦: Re = 1600;◦: Re = 3200;×: Re = 6400; the
green starred data points correspond to the three more resolved runs at
Re = 20000 andβ = 103. Power law fits are also shown for each value
of β.

Consequently, we have explored Reynolds numbers in the range
400 – 6400 and magnetic Reynolds numbers in the range 400 –
12800. The magnetic Prandtl number of the simulations is either
1/4, 1 or 4. A smaller value (Pm = 1/16) has also been reached
with one of our higher resolution runs withRe = 20000.

We have performed simulations for three different vertical
field strengths:β = 102, 103, and 104. This range is constrained
by two considerations. On the low end (large field), one must
stay away from the marginal stability limit due to the magnetic
tension. Indeed, when the incompressible MRI works too close
to this stability threshold, the flow is strongly biased by the pres-
ence of channel modes (an effect that incompressible simulations
are more prone to capture, as exemplified in Lesur & Longaretti
2007). On the large end (weak field), one is limited by the fact
that at some point, the flow is going to be dominated by the
zero flux transport process, whose dependence on the viscous
and resistive dissipation might be sensibly different. If one sim-
ply assumes that one shifts from one regime to the other when
the efficiency of the transport processes are equal, one finds that
the transition between the mean field and zero net field regimes
should be in the rangeβ ∼ 105 – 104; this limit applies toPm & 2
(as the zero net flux transport vanishes for lower Prandtl number
values), and should be somewhat dependent onPm. As discussed
later on, for our weakest field (β = 104) and smallest Prandtl
(Pm = 4), the flow also tends to become bidimensional for low
enough Reynolds number.

4.1. Transport time histories and standard deviation

Figure 3 displays the behavior of the turbulent transport for the
runs we have performed atβ = 1000. The simulations are typi-
cally run for 500 shear times, and the transport average is based
on the last 400. In our horizontally extended simulation boxes,
the transport fluctuations are substantially reduced with respect
to narrower boxes. Typically, fluctuations of a factor of∼ 2 are
observed, whereas inr : z = 1 : 1 boxes, fluctuations of an or-
der of magnitude or more are common. This reduction provides
more precise averages for the transport, even though the averag-
ing time is somewhat smaller than what is used for boxes with
a R : Z = 1 : 1 aspect ratio. This aspect ratio dependence is re-
lated to the prominence of channel modes in the large transport
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Fig. 6. The dimensionless transportα as a function of the magnetic Reynolds numberRm (left) and Reynolds numberRe (right). Black:β = 102;
blue:β = 103; red:β = 104; �: R = 400;+: R = 800;♦: R = 1600;◦: R = 3200;×: R = 6400;R refers toRe on the left panel, and toRm on the
right one. The green stars correspond to the three more resolved runs atRe = 20000 (see text).

bursts observed in the narrow boxes (Bodo et al. 2008), a feature
related to the fact that width of the narrow box is comparableto
the correlation length of turbulent fluctuations in the horizontal
direction (Guan et al. 2009).

The transport time history can be used to quantify the error
in the determination ofα in the following way. From the raw
time history, one can define a series of binned time histories,
with a binning timeτ ranging from 1 to 100 shear times4. From
these binned time histories, one can define a transport standard
deviation in the usual way, i.e.,σα = [

∑

(αi − α)2/N]1/2 where
N is the number of bins,αi itself being the average value of the
transport in bini. The resulting dependenceσα(τ) is shown on
Fig. 4 for one of our runs. Two regimes can be distinguished. For
τ . 10 – 20S −1, the deviation decreases sharply withτ; this is
seen directly on Fig. 3, where the transport typical variation time
scale is precisely in this range. For large values ofτ, the transport
is less and less correlated with itself. Consequently, one expects
that it should behave more or less as a random walk, so that the
standard deviation should scale likeτ−1/2. A fit of this type is
performed on Fig. 4, and appears to represent reasonably well
the trend, in spite of the crudeness of the approximation.

From this approximation we find that the relative error in
the computation of the transport over 400 shear times is in the
range 3 – 10%. There is no clear tendency for the larger valuesof
the relative error to correspond to higher transport, and noclear
trend with either the magnetic Prandtl or magnetic Reynolds
number. On average,σα/α ∼ 5%.

4.2. Physical dissipation and transport

The dependence of the transport on the dissipation for various
field strengths is presented on Fig. 5 for all our standard resolu-
tion runs. This figure significantly extends the results reported in
(Lesur & Longaretti 2007). Several trends can be observed:

– For a given field strength, the dependence on the magnetic
Prandtl numberPm seems to follow an approximate power

4 For τ < S −1, the transport statistics depends very little on the bin-
ning time, while forτ > 100S −1, the statistics is too poor to be mean-
ingful.

law. For comparison with our previous work, power-law fits
are computed. The exponents are≃ 0.3, 0.7 and 0.8 for the
three values ofβ, in increasing order.

– The three more resolved runs confirm this trend: the trans-
port is substantially larger than other runs at the same field
strength (β = 103), but thePm dependence is consistent with
the other runs at the sameβ; this Pm dependence does not
seem to saturate even though a lower Prandtl number has
been achieved (1/16).

– At a given Prandtl number, the transport is decreasing with
decreasing field strength (increasingβ). This trend is ex-
pected from the scalingα ∝ β−1/2 that was first pointed out in
the initial work of Hawley et al. (1995). However, the varia-
tion of the index of the Prandtl number dependence with field
strength just discussed induces deviations from this scaling.

– There is a weaker, but systematic and significant increase of
the transport with increasing Reynolds number at any given
field strength and Prandtl number. This effect is real: for most
of our runs, this increase is larger than the standard deviation
in the transport, as quantified in the previous subsection. It is
also larger for the smaller Prandtl number values. This indi-
cates that the Prandtl number does not capture all the physics
of the correlation between transport and physical dissipation;
this point is further discussed below.

Our previous investigation was limited toβ = 100. In the
present work, the Prandtl number dependence of the transport
for this field strength is consistent with our earlier findings.
However, the transport observed here is reduced by a factor∼ 2;
this is a direct consequence of the reduced role played by the
channel mode in our horizontally extended simulation boxes.

For the lowest Prandtl number (1/4) and lowest field strength
(β = 104), only one point is reported in the graph. Our other
runs for this parameter have lower Reynolds numbers, and are
too close to the linear stability threshold of Eq. (23) to sustain
full 3D turbulent motions. These runs show 2D or quasi-2D be-
havior, with very different transport efficiency and behavior. The
data point we have retained might still be weakly affected by
such effects.

As pointed out above, Fig. 5 indicates that the spread with
Reynolds number at a given Prandtl number increases with de-
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Fig. 7.Composite figures showing the dimensionless growth rateσ/S of the channel mode for most of the various runs performed, asa function of
the dimensionless wavenumberVAkz/S . Each subplot is labelled by its Reynolds number and field strength (β). The various curves in each subplot
correspond toPm = 1/4, 1, 4, respectively (the growth rate increases with increasing Prandtl number). The crosses indicate the modes that are
represented in our simulation boxes, as a result of the boundary conditions (see text for a discussion).

creasing Prandtl number. In fact, two different regimes can be
noted, one forPm ≤ 1 and one forPm = 4.

At Pm = 4, the transport seems to be only weakly dependent
on Re (or Rm), at least for large enough Reynolds number: the
transport increases by 10% to 50% (depending onβ) while the
Reynolds number is multiplied by a factor of 4. This trend can
also be found in the work of Simon & Hawley (2009), where
the MRI turbulent transport in presence of a toroidal field isin-
vestigated with more emphasis on thePm > 1 regime. Their
Figs. 6 and 7 show that, forPm = 2 and 4 at least (the only ones
with enough data in thePm > 1 regime), the transport increases
steadily with the Reynolds number forRe . 1000 and much
more weakly forRe & 1000.

On the contrary, the spread in Reynolds number forPm ≤ 1
is substantial, and systematic. Such a spread was not detected in
our earlier investigation, due to the larger fluctuations intrans-
port related to the box aspect ratio, as discussed earlier. In fact,
this dispersion seems to be an effect of the magnetic Reynolds
number. To illustrate this point, the transport is represented on
Fig. 6 as a function ofRm (left panel) andRe (right panel), for
Pm ≤ 1; the colors describe different field strengths (β = 102 to
104 from top to bottom). The statistics in the number of points
at any givenRe or Rm is rather low; however, it appears quite

clearly that the dispersion of the points at any given Reynolds
number is substantially larger inRe (with varying Rm) than
in Rm (with varying Re). The largest Reynolds number data
strongly support this conclusion. Furthermore, the fits5 of the
transport as a function ofRm indicate theRm dependence of the
transport forPm ≤ 1 is very similar to itsPm dependence as
shown on Fig. 5. This strongly suggests that thePm dependence
observed on this figure is in fact mostly aRm dependence for
Pm ≤ 1. Including thePm = 4 data destroys this correlation,
which strengthens the idea that there are two regimes, depend-
ing on the Prandtl number (a feature that may be related to the
existence of a transition aroundPm = 2 in zero net flux shear-
ing box simulations). The relevant results of Simon & Hawley
(2009); although less detailed, are consistent with these findings
(see their Fig. 7).

5 The Re = 20000 data points have not been included in this fit to
make the comparison between the two dependences in the same condi-
tions.
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Fig. 8.The relation between dimensionless turbulent radial momentum transportα and the dimensionless growth rateσ/S . There is no correlation
at the largestβ andRe (left) while there is one for weaker field strengths (right).In the left panel, the transport and growth rate of theRe = 3200,
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5. Role of channel and parasitic modes

5.1. Linear physics and turbulent transport

Lesur & Longaretti (2007) concluded that there was no direct
connection between the Prandtl dependence of MRI-driven tur-
bulent transport and the linear growth rate of channel modes.
However, the transport was substantially less precisely deter-
mined than in the present investigation, and the issue is worth
reinvestigating.

To this effect, one needs to compute the linear instability
growth rates for the various runs we have performed. We fo-
cus on the growth rate of the channel mode; for one thing, it is
a guideline for the stability behavior of all unstable modes, and
for another, there is a particular interest in the behavior of this
specific mode. The resulting growth rates are numerically com-
puted from the dispersion relation recalled in section 3.1 and
represented in Fig. 7. The important features to note from this
figure are the following:

– The largest growth rate in the continuum limit is always rep-
resented or very nearly represented in the simulation, in spite
of the discreteness imposed by the vertical boundary condi-
tion (the corresponding modes are shown by crosses on the
figure). This ensures that the fastest growing channel mode
is always present in our simulations.

– For the largest field strength (β = 100), the growth rates
of all our simulations is very close to the ideal MHD limit
(σ = S/2). This is especially true of the two largest Reynolds
numbers (Re = 3200 andRe = 6400). Note in particular for
these runs that the growth rate changes by at most 10% while
the transport varies by a factor of more than 3 (see left panel
of Fig.. 8). As a consequencethe existence of the Prandtl and
magnetic Reynolds number dependences of the transport is
not related to the variation of the growth rate with physical
dissipation.

– For β = 1000, and for the two largest Prandtl numbers
(Pm = 1 and Pm = 4) and largest Reynolds numbers
(Re = 3200 andRe = 6400), the growth rate is again almost
independent of the dissipation. As there is only one captured
channel mode for theβ = 100vs four or five forβ = 1000,
the Pm,Rm dependence is not related to the number of cap-
tured channel modes in the simulation.

There is a sharp behavior difference of the transport with re-
spect to the linear MRI growth rate between the nearly ideal sim-
ulations performed atβ = 100 and the lowerβ values, as is ap-
parent when comparing the left and right panels of Fig. 8. In fact,
the whole spectrum of possible behaviors is covered here, from
substantial variation of the transport with very weakly varying
growth rates (left panel), or conversely substantial variation of
the growth rate while the transport is only weakly or mildly
changing (Pm = 4 data on the right panel) and intermediate situ-
ations where the two are more strongly correlated (the otherdata
points on the right panel). Therefore, although this situation is
more contrasted than indicated in Lesur & Longaretti (2007), the
conclusion stands: there is no clear and direct relation between
the effects of dissipation on linear physics and the nonlinear tur-
bulent saturation mechanism.

5.2. Quasi-linear physics and turbulent transport:

As indicated in the introduction and in section 3, it is oftenas-
sumed that the channel mode is responsible for most of the MRI-
driven turbulent transport in the presence of a net verticalmag-
netic field. In particular Pessah & Goodman (2009) argue that
the saturation of the channel mode by its parasites may help us
to understand the transport. In this section, we make use of our
numerical results to investigate these issues.

We first disprove the first statement: the channel mode does
not clearly dominate transport, especially at the maxima ofthe
transport, as should in the scheme depicted on Fig. 1. This is
shown explicitly in Fig. 9. A one-dimensional Fourier trans-
form of both the Maxwell and Reynolds stress along the az-
imuthal direction is shown in this figure. These transforms are
performed at a typical minimum and maximum of transport in
the transport history of two of our runs, namely the runs with
Re = Rm = 6400 atβ = 100 andβ = 104, respectively. The
transform is shown in terms of the wavenumbern = kφLφ/2π;
n = 0 corresponds to the transport due to the axisymmetric
modes (channel modes) present in the simulations, for the vari-
ous capturedkz. The other wavenumbers (n , 0) correspond to
non-axisymmetric modes. Channel modes dominate over other
individual wavenumbers forβ = 100. However, the cumulated
contribution of non-axisymmetric modes is dominant by a factor
. 2 at the maximum of transport for thisβ, and does not exceed
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history, while the lower ones describe a typical minimum. Both the Reynolds and Maxwell stress are shown. The transport due to non-axisymmetric
modes always dominates the transport due to the axisymmetric ones (channel modes). See text.

the non-axisymmetric contribution by more than∼ 30% at min-
imum transport. Forβ = 104, the cumulated non-axisymmetric
are always dominant by a factor∼ 6. Forβ = 103 (not shown),
the situation is somewhat intermediate between the two extreme
values presented in the figure, but the non-axisymmetric contri-
bution is again always dominant by a factor several.

In summary, except for minimum transport for the largest
field strength where axisymmetric and non-axisymmetric con-
tributions to the transport are comparable, the non-axisymmetric
contribution is always larger by a factor∼ 5. As a result, it seems
necessary at least to include non-axisymmetric modes in thepro-
cess sketched on Fig. 1.

Furthermore, the analysis of Pessah & Goodman (2009) is
inconsistent with our results, both from a qualitative and quan-
titative point of view. Our simulations always capture the fastest
growing channel mode, or very nearly so (see Fig. 7). Due to the
choice of aspect ratio, the fastest growing parasitic modesare
always captured as well. Finally, forβ = 100 andRe = 3200
and 6400 (even 1600 for the two largerPm values), the variation
of the transport withPm is quite substantial, whereas Pessah &
Goodman (2009) conclude that in these conditions, the transport
is independent of dissipation (see the left plot in Fig. 2 of their
paper; the three Reynolds numbers values mentioned correspond
to the three largest Elsasser numbers of their graph).

6. Discussion and conclusion

Perhaps the most significant new result of this work, disclosed
on Figs. 5 and 6, is the existence of a double regime separated
by a critical magnetic Prandtl numberPmc ∼ 1. ForPm < Pmc,
at a given field strength, the transport correlates mostly with Rm;
for Pm > Pmc, the transport seems to depend mostly onPm
and only weakly on eitherRe or Rm (onceRe & 103), although
a larger number ofPm values need to be probed on this issue.
It is tempting to assumePmc ≃ 2, as this is the critical value
for the zero mean field problem, but this identification requires
further work to be substantiated. The identification of thisdouble

dissipation regime was made possible by the increased accuracy,
with respect to our previous work, in the determination of the
transport averages. In the small Prandtl regime, in contrast to
the large one, our most resolved simulations show no sign of
convergence with respect to dissipation, although values of Rm
up to 20000 have been reached.

The role of linear physics and parasitic modes on transport
properties has also been investigated, and the major results on
these questions can be summarized as follows:

– The existence of the dependence of turbulent transport on
dissipation is not related to the role of dissipation on linear
modes growth rates.

– The existence of the correlation of transport with dissipation
is not related to the number of channel modes captured in the
simulations.

– Saturation of the channel modes growth by parasitic modes
is not the responsible for correlation of transport with dis-
sipation. This is hardly surprising as both the channel and
parasitic modes are large scale modes, that are expected to
be little affected by dissipation, whereas the trends of the
transport with dissipation are substantial.

– Furthermore, the transport is usually not dominated by ax-
isymmetric modes; these modes contribute at most at the
same level as non-axisymmetric modes for the strongest
fields investigated, and have negligible contributions forthe
weakest fields.

Note that all these results were obtained while the fastest
growing channel and parasitic modes were always captured, so
that they do not depend on limitations on this front.

It is worth pointing out that our results do not totally dis-
qualify a saturation of the unstable linear modes by the parasitic
modes; only the relevance of this process to the relation between
transport and physical dissipation has been disproved.

The role of the Prandtl number disclosed in this investiga-
tion makes more physical sense than a direct dependence of the
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transport onPm. Indeed, it is very likely that the critical value
Pmc relates to the switching of the magnetic and kinetic dissi-
pations scaleskη andkν in Fourier space: forPm < Pmc (resp.
Pm > Pmc), kη < kν (resp.kη > kν). For Pm ≪ 1, kη ≪ kν, the
flow at scalesk > or≫ kη in Fourier space is therefore purely
hydrodynamic. As information flows from smallk to largek in
this scale range, the flow should be independent ofRe, so that in
this regimeα = α(β,Rm) is expected. The transport may even
become independent ofRm at large enoughRm in the absence
of backreaction of the small scales on the large ones, and if en-
ergy exchanges are not strongly nonlocal in Fourier space. We
merely note here that in the context of homogeneous, isotropic,
incompressible MHD turbulence, all energy transfers are direct
(from smallk to largek); exchanges between magnetic and ki-
netic energy are nonlocal in Fourier space (Alexakis et al. 2007),
although this nonlocality seems to be of finite (albeit large) ex-
tent (Aluie & Eyink 2009). The situation is more complex in the
large Prandtl regime, as non-local transfers and small scale dy-
namo action might take place at scales smaller than the viscous
dissipation scale, and further investigations are required to char-
acterize the properties of the small dissipation limit, in particular
concerning the locality of transfers.

The behavior of MRI-driven turbulence with respect to these
various issues will be reported elsewhere, through the analysis of
energy transfers in Fourier space. More generally, investigating
the possible independence of transport with respect to dissipa-
tion in thePm ≪ Pmc or Pm ≫ Pmc limits requires to achieve
a double scale separation: one must first separate in Fourier
space the smallest injection scales (the scales which contribute to
the Reynolds and Maxwell stresses) from the largest dissipation
scales, and then the two dissipation scales themselves. This is
extremely demanding in terms of resolution. Our simulations in
the small Prandtl regime are consistent with a separation ofdis-
sipation scales nearly achieved. As a first step at small Prandtl
(the most critical regime for YSO disks), one can achieve one
or the other of the two scales separation. Such investigations are
underway and will be reported elsewhere.

These questions are critical for astrophysical disk dynamics,
where the Reynolds numbers are always very large (Re & 1010,
while the Prandtl number spans very small (. 10−5, YSO disks)
to very large values (& 105, AGN disks). Addressing these is-
sues requires to overcome a number of limitations in the sim-
ulations. Besides the questions of scale separation and nonlo-
cality of transfers in Fourier space just mentioned, the role of
compressibility and vertical stratification on these results must
be quantified. These questions can certainly be investigated in
shearing boxes, but global simulations are probably still largely
out of reach, due to the resolution demand. Also (and probably
as much importantly), different dissipation regimes must be an-
alyzed in the context of YSOs, namely the ambipolar and Hall
regime, which are known to have substantial effect on the linear
development of the MRI, while being relevant for large fractions
of YSO disks.
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