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ABSTRACT

The magnetorotational instability (MRI) is believed to be responsible for most of the angular momentum transport in accretion discs.
However, molecular dissipation processes may drastically change the efficiency of MRI turbulence in realistic astrophysical situations.
The physical origin of this dependency is still poorly understood as linear and quasi linear theories fail to explain it. In this paper,
we look for the link between molecular dissipation processes and MRI transport of angular momentum in unstratified shearing box
simulations, including a mean vertical field. We show that magnetic helicity is unimportant in the model we consider. We perform
a spectral analysis on the simulations tracking energy exchanges in spectral space when turbulence is fully developed. We find that
the energy exchanges are essentially direct (from large to small scale) whereas some non-linear interactions appear to be non-local
in spectral space. We speculate that these non-local interactions are responsible for the correlation between turbulent transport and
molecular dissipation. We argue that this correlation should then disappear when a significant scale separation is achieved, and we
discuss several methods by which one can test this hypothesis.

Key words. accretion, accretion disks – instabilities – protoplanetary disks – turbulence

1. Introduction

The transport of angular momentum in astrophysical discs is a
central problem in accretion theory. To explain disc lifetime and
accretion rate, it is often assumed that these objects are turbulent.
Turbulence is then included in global models using a turbulent
viscosity prescription as in the α disc model (Shakura & Sunyaev
1973).

The origin of this turbulence has been the subject of many
debates over the past decades. It is now generally assumed that
the magnetorotational instability, or MRI for short (Velikhov
1959; Chandrasekhar 1960; Balbus & Hawley 1991), is re-
sponsible for disc turbulence, although hydrodynamic pro-
cesses might also be at work (Lesur & Ogilvie 2010; Lesur
& Papaloizou 2010). Although MRI generated turbulence is
generally efficient at transporting angular momentum (Hawley
et al. 1995), recent results have shown a strong sensitivity for
MRI turbulence on small-scale dissipation processes (Lesur &
Longaretti 2007; Fromang et al. 2007), and in particular on the
magnetic Prandtl number Pm (ratio of microscopic viscosity
to resistivity). This effect, called the α − Pm correlation, casts
doubts on the actual efficiency of the MRI in realistic situa-
tions since Pm can vary by several orders of magnitude in discs
(Balbus & Henri 2008). Several attempts have been made to ex-
plain this correlation, whether from the linear theory of dissipa-
tive MRI modes (Pessah & Chan 2008) or from the quasi-linear
parasitic modes theory (Pessah & Goodman 2009). However,
these approaches were shown to be unsuccessful when com-
pared to high Reynolds number simulations (Longaretti & Lesur
2010). Instead, Longaretti & Lesur (2010) suggested that the

α − Pm correlation could be due to the nature of the MHD cas-
cade in MRI generated turbulence, in which one might expect
inverse cascades and/or non-local interaction in spectral space.
This kind of process would allow for direct communication be-
tween the injection scales (transport scales) and the largest dis-
sipation scale (either resistive or viscous).

The purpose of the present work is to investigate some of
the conjectures presented by Longaretti & Lesur (2010) regard-
ing the nature of the MHD turbulent cascade in accretion discs.
To this end, we consider several of the high-resolution simula-
tions presented by Longaretti & Lesur (2010), and we analyse
the energy exchanges in spectral space. This paper is organised
as follows. We describe our model, equations, and the spectral
analysis we use in Sect. 2. Section 3 is the core of this paper and
discusses our numerical results. The implications of these results
are presented in the final section.

2. Model and spectral analysis

2.1. Equations

In the following, we adopt the shearing box model that accu-
rately represents the local physics of an accretion disc (Hawley
et al. 1995; Balbus 2003; Regev & Umurhan 2008). The adopted
coordinate system is such that x = (r − r0) and y = r0φ,
where r0 is the fiducial radius of the shearing box in the disc
and φ the azimuthal coordinate in the rotating frame. The ve-
locity can be decomposed as a mean velocity plus a fluctuating
part U = −qΩxey + u, where Ω is the local rotation rate and
q = 3/2 for a Keplerian disc rotation profile. As a simplification,
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we assume the flow is incompressible, which corresponds to the
“small shearing box limit” of Umurhan & Regev (2004). The
equations of motion then read as

∂tu = −u · ∇u − ∇Π + B · ∇B + qΩx∂yu

+2Ωvyex − (2 − q)Ωvxey + ν∇2u, (1)

∂t B = −u · ∇B + B · ∇u
+qΩx∂yB − qΩBxey + η∇2B, (2)

∇ · u = 0,

∇ · B = 0,

where Π is the total pressure, ν the viscosity, and η the ohmic
resistivity. In the following, we impose a mean vertical field B0,
which will be conserved during the evolution of the flow thanks
to the shearing-sheet boundary conditions. It should be noted
that the magnetic field strength is expressed in Alfvén speed for
simplicity.

Several dimensionless numbers characterise the equations of
motions. In this paper, we use:

– the amplitude of the imposed mean vertical field measured
by

β =
(qΩ)2L2

z

B2
0

(3)

where Lz is the vertical box size. This definition mimics the
usual plasma β in vertically stratified discs obeying the ver-
tical hydrostatic equilibrium constraint cs ∼ ΩLz;

– the viscous Elsasser number:

Λν =
B2

0

Ων
, (4)

which is related to the Reynolds number used in Longaretti
& Lesur (2010) by Λν = qRe/β;

– the resistive Elsasser number:

Λη =
B2

0

Ωη
, (5)

connected to the magnetic Reynolds number by a similar re-
lation;

– the magnetic Prandtl number:

Pm =
ν

η
=
Λη

Λν
, (6)

which compares the amount of viscous and resistive dissipa-
tion.

2.2. Fourier transform in sheared flows

It is convenient to introduce the shearing frame (x′, y′, z′):

x = x′,
y = y′ − qΩtx′,
z = z′.

Writing the equations of motions in the sheared frame allows us
to eliminate the explicit spatial dependency:

∂tu = −u · ∇u − ∇Π + B · ∇B
+2Ωvyex − (2 − q)Ωvxey + ν∇2u, (7)

∂t B = −u · ∇B + B · ∇u
−qΩBxey + η∇2B, (8)

where u and B are now assumed to be functions of x′ so that the
nabla operator expression becomes

∇ = ex(∂x′ + qΩt∂y′) + ey∂y′ + ez∂z′ . (9)

In the sheared frame, the shearing sheet boundary conditions
make every physical quantity X(x′) periodic so that X can be
expanded in Fourier series:

X(x′) =
∑

k′
Xk′ exp

(
ik′ · x′) =∑

k(t)

Xk(t) exp (ik(t) · x) . (10)

This relation defines the time dependent unsheared wave vectors:

kx = kx′ + qΩky′t, (11)

ky = ky′ , (12)

kz = kz′ . (13)

As expected, the application of the ∇ operator to X(x′) corre-
sponds to a multiplication of its Fourier components by ik(t).

This definition of the unsheared wave vectors with the
Fourier decomposition (10) is usually referred to as a “shearing
wave” decomposition of a sheared flow. It was first used by Lord
Kelvin to study the stability of sheared flows (Thomson 1887)
and later in the astrophysical context by Goldreich & Lynden-
Bell (1965) for spiral arms of galaxies.

2.3. Shell filter decomposition

Following Frisch (1995) and Alexakis et al. (2007), one defines
shell-filtered quantities in the unsheared Fourier space. At any
given time, a series of linearly spaced shell sizes K is defined
from K1 to Kmax; by construction δK = Kj − Kj−1 is the shell
width (for any j). We define the shell-filtered field XK j in shell
Kj by

XK j =
∑

K j−δK/2<k≤Kj+δK/2

Xk exp (ik · x) . (14)

It should be noted that, since k depends on time, the exact num-
ber and the distribution of the modes entering the above formula
for any given K might vary in time, adding an extra complication
compared to the homogeneous case of Alexakis et al. (2007).
This point is discussed in the appendices.

2.4. Energy transfer equations

The transfers we are interested in relate to the equations of
the kinetic and magnetic energies. These shell-restricted, box-
averaged equations involve a number of transfer functions that
are introduced along with the related equations. We follow here
the logic of Alexakis et al. (2007) and extend it to shear flows.
The analysis of transfers gives indications about the locality of
interactions in Fourier space.

Because of the incompressibility condition, energy transfers
(but also stress and magnetic helicity) involve only at most the
product of three components of the velocity and magnetic fields
and their derivatives. Therefore, couplings in Fourier space only
depend on triads of wave vectors, noted k1, k2, k3. The closing
condition (k1+ k2 = k3) furthermore imposes that at least two of
the wave vectors ki are of the same magnitude; the third one can
be either much smaller (implying non-local couplings through
large scales) or of the same magnitude as the other two (implying
locality of couplings in Fourier space).
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Using the equations of motion in the sheared frame (7–8),
one can derive the equation for the shell-filtered energy density:

∂tEK =
∑

Q

[Tvv(Q,K) + Tbv(Q,K)] + S v,K

+qΩIv,K − νDv,K (15)

∂t MK =
∑

Q

[Tbb(Q,K) + Tvb(Q,K)] + S b,K

+qΩIb,K − ηDb,K (16)

where EK = 〈u2K/2〉 and MK = 〈B2
K/2〉. In the above expression,

we have defined the transfer functions by

Tvv(Q,K) = −〈uK · (u · ∇)uQ〉,
Tbb(Q,K) = −〈BK · (u · ∇)BQ〉,
Tbv(Q,K) = 〈uK · (B · ∇)BQ〉,
Tvb(Q,K) = 〈BK · (B · ∇)uQ〉,
where 〈 . 〉 denotes an spatial average on the shearing box vol-
ume, and Ti j(Q,K) represents the transfer from energy “i” (ki-
netic or magnetic) from shell Q to energy “ j” (kinetic or mag-
netic) in shell K. We note that Ti j(Q,K) = −T ji(K,Q), so that
whatever is taken from one shell of one type is totally trans-
ferred to the other shell. Similarly, Tii(K,K) = 0: there is no
effective transfer from a shell to itself, as should be. This justi-
fies the identification of these quantities as shell-to-shell energy
transfer functions; in fact, the third member of a triad is only a
relay in effective energy exchanges between shells Q and K (for
a more detailed discussion, see Verma 2004). In these expres-
sions, uK · uK = uK · u has been used, as well as u =

∑
Q uQ.

The next terms in the shell energy budget involve energy
transfers due to the mean shear S v,K and S b,K . These terms are
singular in time as they correspond to energy fluctuations due to
wave entering or leaving the shell K as k(t) evolves. They can be
formally defined by

S X,K =
∑

k′

X∗k′Xk′

2
δ(t − tk′ )εk′

=
∑

k′

qΩkykx(t)

|k(t)|
X∗k′Xk′

2

×
[
δ
(
|k(t)| − K + δK/2

)
− δ
(
− |k(t)| + K + δK/2

)]
,

where tk′ is the instant when the wave k′ enters or exits
the shell K and εk′ = ±1 for an entering/exiting wave (see
Appendices A, B).

The remaining terms in the shell kinetic and magnetic energy
budgets,

Iv,K = 〈vx,Kvy,K〉,
Ib,K = −〈Bx,K By,K〉,

Dv,K = 〈(∇ × uK)2〉,
Db,K = 〈(∇ × BK)2〉,
represent the energy injection through the shear and dissipation
through viscosity and resistivity in shell K.

2.5. Energy fluxes in spectral space

Using the transfer function defined above, it is possible to intro-
duce energy flux in Fourier space. In this work, we will use the

following fluxes:

Fv(K0, t) =
Kmax∑
K=K0

∑
Q

Tvv(Q,K) (17)

Fb(K0, t) =
Kmax∑
K=K0

∑
Q

Tbb(Q,K) (18)

Fx(K0, t) =
Kmax∑
K=K0

∑
Q

Tvb(Q,K) + Tbv(Q,K) (19)

Fs,v(K, t) =
∑

k′

qΩkykx(t)

|k(t)|
V∗k′ · Vk′

2
δ
(|k(t)| − K

)
(20)

Fs,b(K, t) =
∑

k′

qΩkykx(t)

|k(t)|
B∗k′ · Bk′

2
δ
(|k(t)| − K

)
(21)

where Fv, Fb, Fx, and Fs are respectively the kinetic, magnetic,
exchange, and shear fluxes. The shear fluxes are evaluated in
K = K0 + δK/2. Each of these fluxes computes the amount of
the energy transferred from shells K ≤ K0 to shells K > K0 (i.e.
the flux of energy “through” the outer boundary of shell K0).
The kinetic (respectively magnetic) fluxes compute transfers of
kinetic to kinetic (respectively magnetic to magnetic) energy,
whereas the exchange flux is a flux of total energy (magnetic
plus kinetic) in which magnetic and kinetic energy are constantly
transformed into one another. Shear fluxes are singular in time
as they are non zero only when a wave enters or leave shells
K > K0. It should be noted that shear fluxes are statistically
non zero only for anisotropic turbulence, as the amplitude of any
mode (kx, ky, kz) should be statistically equal to the amplitude of
the mode (−kx, ky, kz) in isotropic turbulence.

These fluxes allow one to check the direction of the en-
ergy transfers due to the non-linear terms. Indeed, a direct en-
ergy transfer (large to small scale) implies a positive flux with
the above definition, whereas an inverse cascade can be charac-
terised by a negative flux.

2.6. Numerical method

Equations (1) and (2) are solved using the Snoopy code. Snoopy
is a 3D spectral (Fourier) method based on the shearing-wave
decomposition (11)–(13). The Fourier transforms are evaluated
using the FFTW 3 library, with both MPI and OpenMP par-
allelisation techniques. Non-linear terms are computed using a
pseudo-spectral algorithm (Canuto et al. 1988) and antialiasing
is enforced using the “3/2” rule. Time integration is performed
by a third-order, low-storage Runge-Kutta scheme for non-linear
terms, whereas an implicit scheme is used for viscous and re-
sistive terms. This spectral scheme uses a periodic remap algo-
rithm in order to continuously follow the smallest wave number
of the system in the sheared frame |k(t)| < kmax (see Umurhan
& Regev 2004, Appendix C for a complete description of the
periodic remap algorithm). The periodic remap method used in
this code is different from the continuous remap method used by
Lithwick (2007). Our main motivation in implementing a peri-
odic remap is the possibility of using the 3/2 antialiasing rule
and power of 2 grid sizes1 for which Fourier transform and par-
allelization methods are more efficient. This code or its variant
1 If the number of point in one direction is a multiple of 2, waves at
the Nyquist frequency do not have any properly defined phase. This is
not a problem for classical spectral methods or for the periodic remap
method, since the Nyquist frequency is either in the dissipation range
or in the antialiasing dump zone. However, when using a continuous
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Fig. 1. Energy spectrum at Pm = 0.0625 (left) and Pm = 0.25 (right). In the Pm = 0.25 case, a power-law spectrum is observed for the kinetic
energy corresponding to a k−3/2 spectrum.

has been used in several context, including the MRI (Longaretti
& Lesur 2010) and the subcritical baroclinic instability (Lesur
& Papaloizou 2010). It is available for download on the author’s
website.

3. Results

3.1. Simulations parameters and averaging procedure

The spectra and transfers presented in this section were all de-
rived from two simulations of an MRI saturated state. These runs
correspond to the Pm = 0.25 and Pm = 0.0625 high-resolution
runs discussed in Longaretti & Lesur (2010). Both runs have a
resolution2 of Nx×Ny×Nz = 768×384×192 with a box aspect-
ratio Lx × Ly × Lz = 4 × 4 × 1. We imposed a mean vertical
field in the box with β = 103 and Λν = 30 (Re = 2 × 104).
Each simulation was integrated for 50 orbits starting from ran-
dom noise, and the spectra were averaged from the last 40 or-
bits to remove any influence of the initial conditions. The two
simulations considered in this section only differ by their ohmic
resistivity, where the Pm = 0.25 run has Λη = 7.5 (Rm = 5000)
and the Pm = 0.0625 run has Λη = 1.87 (Rm = 1250).

The statistical average of any quantity X of interest 〈X〉stat
should in principle be computed on different realisations but are
evaluated in practice as usual via an ergodic hypothesis:

〈X〉stat = lim
T→∞

1
T

∫ T

0
X(t)dt � 1

T

∫ T

0
X(t)dt �

∑
i

X(Ti), (22)

where 0 ≤ Ti ≤ T are a sufficiently large number of instants of
flow snapshots.

The spectra were averaged in the spherical shells introduced
in (14). The shells were defined so that Kn = 2πn/Lz and δK =
2π/Lz. This means that some power is present in the shell K =
0, as it contains large-scale horizontal waves with no vertical
structure. The shell-integrated spectra and transfers obtained by
this procedure are then averaged in time over 40 instantaneous

remap method, the Nyquist frequency waves are remapped to large-
scale waves in physical space, which might lead to unphysical be-
haviours.
2 The quoted resolution now includes the aliasing domain. This con-
vention differs from the one adopted in our previous papers, where only
the “useful” domain was accounted for when quoting resolutions.

snapshots (1 snapshot per orbit). For simplicity, we renormalized
the wavevectors K so that K′ = K/2π on all the plots in this
section. Shells K > 32 are incomplete in the y direction since
the resolution per scale height is lower in that direction. This is
not a problem since these shells are in the dissipative range, and
high ky modes are weaker than the equivalent high kx/kz modes
due to the anisotropy of MRI turbulence (see Sect. 3.2). With
our procedure, one can reconstruct the box-averaged quantities
by summing the spectra over the integers K.

The shear transfer terms Fs,v and Fs,b are computed in a spe-
cial way. Indeed, one cannot compute Fs for a given shell and
snapshot time numerically because of the δ functions. Instead,
we introduce a shell-averaged flux:

Fc
s (K0, t) =

1
δK

∫ K0+δK/2

K0−δK/2
dK Fs(K, t). (23)

As 〈Fs〉stat depends only on K (the turbulence is statistically sta-
tionary) and varies little with K on scales of the order of δK, one
has 〈Fs〉stat �〈Fc

s 〉stat. One can therefore use Fc
s in the averaging

procedure described above to estimate 〈Fs〉stat. The numerical
flux we obtain is then averaged over time following the proce-
dure described above.

3.2. Spectra and energy injection

We first present the energy spectra in Fig. 1 for Pm = 0.0625
and Pm = 0.25. The standard deviation, as measured from 40
instantaneous snapshots, is shown as a shaded region on these
spectra. This dispersion stems from temporal fluctuations of the
turbulence intensity. The most obvious feature observed in these
spectra is the presence of a k−3/2 spectrum for the kinetic energy;
the traditional Kolmogorov scaling k−5/3 appears to be excluded
in the Pm = 0.25 run, but it cannot be strictly excluded in the
Pm = 0.0625 run. A k−3/2 power law was also found in zero
net-flux MRI turbulence (Fromang 2010), and although the spec-
trum shape differs, our spectra being exempt of any “bump” at
intermediate scale. As our runs do not resolve the inertial range
of the turbulent cascade yet, these apparent spectral shapes re-
quire some comment. The presence of a k−3/2 spectrum is usu-
ally related to the theoretical argument of Iroshnikov (1963)
and Kraichnan (1965) (or IK). However, MRI turbulence is not
strongly magnetized, so it falls outside the domain of validity of
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Fig. 2. Energy Injection spectrum at Pm = 0.0625 (left) and Pm = 0.25 (right). Although the injection is significantly reduced at small Pm, shape
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the IK phenomenology. Moreover, the magnetic field spectrum
does not follow any well-defined power law, as expected from
the wide and overlapping injection (see below) and dissipation
spectra, indicating that the spectrum we get is not an inertial
spectrum. We are therefore forced to conclude that although the
kinetic spectrum looks like an IK or Kolmogorov spectrum, it
is described neither by the IK or Kolmogorov phenomenologies
nor by recent extensions (Boldyrev 2005).

Changing the magnetic Prandtl number does not change the
power-law index for the kinetic energy. We note, however, two
major effects: the overall spectra amplitudes are reduced and
the dissipation scales move to larger scale as one reduces Pm.
These two effects are expected since it is known that smaller Pm
turbulence is associated with lower transport efficiency hence a
weaker injection of energy in the cascade. This effect is con-
firmed by the injection spectra (Fig. 2), which are significantly
reduced at smaller Pm.

We note that the energy injection peaks at the largest scale
of the box, although injection still exists at k ∼ 10. Therefore,
although a power-law spectrum is found for 2 < k < 10, this
spectrum cannot be described as an “inertial range” since energy
is still injected at these intermediate scales.

We present in Fig. 3 bidimensional spectra of magnetic en-
ergy for Pm = 0.25. Kinetic spectra are not shown as they

share essentially the same properties. These spectra were ob-
tained by averaging 3D energy spectra over 40 orbits and tak-
ing the average in the kx, ky, or kz directions. We first note a
strong anisotropy in the (kx, ky) plane which indicates that trail-
ing shearing waves (kxky > 0) have more energy than leading
shearing waves (kxky < 0). As we see below, this results in non-
zero shear transfer terms.

Looking at the aspect ratio of the energy contours, we see
that turbulence is slightly less anisotropic at large k than at small
k (the contours are less “elongated” at large k), although com-
plete isotropy is not yet reached in this simulation. Let us, how-
ever, point out that the spectral truncation (due to the finite res-
olution) tends to deform the contours at large k, which might
accelerate the return to isotropy. One should therefore perform
higher resolution runs (or at least double Ny) in order to confirm
this return to isotropy. In principle, one would expect a return
to isotropy at small scales if the non-linear transfer terms domi-
nate all the other terms (injection, body forces) at large enough
k. However, this is not always the case (e.g. in the presence of a
strong mean magnetic field).

The (kx, kz) spectrum shows that turbulence is essentially
isotropic at large k in that plane. For k ∼ 1, we find a slight
anisotropy where modes with kz � 0 are favoured. This is prob-
ably a result of large-scale MRI unstable modes, which all have
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Fig. 4. Average relative magnetic helicity (left) and cross helicity (right) spectra in the Pm = 0.25 case (black lines). Instantaneous spectra are
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kz � 0 in the presence of a mean vertical field. Note that this
anisotropy disappears very quickly as one moves to larger k.

3.3. Magnetic helicity and cross helicity

The presence of kinetic and/or magnetic helicity in MHD tur-
bulence is often invoked to explain large-scale dynamo action.
Indeed, it is known that an inverse cascade of magnetic helicity
can appear in fully developed helical MHD turbulence (Frisch
et al. 1975), potentially leading to a buildup of magnetic en-
ergy on a large scale. Some kinematic effects often used in
mean field dynamos, like the α effect (Moffatt 1978), also lead
to the generation to large-scale helical fields (Brandenburg &
Subramanian 2005). Magnetic helicity has therefore been sug-
gested as a possible driving mechanism (or at least a tracer) of
disc dynamos (Blackman 2010). Moreover, several authors have
tried to link magnetic helicity conservation and magnetic helic-
ity flux to the saturation properties of the MRI (Vishniac 2009;
Käpylä & Korpi 2010).

We define the magnetic helicityHM = 〈A·(B−〈B〉)〉, where
A is the vector potential of the fluctuation (this expression is
gauge-invariant in the shearing box), and 〈·〉 denotes a volume
average. We show in Fig. 4 (left) the spectrum of relative he-
licity K|HK |/2MK for the Pm = 0.25 run. As can be seen, the
relative helicity is less than 1% for all scales of these simula-
tions. Moreover, this quantity is strongly fluctuating and its sign
is not well defined3.

These results tend to indicate that magnetic helicity is dy-
namically unimportant in the unstratified simulations presented
here and that MRI saturation is not related to a magnetic quench-
ing effect due to magnetic helicity accumulated at large scale.
This was to be expected in the first place as unstratified shear-
ing boxes (both with and without mean field) are mirror sym-
metric; however, this picture might change when stratification is
included.

Another quantity that might play a role in the MHD turbu-
lence cascade is the cross helicity HC = 〈u · b〉 (see e.g. Perez
& Boldyrev 2010). When cross helicity is non zero, the energy
of Alfvén waves travelling along and against the mean field are
not equal. For this reason, turbulence with cross helicity is often
called imbalanced turbulence. Locally imbalanced turbulence is

3 The absolute value of the relative magnetic helicity is plotted in
Fig. 4.

often observed in strong MHD turbulence, where the guide field
is weaker than the turbulent fluctuations. To check whether un-
stratified MRI turbulence was imbalanced, we computed cross-
helicity spectra of our simulations (Fig. 4, right). As for the mag-
netic helicity, we find that the relative cross helicity is small
(<10−1) and highly fluctuating at all scales. This tends to indi-
cate that MRI turbulence is not imbalanced in our setup. As for
magnetic helicity, this result was to be expected because of the
mirror symmetry properties of the unstratified shearing box. The
absence of any significant cross-helicity also shows that energy
spectra in Elsässer variables z± = v±b are equal and proportional
to the kinetic plus magnetic energy spectrum.

3.4. Energy fluxes

The energy fluxes (17)–(21) allow one to check the average di-
rection of the energy flux in spectral space. To explain the de-
pendence of the turbulent transport on Pm, several authors (e.g.
Lesur & Longaretti 2007; Fromang et al. 2007) have suggested
that an inverse cascade driven by resistive and viscous scales
might be at work. Since magnetic helicity is irrelevant to this
problem, only the kinetic, magnetic, exchange, and shear fluxes
are important for the unstratified shearing box and should be
checked for an inverse cascade.

We present the energy fluxes at Pm = 0.25 and Pm = 0.0625
in Fig. 5. Standard deviations are shown for kinetic and magnetic
fluxes as shaded regions. These deviations are computed follow-
ing the procedure described in Sect. 3.2. We always find positive
fluxes, meaning that the non-linear transfers are forward or di-
rect (from large to small scales), on average. However, at larger
scale, the standard deviation may allow for an inverse cascade
of kinetic energy in the Pm = 0.25 run. This indicates that, al-
though the kinetic cascade is direct on (time) average over most
of the spectrum, inverse cascades can sometimes be observed on
the largest scales. This inverse cascade of kinetic energy could
be an explanation for the large-scale hydrodynamic structures
that are observed in several MRI turbulence simulations, such as
vortices (Fromang & Nelson 2005) and zonal flows (Johansen
et al. 2009).

We also observe that the energy cascade is dominated by the
magnetic and exchange fluxes down to the resistive scale, since
the kinetic flux and shear fluxes are almost negligible. The shear
fluxes are also always positive. This is due to the anisotropy
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Fig. 5. Energy fluxes as computed from Eqs. (17)–(21) at Pm = 0.0625 (left) and Pm = 0.25 (right). Energy fluxes are always direct (from large to
small scales) and dominated by magnetic and exchange fluxes.
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Fig. 6. Zoom on the energy fluxes in the dissipative range for Pm =
0.0625 (log-log representation with K > 10).

of MRI turbulence in which shearing waves statistically have a
larger amplitude than leading waves (see Sect. 3.2).

In the Pm = 0.0625 case, the kinetic flux becomes dominant
at subresistive scale (K � 10), indicating that the cascade be-
comes essentially hydrodynamic below the resistive scale, as ex-
pected for low Pm MHD turbulence (see also Fig. 6). Moreover,
the kinetic flux dominates the kinetic shear transfer term at least
for the larger k, which indicates that, as far as the non-linear
transfers are concerned, the cascade is close to isotropic at small
scales, as noted in Sect. 3.2. Finally, none of the fluxes reaches
a plateau at intermediate scales, which would be expected in the
presence of an inertial range. This indicates that the k−3/2 kinetic
spectrum found in Fig. 1 is not, properly speaking, an inertial
spectrum.

3.5. Energy transfer locality

To test the locality of the energy transfer in spectral space, we
plotted the transfer functions in the Pm = 0.25 case for sev-
eral values of K: at the injection scale (K = 1), in the inter-
mediate range (K = 5) and in the resistive range (K = 20).
We first plot the kinetic to kinetic and magnetic to magnetic
transfers in Fig. 7. The transfers Tvv and Tbb obtained at all
scales perfectly illustrate local energy exchanges. Energy is

taken from wavenumbers slightly smaller than K and is trans-
ferred to wavenumbers slightly larger than K, except (not sur-
prisingly) for K = 1. As expected from the energy flux, we also
find that the cascade is direct, with energy going from small to
large wavenumbers, Finally, the Tvv transfers are always much
smaller than the Tbb transfers above the dissipation range, il-
lustrating the magnetically dominated energy transfer described
above.

We next plot the exchange transfers Tvb and Tbv in Fig. 8.
We note in this case that the scales involved in each transfer
are much broader. In particular, Tvb measured at the resistive
scale (K = 20) has contributions coming from all scales, in-
cluding the largest injection scales. This effect can also be seen
in Tbv(Q,K = 1), which exhibits a very long tail toward large k,
down to the resistive scale. Comparing these transfers to Tvv and
Tbb directly show that these terms are highly non-local. In turns,
this indicates that the exchange flux computed in the previous
section is non-local. The results in the Pm = 0.0625 case are not
shown here as they are very similar to the Pm = 0.25 case.

We note that despite the non-locality of the energy ex-
changes, the overall cascade direction is still forward, confirm-
ing our previous interpretation regarding the exchange flux. We
also note that the shear transfer terms are local by definition,
since they transfer energy to neighbouring shells.

4. Summary and discussion

In this paper, we have described some properties of the turbulent
cascade found in incompressible MRI turbulence. We showed
that compared to isotropic MHD turbulence, the presence of a
mean shear led to several new transfer terms and introduced a
source of anisotropy. We computed the effect of each non-linear
term and found that all the terms contribute to a direct cascade
of energy (from large to small scales), but some terms involved
non-local transfers in Fourier space. This lack of locality is due
to the Lorentz force and to the magnetic stretching term of the in-
duction equation (combined here in the exchange transfer term).
We also showed that magnetic helicity, although non zero, was
totally negligible and should not play any role in the behaviour
of MRI turbulence.

The presence of non-local transfer terms in the MRI turbu-
lent cascade is the most important finding of this work. It in-
dicates that, in principle, the large scales – responsible for the
transport – can directly interact with the small dissipative ones
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Fig. 8. Transfers function Tvb(Q,K) and Tbv(Q,K) in the Pm = 0.25 run for K = 1; 5; 20. These transfers are non-local in Fourier space (see text).

through non-linear terms. This direct interaction could of course
explain the correlation observed between Pm and the turbulent
transport of angular momentum α (Longaretti & Lesur 2010).
However, it should be pointed out that non-local transfers have
already been found in isotropic MHD turbulence (e.g. Alexakis
et al. 2007). Therefore, MRI turbulence is not special regarding
the nature of these non-linear transfers.

Although some non-linear terms are found to directly con-
nect injection and dissipation scales in current simulations, one
might wonder if this could be true in a more realistic setup where
the injection and dissipation scales are separated by a wide range
of scales (typically 1010). In other words, what is the maximum
scale separation these terms can connect? A partial answer to
this question is given by Aluie & Eyink (2010). To describe their
result, let us define the structure functions:

δvl,p = 〈|u(x + l) − u(x)|p〉. (24)

In the inertial range the structure function depends only on |l| and
δvl,p ∝ lζp , where ζp is the structure function index of order p. It
is then possible to derive an upper bound to the non-linear trans-
fer terms thanks to the Hölder inequality. Applying this proce-
dure to the non-local transfer Tub, Aluie & Eyink (2010) found

|Tub(Q,K)| < (const.)Q1−ζu
3 /3K−2ζb

3 /3, (25)

where Q and K are dyadic (octave) wavenumbers and K > Q/2.
Similar terms can be obtained for Tbu and K < Q/2. If one as-
sumes Iroshnikov-Kraichnan theory, one has ζu

3 = ζ
b
3 = 3/4. In

constrast, considering Goldreich-Sridhar (GS) phenomenology,
which should be valid for MRI turbulence, one gets ζu

3‖ = ζ
b
3‖ =

3/2 and ζu
3⊥ = ζ

b
3⊥ = 1. In all these cases, (25) indicates that the

non-locality of these transfer terms cannot extend over several
decades, with a typical scaling Tub(Q,K) ∼ ε(K/Q)−2/3 for GS
turbulence (with ε the usual turbulence energy injection rate).

We therefore conclude that the non-locality in Fourier space
is somewhat relative. Although Tub and Tbu are non-local com-
pared to Tuu and Tbb, these terms should be local when one

considers transfers over several decades. Unfortunately, sepa-
rating the injection scale from the dissipative scales by several
decades is numerically difficult. It is even harder for MRI tur-
bulence since the injection term is rather broad in spectral space
compared to forced turbulence. Assuming the injection and dis-
sipation scales, both spread over one decade in Fourier space,
one typically needs 20 0003 simulations to get a 2-decade iner-
tial range in which non-local transfers are significantly reduced.
This kind of resolution is for the moment out of reach of the best
computational facilities.

Nevertheless, we can conjecture that if the Pm−α correlation
is actually due to the non-local transfers, then it should vanish
when the injection and dissipation scales are well separated, as is
the case in some accretion discs. Although this conclusion looks
rather reassuring for the relevance of today simulations regard-
ing small-scale dissipation, it tells us neither what the asymptotic
value of α is in this limit nor how MRI turbulence behaves when
the scale separation is not achieved, a situation that probably oc-
curs in the inner regions of protoplanetary discs where Λη is not
very large.

Appendix A: Shearing-wave approach to the shear
transfer term

The shell-filter decomposition can be properly defined using a
projector operator Π on the field F in the sheared frame:

[ΠK j (F)](x′, t) =
∑

k′∈Σ j(t)

Fk′ (t) exp
(
ik′ · x′) (A.1)

where Σ j is the shell containing all the shearing waves with a
norm between Kj − δK/2 and Kj + δK/2:

Σ j(t) =
{
Kj − δK/2 < |k′ + qΩk′ytex | ≤ Kj + δK/2

}
. (A.2)

Our notation indicates that the projected F is function of space
and time. Also, [ΠK j (F)] is real for real fields F.
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Fig. A.1. Evolution of shearing waves in the presence of a fixed shell
in Fourier space. Some waves can either enter or exit the shell as time
evolves (see text).

As can be seen, the waves included in Σ j(t) change with time.
This is to be expected since shearing waves should enter and exit
shells as does the one defined above (see Fig. A.1). As a result,
the projector operator ΠK j has an explicit time dependence that
leads to non-trivial transfer effects. The above projector operator
can be written using Heaviside function Θ:

[ΠK j (F)](x′, t) =
∑

k′
Θ
(
|k(t)| − Kj + δK/2

)

× Θ
(
− |k(t)| + Kj + δK/2

)
× Fk′ (t) exp

(
ik′ · x′) , (A.3)

where we have defined k(t) as a function of k′ as in Eqs. (11)–
(13).

One next defines the energy within a shell EF
K j
= 〈Π2

K j
(F)〉/2

where 〈·〉 denotes a volume average. The energy equation then
reads as

dEF
K j

dt
=
〈
ΠK j (F)

∂ΠK j(F)

∂t

〉
=
〈
ΠK j (F)ΠK j(∂tF)

〉
+
〈
ΠK j (F)

[
∂tΠK j

]
(F)
〉
. (A.4)

The first term on the righthand side leads to the terms obtained
in isotropic turbulence (Alexakis et al. 2007) and introduced in
Eqs. (15) and (16) along with the injection terms Iv,K and Ib,K .
The second one, however, comes from shearing waves entering
and exiting the shells. Using (A.3), it is possible to obtain an ex-
act (though singular) expression of the operator time derivative:

∂t
[
ΠK j

]
(F)=

∑
k′

qΩkykx(t)

|k(t)|
×
[
δ
(
|k(t)|−Kj + δK/2

)
− δ
(
− |k(t)| + Kj + δK/2

)]
× Fk′ (t) exp

(
ik′ · x′) . (A.5)

This expression can be interpreted easily. As an example, let us
consider waves with kykx(t) > 0. Then, the first δ function repre-
sents waves entering the shell, the second delta represents waves
leaving the same shell, and the factor in front of the delta func-
tions quantifies the “flux” of waves going through a shell bound-
ary. This interpretation is similar to the phenomenological pic-
ture one can have of waves travelling through a fixed shell in the
unsheared Fourier space (Fig. A.1).

We then deduce from (A.4)

dEX
K j

dt
= 〈ΠK j (F)ΠK j(∂tF)〉 (A.6)

+
∑

k′

qΩkykx(t)

|k(t)|
F∗k′Fk′

2

×
[
δ
(
|k(t)| − Kj + δK/2

)
− δ
(
− |k(t)| + Kj + δK/2

)]
,

where we have used the property δ(x)θ(x) = δ(x)/2 (Fisher
1971). As expected, this expression shows two contributions to
the energy evolution inside a shell: a volume contribution and
a surface contribution equal to the energy of the waves enter-
ing and leaving the shell. Introducing the equation of motions in
sheared space (7)–(8) in the above relation leads to the energy
equations (15)–(16).

Finally, using the relation

∂t|k(t)| = qΩkykx(t)

|k(t)| , (A.7)

one can write (A.6) as

dEX
K j

dt
= 〈ΠK j (F)ΠK j(∂tF)〉 +

∑
k′

F∗k′Fk′

2
δ(t − tk′ )εk′ (A.8)

where tk′ is the instant when the wave k′ enters or exits the shell
Kj and εk′ = ±1 for an entering/exiting wave. This somewhat
simpler expression has the same interpretation as (A.6).

Appendix B: Unsheared Fourier transform
approach to the shear transfer term

It is possible to understand the origin of the shear transfer
term (A.5) starting from the equations of motion in unsheared
coordinates (1), (2) with an appropriate use of continuous
Fourier transforms. Shear-periodic functions are not absolutely
integrable, but this difficulty can be circumvented because their
continuous Fourier transform is well-defined as a distribution.
To demonstrate this point, we consider a 2D infinite medium in
which a field F obeys the model equation

∂tF(x, t) − qΩx∂yF(x, t) = 0. (B.1)

Let us introduce the unsheared Fourier transform:

F̃(k, t) =
1

(2π)3

�
dx F(x, t) exp(−ik · x)

F(x, t) =
�

dk F̃(k, t) exp(ik · x). (B.2)
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If F obeys the shearing sheet boundary conditions, the solution
of the equation is a Fourier series Fp of the form (10) with
Fourier coefficients Fk′ . Its Fourier transform in the unsheared
spectral space is then

F̃p(k, t) =
∑

k′
δ(k − k0(t))Fk′ , (B.3)

where k0(t) = k′ + Vk′ t and where we have defined the “Fourier
velocity” Vk = qΩkyex, evaluated in k′. By construction F̃p(k, t)
is solution of

∂t F̃(k) + qΩky∂kx F̃(k) = 0, (B.4)

which is the Fourier transform of our model equation4. The left-
hand side of this equation can be interpreted as a comoving
derivative of F̃(k, t) in Fourier space with the Fourier velocity
Vk. This equation tells us that the amplitude of the waves is con-
stant when one moves at velocity Vk in Fourier space consis-
tently with the form of the solution F̃p. It can also be interpreted
as constant amplitude shearing waves, as expected.

It is then possible to introduce the projector operator, now
time-independent because it has been defined in unsheared coor-
dinates:

[ΠK j (F)](x, t) =
�

dkΘ
(
|k| − Kj + δK/2

)

× Θ
(
− |k| + Kj + δK/2

)
× F̃(k, t) exp (ik · x) . (B.5)

As previously, the shell energy (EF
K j
= 〈Π2

K j
(F)〉/2) time varia-

tion follows from

dEF
K j

dt
=
〈
ΠK j (F)∂t

[
ΠK j (F)

]〉
= −〈ΠK j (F)ΠK j

(∇k · (VkF̃)
)〉

(B.6)

where (B.4) has been used in the last equality along with ∇k ·
Vk = 0. Because the volume average selects the zero-frequency
contributions, this leads us back to (A.6) with the help of the
relation∫

dkxΘ(|k| −C)∂kx F̃(k) = −
∫

dkx
kx

|k|δ(|k| − C)F̃(k),

and with the use of δ(x)θ(x) = δ(x)/2 and (B.3).
In the spirit of the integral expressions used in this appendix,

Eq. (A.6) can be recast in integral form by introducing the energy
density in Fourier space EF(k, t) defined by

EF(k, t) =
∑

k′
δ(k − k0(t))

Fk′F∗k′
2
· (B.7)

With this definition,

EF
K j
=

�
dkΘ(|k| − K−)Θ(−|k| + K+) EF(k, t) (B.8)

4 The Fourier transform of (B.1) gives (B.4) except for an extra term
that vanishes once the Fourier series expression of F is used.

while

dEF
K j

dt
=

�
dk Vk · n EF(k, t)

[
δ(|k| − K−) − δ(−|k| + K+)

]
(B.9)

= −
�
∂K j

dk Vk · n EF(k, t). (B.10)

In these relations, K± = K ± δK/2 has been defined, the second
integration is performed on the surface of the shell Kj ≡ ∂Kj,
and n is the normal to this surface. The last expression has an
explicit flux form.

This approach can be applied to the original shearing sheet
MHD equations. The time dependence due to the shear term will
produce the just computed shear flux contribution.
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