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ABSTRACT

The question of a purely hydrodynamic origin of turbulence in accretion disks is reexamined, on the basis
of a large body of experimental and numerical evidence on various subcritical (i.e., linearly stable) hydrody-
namic flows. One of the main points of this paper is that the length scale and velocity fluctuation amplitude
that are characteristic of turbulent transport in these flows scale as Re

�1=2
m , where Rem is the minimal Rey-

nolds number for the onset of fully developed turbulence. From this scaling, a simple explanation of the
dependence of Rem with relative gap width in subcritical Couette-Taylor flows is developed. It is also argued
that flows in the shearing sheet limit should be turbulent, and that the lack of turbulence in all such simula-
tions performed to date is most likely due to a lack of resolution, as a consequence of the effect of the Coriolis
force on the large-scale fluctuations of turbulent flows. These results imply that accretion flows should be tur-
bulent through hydrodynamic processes. If this is the case, the Shakura-Sunyaev � parameter is constrained
to lie in the range 10�3 to 10�1 in accretion disks, depending on unknown features of the mechanism that sus-
tains turbulence. Whether the hydrodynamic source of turbulence is more efficient than the MHD one where
present is an open question.

Subject headings: accretion, accretion disks — hydrodynamics — turbulence

1. INTRODUCTION

The need for turbulent transport to account for the rather
short accretion/ejection timescales of young stellar objects
(YSOs) and binary systems (cataclysmic variables, X-ray
binaries), or for the very large energy output of active galac-
tic nuclei (AGNs), is a well-known feature of accretion disk
theory. From the very beginning, differential rotation has
been regarded as one of the most promising sources for tur-
bulence, since shear flows are known to be able to feed both
hydrodynamic andMHD instabilities.

Inmost accretion diskmodels, the angular velocity profile
satisfies Rayleigh’s criterion, implying that the correspond-
ing hydrodynamic flow is linearly stable. This is the case in
particular of the nearly Keplerian velocity profile of cold
disk models. However, finite-amplitude instabilities are the-
oretically known to occur in some linearly stable flows, and
are believed to cause the turbulence observed in actual
experiments, e.g., in planar Couette flows, or Couette-Tay-
lor flows with the inner cylinder at rest. Furthermore, shear-
driven hydrodynamic turbulence would certainly produce
the required outward transport of angular momentum for
Keplerian flows, because of their outwardly decreasing
angular velocity profile. For these reasons, turbulence in
accretion disks (magnetized or not) has long been widely
believed to originate in purely hydrodynamic phenomena.

This picture has been seriously challenged in the past dec-
ade. First, Balbus & Hawley (1991) have shown that a local
version of the magnetorotational instability (Chandrase-
khar 1960) operates in differentially rotating disk. This
instability was later recognized to give rise to MHD turbu-
lence and transport as well as to magnetic field amplification
(Hawley, Gammie, & Balbus 1995; Brandenburg et al.
1995). The physics of the magnetorotational instability is by
now a well-established aspect of accretion disk theory. Sec-
ond, recent simulations of hydrodynamic fluid flows in the
shearing sheet approximation strongly suggest that accre-

tion disk flows cannot become turbulent through hydrody-
namic processes alone (Balbus, Hawley, & Stone 1996;
Hawley, Balbus, & Winters 1999); indeed, in these simula-
tions, planar Couette flows are observed to be turbulent,
but turbulence disappears as soon as a Coriolis force is
added, suggesting that this force prevents the onset of the
finite-amplitude instabilities through which linearly stable
flows are believed to become turbulent. Although this last
finding seems to conflict with the available experimental evi-
dence on Couette-Taylor flows (Richard & Zahn 1999), it
has strengthened the idea that linear magnetic instabilities
play a key role in the onset of turbulence in accretion disks.

The main objective of this paper is to critically reinvesti-
gate the possibility of hydrodynamic turbulent motions in
accretion disks, especially for linearly stable flows. A possi-
ble hydrodynamic origin of turbulent motions is important
for several reasons. First, differential rotation is universally
present in disks, whereas some disks or disk regions might
not be ionized enough to support MHD phenomena, and a
non-MHD source of turbulence must be at work there. For
instance, protoplanetary disks are probably too resistive to
support MHD turbulence (Fleming, Stone, & Hawley 2000;
Sano et al. 2000), but their observationally constrained
accretion rates imply the existence of turbulent transport.
Second, the existence of self-consistent magnetized accre-
tion/ejection structures seems to require a quasi equiparti-
tion of thermal and magnetic energy which, combined with
the vertical stratification of these structures, may prevent
the development of the magnetorotational instability in a
number of instances (Ferreira 1997; Casse & Ferreira 2000).

The objectives of this paper are achieved through two dif-
ferent means. First, relevant pieces of information on the
behavior of various types of shear flows that are available in
the specialized fluid dynamical literature are presented;
from this material, it is argued that shearing sheet flows
should be turbulent. Second, a phenomenological descrip-
tion and understanding of relevant turbulent properties of
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shear flows as they appear in the available experiments and
numerical simulations is developed. In its most basic form,
the phenomenology of hydrodynamic turbulent flows often
relies on the concepts of Kolmogorov cascade and turbulent
viscosity, and this approach is adopted here. Although the
turbulent viscosity concept is of limited validity in complex
situations (Tennekes & Lumley 1972) and its use in the
assessment of stability properties of turbulent flows has
been rightly criticized (see, e.g., Terquem 2001; Hawley,
Balbus, & Stone 2001), it is well known to provide accurate
scalings of mean flow properties in simple shear flows such
as channel or planar Couette flows (Tennekes & Lumley
1972; Lesieur 1987); consequently, it has been widely used
to parameterize turbulent transport in accretion disks. In
this paper, some new and interesting consequences of this
Ansatz and their implications for turbulence in shear flows
are pointed out.

This paper is organized as follows. In the next section,
some relevant flow configurations are introduced, along
with the related forms of the Navier-Stokes equations; I also
summarize relevant features of turbulence in these flows, as
found in the literature, since this material has some direct
bearing on the question of hydrodynamic turbulence in
accretion disks, and is largely unknown to the astrophysical
community; the reader who is not interested in factual
details but only in their significance can jump directly to
x 2.4, where this material is used to infer that ‘‘ perfect ’’
shearing sheet simulations should be turbulent. The most
interesting findings of the present work are collected in x 3;
after briefly recalling the origin and rationale of the turbu-
lent viscosity prescription, some of its previously unnoticed
but important consequences are derived and used to inter-
pret the behavior of the flows previously described, with
special attention paid to Couette-Taylor flows, and to flow
description in the shearing sheet approximation.In particu-
lar, a phenomenological explanation of the scaling of the
Reynolds number with gap width in subcritical Couette-
Taylor flows is devised. On the basis of this phenomenologi-
cal understanding, the various reasons that might likely pre-
vent the onset of turbulence in the simulations of Balbus et
al. (1996) and Hawley et al. (1999) are discussed and the
most critical one identified. The final section summarizes
the most relevant conclusions and discusses their conse-
quences for accretion disk theory and simulation, in particu-
lar on the magnitude of the Shakura-Sunyaev � parameter.

The reader interested only in the new results of this paper
and not in the background fluid mechanical information
can focus on xx 2.4, 3.2–3.4, and 4.

2. TURBULENCE IN HYDRODYNAMIC
SHEAR FLOWS

Hydrodynamic accretion disk mean flows are widely
believed to be subcritical, i.e., the viscously relaxed laminar
flow is linearly stable at all Reynolds numbers, at least
locally. Furthermore, all experiments and numerical simula-
tions of interest here pertain to linearly stable flows, and we
are mostly interested in the local generation of turbulence.
Therefore, I focus on subcritical flows in this paper.

The transition to turbulence is usually rather different in
subcritical and supercritical flows. Supercritical flows
undergo a cascade of precisely defined bifurcations in
parameter space, eventually leading to fully developed
turbulence; these transitions are well documented and re-

produced numerically, e.g., for Couette-Taylor flows
(Andereck, Liu, & Swinney 1986 and references therein;
Marcus 1984a, 1984b). Turbulence in subcritical flows, on
the contrary, may be abruptly triggered, most probably by
finite-amplitude instabilities (Dauchot & Daviaud 1994);
also, the flow apparently evolves from highly intermittent to
fully turbulent over a range of Reynolds numbers.

Furthermore, shear flows can be either (wall-)bounded or
free. The distinction refers to the limitation of the flow in
the direction in which the shear is applied (the transverse or
shearwise direction). This difference in boundary conditions
influences some of their turbulent properties; indeed, free
flows are characterized by a single length scale, the extent of
the shear layer, whereas the distance to the wall introduces a
second length scale in wall-bounded flows. The influence of
the other (streamwise and spanwise) boundaries is mini-
mized inasmuch as their spacing exceeds the coherence
length of the largest turbulent eddies, and as globally
induced perturbations (such as Ekman circulation) are
minimized by appropriate designs of the experimental
setups.

Shear flows have been actively studied in the past decades,
and their turbulent properties are now characterized for a
large variety of settings. In this section, I briefly present the
subcritical flows that have direct bearing on the question of
hydrodynamic turbulence in accretion disks, namely, plane
Couette and free shear flows, either rotating or not; Cou-
ette-Taylor flows; and Rayleigh-stable tidally driven shear
flows in the shearing sheet approximation. The first two
have been studied through both experiments and numerical
simulations. However,information on Rayleigh stable Tay-
lor-Couette flows comes only from experiments. Finally, the
shearing sheet approximation has been widely used as a
local analytic model of local accretion disks, and has been
implemented in the numerical work of Balbus, Hawley, and
coworkers quoted in the introduction (Balbus et al. 1996;
Hawley et al. 1999). For each of these flows, I characterize
the geometry and the critical parameters that are important
for the question of the onset of turbulence, and I also give
the governing dynamical equation (Navier-Stokes) in the
form most suitable to establishing comparisons between the
various types of flows.

The object of this section is to try to give an answer to the
following question: If numerical simulations were perfect
(i.e., not limited by questions of resolution, numerical insta-
bilities, etc.), would shear flows be turbulent in the presence
of the Coriolis force? This is done in x 2.4, with the help of
the material collected here.

2.1. Plane Couette and Free Shear Flows

In spite of their conceptual simplicity, plane Couette
flows are difficult to produce in actual experiments, which
explains why some of their basic turbulent properties have
only recently been characterized. The experimental setup is
schematically represented in Figure 1, along with a sketch of
the turbulent mean flow profile (see Tillmark & Alfredsson
1992 for details). In practice, the two walls are often made
up of countermoving (looped) infinite belts. Similarly, free
shear layers are produced by injecting fluid with different
velocities on each side of a separating plate. The fluids come
in contact at the end of the plate, and a turbulent layer
develops and widens downstream (see Fig. 2).
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These flows are described by the Navier-Stokes equation
in its simplest form, which reads

@v

@t
þ v x

D

v ¼ �

D

P

�
þ �Dv ; ð1Þ

with obvious notations. The viscous terms are displayed in
the incompressible form, since we are mostly concerned
with subsonic turbulence.

It is customary to define the Reynolds number of plane
Couette flows based on the half-velocity difference (i.e., U)
and half-width distance (i.e., h) between the two walls. How-
ever, for the purpose of comparison with other setups, I
define the Reynolds number as

Re ¼ 4Uh=� ; ð2Þ

i.e., based on the total velocity difference and distance
between the two boundaries; the reader should bear in mind
the resulting factor of 4 when comparing the figures quoted

in this paper for Couette flows with the literature. From the
experiments of Tillmark & Alfredsson (1992), the minimal
Reynolds for which turbulence is sustained is Re ’ 1500.
The onset of turbulence in planar Couette flow has been suc-
cessfully reproduced in numerical simulations (e.g., Bech et
al. 1995 and references therein); a nonlinear mechanism for
tapping the mean shear to sustain turbulence has even been
identified (e.g., Jiménez & Moin 1991; Hamilton, Kim, &
Waleffe 1995;Waleffe 1997).

Rotating Couette and rotating free shear flows are pro-
duced by placing the experimental setup on a rotating plat-
form. Such flows are very relevant to astrophysics, since
they share a number of features with accretion disk flows in
the shearing sheet approximation. For these flows, the Nav-
ier-Stokes equation reads

@v

@t
þ v x

D

v ¼ �

D

P

�
� 2X� vþ F in þ �Dv ; ð3Þ

where F in stands for the inertial force due to rotation.

Fig. 1.—Sketch of the configuration of Couette flows. The flow is bounded by two countermoving walls, and boundary layers develop in the turbulent
regime, as shown by the mean velocity profile. By putting the experimental setup on a rotating platform, one obtains the so-called rotating Couette flow.

Fig. 2.—Sketch of the configuration of (rotating) free shear layers. Two layers of fluid of different velocities, initially horizontally separated, come in contact
at the end of a dividing plate, and a turbulent shear layer develops and widens downstream.
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These rotating flows are usually simulated by including
only the Coriolis force term1 in the Navier-Stokes equation
(Bech & Andersson 1996a, 1997; Komminaho, Lundbladh,
& Johansson 1996), so that equation (3) reduces to

@v

@t
þ v x

D

v ¼ �

D

P

�
� 2X� vþ �Dv : ð4Þ

Rotating Couette and rotating free shear flows are charac-
terized by the ratio S of the angular velocity of rotation to
the shear,

S ¼ � 2�

dhvxi=dy
; ð5Þ

where hvxi is the mean velocity profile; this number is akin
to an inverse Rossby number, and measures the relative
strength of the Coriolis and advection terms in the Navier-
Stokes equation. A linear shear is destabilized by rotation
when

�1 < S < 0 ; ð6Þ

and stabilized otherwise (see Tritton 1992 and references
therein; see also x 2.4). The relevant regime for astrophysics
is Sd� 1 (i.e., negative S and linearly stable linear shear2).
No systematic exploration of the (Re, S) parameter space
has been performed; furthermore, I am not aware of any
experimental investigation of rotating Couette flows for
such (relatively) high values of S. However, this regime is
explored in the set of free shear layer experiments of
Bidokhti & Tritton (1992), who show that the flow remains
turbulent3 (although linearly stable) down to S � �2 for
Reynolds numbers4 �4000 (see Figs. 14 and 16 of their
paper). On the other hand, in the numerical simulations of
anticyclonic (S < 0) rotating Couette flows of Bech &
Andersson (1997) (Re � 5000) and Komminaho et al.
(1996) (Re � 3000), turbulence is lost5 for S � �1 in the
central part of the flow. This situation is similar to the one
relating the simulations of Balbus et al. (1996) and Hawley
et al. (1999) to the experimental data of Taylor (1936) and
Wendt (1933) quoted in Richard & Zahn (1999); this anal-
ogy will be further discussed in xx 2.4 and 3.4.

2.2. Couette-Taylor Flows

Couette-Taylor flows are produced from two concentric
rotating cylinders. Most investigations of this type have
focused on the linearly unstable regime. The linearly stable
one, which is more directly relevant to astrophysics, has
only been explored by Taylor (1936), who maintained the
inner cylinder at rest, and by Wendt (1933), who also
reported results when the flow is close to marginal stability
(i.e., linearly stable, but close to constant specific angular
momentum). The Reynolds number of these flows is defined
as

Re ¼ rD�Dr

�
; ð7Þ

where r is the mean of the two cylinder radii, and D� and Dr
are respectively the difference in angular velocity and the
gap width of the two cylinders. Both investigations men-
tioned above did characterize the behavior of the minimal
Reynolds number for well-developed turbulence to be main-
tained as a function of the cylinders’ relative gap width; this
behavior is sketched in Figure 3. Recently, a French team
has undertaken an experimental investigation of flow pro-
files that are approximately Keplerian in the mean, and
found that turbulence was also maintained for Reynolds
numbers of the order of a few thousand for a relative gap
width of the order of 13 (Richard 2001).

The minimal Reynolds number appearing in Figure 3 is
obtained by starting from an initially laminar flow, and pro-
gressively increasing the difference in angular velocity of the
two cylinders (or only the outer cylinder angular velocity if
the inner one is at rest). When starting from an initially tur-
bulent flow and reversing the process, the loss of turbulence
occurs for Reynolds numbers that can be significantly
lower, but the flow is then highly intermittent; it is reason-
able to assume that the minimal Reynolds numbers of

1 The centrifugal term is not included on the basis that it results only in a
redistribution of the equilibrium pressure.

2 In relating rotating flows to shearing sheet ones, note that the y-axis
identifies to the radial one, whereas the x and azimuthal directions are anti-
parallel.

3 By virtue of the Taylor-Proudman theorem, the flow should eventually
become bidimensional, but this happens only at higher values of jSj.

4 Note that, as the turbulent shear layer widens downstream, Bidokhti &
Tritton (1992) base their definition of the Reynolds number on the down-
stream distance x, which needs to be related to the layer width from which
all Reynolds numbers quoted here are defined, and which is referred to as
2�M in their paper. The two quantities can be related with the help of the
various relations given in x 3 of their paper. This amounts to reducing the
Reynolds numbers they quote by a factor of �7. Finally, the number given
above corresponds to the most downstream point of measurement, where
the flow should be closest to a developed (rather than developing) turbulent
flow (incidentally, this is much farther downstream than the region where
the pictures shown in the paper are taken).

5 Rotation in these numerical experiments is characterized by a global
rotation number Rot � 2�h=U rather than by the local rotation parameter
S. In the central part of the profile, one usually has Rote0:2jSj for fully
turbulent flows, but it is difficult to precisely relate the relative level of rota-
tion in these experiments to the critical limit between linearly stable and
unstable rotating flows.

Fig. 3.—Idealized behavior of the minimal Reynolds number of fully
turbulent Couette-Taylor flows, as a function of the relative gap width.
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Figure 3 are characteristic, albeit overestimated, values for
well-developed turbulence (Richard 2001).

The two remarkable features of this minimal Reynolds
number are a behavior that is similar to plane Couette flows
for Dr=rd1=20, with Re ’ 2000, and a quadratic scaling
[Re ’ Re�ðDr=rÞ2 with Re� ’ 6� 105] that is characteristic
of rotation, as argued by Richard & Zahn (1999); these
authors also show that in the same regime, the turbulent vis-
cosity �t ’ �r3jd�=drj, with � ’ 10�5. A heuristic explana-
tion of these features is presented in x 3.

The Navier-Stokes equation for these flows is most mean-
ingfully compared to that of other flows when subtracting
out the mean flow rotation �0 (i.e., the average angular
velocity of the two cylinders), since only differential rotation
plays a role in the generation of turbulence. Defining
w ¼ v� �0re�, and � ¼ �� �0t (so that w and � are the
velocity and azimuthal coordinate in the rotating frame,
respectively), the Navier-Stokes equation for w ¼
ðwr; w�; wzÞ becomes

@w

@t
þ w x

D0wþ 2X� w�
w2
�

r
er þ

2w�wr

r
e�

¼ �

D

P

�
þ r�2er

� �
þ �Dw ; ð8Þ

where

w x

D0w � ðw x

D

wrÞer þ ðw x

D

w�Þe� þ ðw x

D

wzÞez :
For future reference, I refer to the terms w2

�=r and 2wrw�=r
as ‘‘ geometric terms,’’ since they arise because of the cylin-
drical geometry.6

For these flows, the rotation parameter defined in equa-
tion (5) reads

S ¼ 2�

rd�=dr
¼ � 2

q
; ð9Þ

where q � �ðr=�Þðd�=drÞ is the parameter defined by Bal-
bus et al. (1996) to characterize rotation profiles. The flow is
stable according to Rayleigh’s criterion when q < 2 (for
� > 0), i.e., when S�1 > �1, quite similarly to rotating
Couette and free flows, although the processes through
which instability occurs are different. Note also that equa-
tions (4) and (8) differ only through the geometric and cen-
trifugal terms.

The fact that the minimum Reynolds number for devel-
oped turbulence is identical in plane Couette and Couette-
Taylor flows with Dr=rd1=20 and the inner cylinder at rest
can be understood in the following way. First, the advection
term (which is the source of the turbulence cascade, as indi-
cated by the very existence of the Reynolds number) domi-
nates over the geometric terms when rD�=Dr4rD�=r, i.e.,
Dr=r5 1. Second, D� ¼ � (one cylinder being at rest), so
that the Coriolis term is also very small compared to the
advection term, and equation (8) nearly reduces to equation
(1). Note furthermore that the Coriolis force does not
appear to significantly affect the minimal Reynolds number
for the onset of turbulence for the values of q of interest here
(i.e., q ¼ �1 to q � 1–2), both in the limiting plane Couette
regime and in the rotation regime, as exemplified by the data
of Wendt (1933) for nearly neutral flows, which follow the
same law for the minimal Reynolds number, down to the
plane Couette limit.

2.3. Shearing Sheet

Accretion disk flows in the shearing sheet approximation
are closely related to the Couette-Taylor flows previously
described. They differ in only three respects.

First, the mean angular velocity profile h�i in Couette-
Taylor flows is imposed by the boundary conditions, and by
the condition of stationarity of the mean viscous or turbu-
lent transport of angular momentum, from the azimuthal
momentum equation (with the walls acting as source and
sink of angular momentum). The radial momentum equa-
tion then imposes the mean radial pressure profile hPi, and
the resulting tidal force term ð�rhPi=h�i þ rh�i2Þ. On the
contrary, in accretion disks, the mean radial angular veloc-
ity profile mostly results from the gravitational attraction of
the central body, which imposes a nearly Keplerian profile
in cold disks, but the disk is never globally stationary,
because of viscous/turbulent transport (nevertheless, an
approximate stationarity is nearly achieved locally on the
dynamical timescales of interest for the onset of turbulence).
Therefore, in Keplerian disks in the shearing sheet approxi-
mation, the tidal force term ð�gþ rh�i2Þ is the source of the
(Keplerian) angular velocity profile and not its conse-
quence. Furthermore, one usually neglects the radial pres-
sure gradient locally, and assumes that the gravitational
force has cylindrical (and not spherical) symmetry for sim-
plicity, since cold disks are thin.

Second, a local approximation is performed, by restrict-
ing consideration to a radial box of width Dr5 r; one also
usually assumes that the height of the box is comparable to
its width. Under these assumptions, one neglects the geo-
metric terms in equation (8), and describes the flow in local
Cartesian coordinates (x $ r, y $ r�, where � is the azimu-
thal coordinate in the rotating frame introduced for Cou-
ette-Taylor flows). One also linearizes the angular velocity
profile.

Finally, this local approximation and the resulting change
of geometry from cylindrical to Cartesian (except for the
Coriolis force term, which is kept) allows one, in numerical
simulations, to adopt a particular form of the periodic
boundary condition in the radial direction, in which the
fluid quantities on the radial boundaries are longitudinally
displaced all the time with the mean angular velocity differ-
ence during a time step before the periodic boundary condi-
tion is applied (see Hawley et al. 1995 for details on this
procedure).

With these prescriptions (aside from the boundary condi-
tions), the Navier-Stokes equation, in the shearing sheet
approximation and in the rotating frame, becomes

@w

@t
þ w x

D

wþ 2X� w ¼ �

D

P

�
þ 2q�2xer þ �Dw ; ð10Þ

where x ¼ r� r0, and r0 is the position of the center of the
shearing sheet box. The term 2q�2x represents the tidal
force (difference of the gravitational and inertial force); q is
the parameter introduced in x 2.2 and measures the steep-
ness of the rotation profile. Note that the pressure term con-
tains only fluctuations related to the presence of turbulence,
which is not the case in Couette-Taylor flows. It is interest-
ing to note that this equation shares features with both
equations (4) and (8); in particular, linear stability is ensured
for q < 2, i.e., S < �1 for the laminar linear profile. This
makes the loss of turbulence in the simulations of Balbus et

6 Such terms also arise in principle from the viscous term, but they are
inessential to the argument developed in this paper.
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al. (1996) and Hawley et al. (1999), for values of q smaller
than 2 by a few percents only, all the more intriguing.

2.4. Shearing Sheet, Rotating Couette Flows,
and Turbulence

In fact, all available pieces of evidence strongly suggest
that numerical simulations of rotating Couette flows and of
tidally driven sheared motions in the shearing sheet limit
should display turbulence, as I argue now.

First, plane Couette flows, rotating Couette flows, and
tidally driven shearing sheet flows have similar linear stabil-
ity properties. For all three types of flows, the viscously
relaxed laminar solution is a simple linear shear, which is
always linearly stable for the plane Couette flow,7 and stable
for the other two flows once S < �1 (which is the only case
of interest here). Plane Couette flows are subject to finite-
amplitude instabilities (see, e.g., Lerner & Knobloch 1998;
Dubrulle & Zahn 1991; and references therein). The same is
true of rotating Couette flows (Johnson 1963), and of shear-
ing sheet flows (Dubrulle 1993). As finite-amplitude insta-
bilities are considered to trigger the turbulence seen both in
experimental and numerical investigations of plane Couette
flow, one would expect the same to be true of the other two
flows.

Second, let us reexamine the differences between rotating
Couette flows and the shearing sheet flows with the other
flows discussed previously. They amount to differences
of boundary conditions, of mean force terms, and of
geometry.

The shearing sheet boundary conditions are in a way
intermediate between rigid and free boundary conditions,
since they imply that the mean flow obeys rigid boundary
conditions, whereas the fluctuating part obeys periodic
boundary conditions; rotating Couette flow simulations are
usually performed with rigid boundary conditions. On the
one hand, Couette-Taylor flows implement rigid boundary
conditions. Although in real experiments the vibrations of
the boundary play some role in triggering turbulent
motions, there is little doubt that in these experiments, tur-
bulence is self-sustained. On the other hand, from the
experiments of Bidokhti & Tritton (1992), the rotating shear
flows with free boundary conditions are turbulent, although
by construction no mean steady state can be reached in
these systems. Therefore, it seems unlikely that boundary
conditions play an important role in the presence or absence
of turbulence in numerical experiments.

In the shearing sheet approximation, the mean shear is
imposed by the tidal force term; in rotating Couette simula-
tions, it results from the boundary conditions. In Couette-
Taylor flows, the boundary conditions not only produce the
shear, but also generate a mean radial pressure gradient.
Note, however, that the term �dhPi=dr=h�i þ rh�i2 of
equation (8) is similar in function to the term 2q�2x in equa-
tion (10). Furthermore, the mean pressure gradient in Cou-
ette-Taylor experiments is radial, whereas it is longitudinal
(streamwise) in the rotating free shear layer experiments of
Bidokhti & Tritton (1992). This suggests that neither large-
scale mean pressure gradients nor tidal terms make any sig-
nificant difference to the question of the onset of turbulence
in the various flows considered here, especially since all gra-

dient terms get out of the way in incompressible flows (they
disappear from the vorticity equation).

Finally, I show in the next section that the main effect of
the geometry (which enters through the geometric terms in
Couette-Taylor flows) is to change the conditions of onset
of turbulence, but this does not affect the occurrence of tur-
bulence in itself.

Although such arguments do not exclude more complex
possibilities (e.g., that turbulence might be impeded in
shearing sheet flows by a combination of these factors
instead of only one of them), this strongly indicates that
rotating Couette flows and shearing sheet ones should be
turbulent, suggesting that the absence of turbulence in all
the published simulations of this kind stems from limita-
tions in the numerics involved. This last point is addressed
in the next section.

3. PHENOMENOLOGY OF SUBCRITICAL
TURBULENCE

The purpose of this section is to point out important fea-
tures of turbulence in sheared flows, through a phenomeno-
logical model developed in x 3.2. The consequences of this
model are used in x 3.4 to identify the potential limitations
of the numerics just mentioned.

3.1. Turbulent Viscosity and the Kolmogorov Prescription

In a picture in which the fluctuating turbulent scales can
be separated from themore regular large ones, it is meaning-
ful to write down an equation for both the mean hX i and
fluctuating �X parts of any quantity X. In particular, the
evolution of the mean velocity reads

@hvi
@t

þ

D

x h�v�vi ¼ �

D

hPi
�

þ �Dhvi ; ð11Þ

where possible geometric and/or inertial terms, as well as
the effect of compressibility, have been omitted for simplic-
ity. In the simple shear configurations of interest here, only
the h�vy�vxi (or h�vr�v�i) part of the Reynolds stress tensor
is relevant for radial turbulent transport.

By describing turbulent fluctuations with a characteristic
coherence scale lM and velocity amplitude vM , Prandtl
(1925) argued that

h�vy�vxi � v2M � �t
dhvxi
dy

; ð12Þ

with

�t � lMvM : ð13Þ

Note that in cylindrical geometry, h�vr�v�i � �trdh�i=dr.
The reasoning behind this formulation is similar to the

reasoning relating the usual molecular viscosity to the
molecular mean free path and velocity dispersion (i.e., tur-
bulent transport occurs over a ‘‘ mean free path ’’ lM with
‘‘ velocity dispersion ’’ vM ); equation (12) can also be
derived from more rigorous multiscale expansion techni-
ques. In a Kolmogorov cascade picture, lM is the energy-
injection scale (and characterizes the coherence length of the
largest eddies of the cascade), and vM the amplitude of the
velocity fluctuations at this scale, as the velocity amplitude
decreases with decreasing scale in a Kolmogorov spectrum.
However, this does not mean that larger fluctuating scales

7 I consider unbounded flows in this discussion, since instabilities due to
the boundary in viscous fluids are not relevant in astrophysics.
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are not present in the flow, nor that they have no influence
in the development of turbulence; it just implies that they
dominate neither the energy spectrum nor the turbulent
transport.

An important feature of the turbulent viscosity prescrip-
tion is that the rate of energy dissipation � (which is also the
rate of energy transfer in eddy-scale [Fourier] space) is sim-
ply given by

� � v3M=lM �
�t dhvxi=dyð Þ2 Cartesianð Þ ;
�t rdh�i=drð Þ2 cylindricalð Þ ;

(
ð14Þ

as can be shown most directly by deriving the relevant mac-
roscopic energy equation. Equations (12) and (14) imply in
particular that the characteristic frequency of turbulent
motions is the shear frequency, i.e.,

vM
lM

�
dhvxi=dy Cartesianð Þ ;
rdh�i=dr cylindricalð Þ :

�
ð15Þ

This reflects the fact that an externally imposed shear
locally possesses no characteristic scale (besides the scale of
the flow), but only a characteristic frequency, so that shear
turbulence can only couple efficiently to the shear if its char-
acteristic frequency or coherence time (at the energy-injec-
tion scale imposed by the mechanism that drives
turbulence) matches the shear frequency.8

The turbulent viscosity description has been applied to a
wide variety of setups to describe the mean properties of tur-
bulent flows, both in the vicinity of walls and in the main
part of either free or bounded flows (e.g., Tennekes & Lum-
ley 1972; Lesieur 1987).

3.2. Turbulence Scales: PhenomenologicalModel and
Orders ofMagnitude

My primary purpose here is to point out some interesting
consequences of the turbulent viscosity prescription.
Indeed, one expects that a flow undergoes a transition to
turbulence when the turbulent transport becomes more effi-
cient than the laminar one for subcritical flows. This implies
that

�te� when ReeRem ; ð16Þ

where Rem stands for the minimum Reynolds numbers for
the onset of turbulence, discussed in x 2. For example, note
that for Couette-Taylor flows, from the data of Wendt
(1933) and Taylor (1936) �t=� � �Re� � 6, where � and
Re� are the quantities introduced in the previous section in
the discussion of these flows; furthermore, when the mini-
mal Reynolds number is searched for by decreasing the
velocity difference between the cylinder from an initially tur-
bulent state instead of increasing it from an initially laminar
one, the ratio �t=� is sensibly closer to unity (Richard 2001).

Away from boundary layers (if any), the only scales that
are relevant for characterizing the shear gradient are the
typical size of the shear flow, Dy in Cartesian geometry (Dr
in cylindrical geometry), and the typical shear amplitude
over this scale, Dvx (rD� cylindrical). Combining equations

(12), (14), and (16) then yields, for the bulk of the turbulent
flow,

lM �
Dy=Re

1=2
m ðCartesianÞ ;

Dr=Re
1=2
m ðcylindricalÞ ;

(
ð17Þ

and

vM �
Dvx=Re

1=2
m ðCartesianÞ ;

rD�=Re
1=2
m ðcylindricalÞ :

(
ð18Þ

I wish to stress that equations (17) and (18) do not imply
that turbulence is a global rather than local phenomenon.
On the contrary, equations (14) and (15) relate lM and vM to
local characteristics of the mean flow. Note that these rela-
tions justify (at least for subcritical flows) the separation of
scales between the mean large-scale flow and the fluctuating
small-scale one assumed in the turbulent viscosity descrip-
tion, because Rem usually exceeds a few thousand.

These relations have a direct physical interpretation.
Consider for example two planar Couette flows with identi-
cal shear rates, and with wall spacing Dy and relative veloc-
ity Dvx, which differ by a given ratio. Obviously, the scaling
with Dy and Dvx is a natural consequence of the scaling simi-
larity between flows that are otherwise identical. On the
other hand, consider different flows, with identical shear
rates, but different minimal Reynolds numbers (e.g., plane
Couette and Couette-Taylor flows with appropriate param-
eters). A larger minimal Reynolds number is a sign of a
greater difficulty in triggering turbulence, i.e., an increased
difficulty for turbulent transport to dominate over the vis-
cous one, and therefore is a sign of a smaller scale turbu-
lence, as a result of the physical picture underlying the
turbulent viscosity prescription (i.e., the transport occurs
over a smaller ‘‘ mean free path ’’ lM , and correspondingly
with a smaller ‘‘ random velocity ’’ vM , because of the
assumption of identical shear rate between the two different
flows).

From these relations, one can easily check that, at the
minimum Reynolds number, the advection term, which
dominates scale coupling and is the primary cause of the
inertial turbulent spectrum, is comparable to the dissipation
term, at the turbulent transport scale. As a consequence, the
turbulence possesses little or no inertial domain at its
threshold. Furthermore, as long as there is no change in the
turbulence-generating process, increasing the Reynolds
number can only result in lowering the dissipation scale with
respect to lM , and therefore in the progressive build-up of
an inertial spectrum (e.g., imagine one does this by reducing
the viscosity while maintaining the large-scale structure of
the flow unchanged).

It is important to note that the estimates of equations (17)
and (18) remain valid for Reynolds numbers larger than the
turbulence threshold, as long as the turbulence-generating
process is unchanged. The predictions of the scaling pro-
posed here are well supported by the available empirical and
numerical evidence, as shown in the Appendix.

3.3. Consequences: Couette-Taylor Flows

Equations (17) and (18) have particularly interesting con-
sequences for the understanding of turbulence in Couette-
Taylor flows. For definiteness, I first focus on flows in which
the inner cylinder is at rest. As argued at the end of x 2.2, for

8 As the coherence time of smaller scale eddies is shorter, they are less or
little affected by the shear. As a consequence, in a first approximation, the
turbulence is more or less isotropic at scales less than lM , and anisotropy is
ignored in the whole argument.
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r4Dr, the Navier-Stokes equation for Couette-Taylor flows
(eq. [8]) then reduces to the Navier-Stokes equation for pla-
nar Couette flows (eq. [1]), and the minimal Reynolds num-
ber is constant. However, when Dr ! r, the geometric terms
Oðw2=rÞ � ðrD�Þ2=r become comparable to the advection
term on a scale Dr. Furthermore, if, at some radial location r
in the flow, Rem remained constant when Dr4r, equation
(17) would imply that lM could become arbitrarily larger
than r, which makes little sense. In fact, one expects that
lM / r once Dr=r exceeds some critical ratio Dc (which for
the time being is expected to be of order unity), for two rea-
sons: first, the geometric terms introduce a limiting scale
(the radius r), which must be accounted for by the turbulent
viscosity description;9 second, this prescription for lM is nec-
essary to satisfy the requirement that wrwew2=r at the
largest scale of the inertial spectrum (in order to maintain
such a spectrum). Consequently, let us assume that

lM � 	r ; ð19Þ

where Dr=r > Dc, and where 	 is a constant to be determined
later. The argument presented here suggests that Dc � 1,
whereas the data imply that it is significantly smaller than
unity (see below); as for the large values of the minimal Rey-
nolds numbers for turbulence (which one would also naively
expect to be of order unity), this originates in the (still
unknown) mechanism that sustains turbulence.

Equations (17) and (19) must be satisfied simultaneously,
and this is possible only if Rem depends on the relative gap
width:

Rem � 1

	2
Dr

r

� �2

; ð20Þ

which explains the behavior seen in Figure 3. Equiva-
lently,10 r3ðd�=drÞ=�e1=	2; this shows that, as soon as
DreDc, the width of the flow does not influence the onset of
turbulence, which becomes a purely local phenomenon.

The velocity fluctuation amplitude now reads

vM � 	
r2D�

Dr
’ 	r2

d�

dr
; ð21Þ

i.e., it is proportional to the local shear rate. As a conse-
quence, the turbulent viscosity becomes

�t � 	2r3
d�

dr
: ð22Þ

A similar relation has also been proposed by Richard &
Zahn (1999) directly from experimental torque data.
Note that the reasoning leading to equation (22) implic-
itly assumes that the flow compression plays little role,
so that this result may not necessarily apply to super-
sonic turbulence. In order for equations (20) and (22) to
faithfully account for the properties11 of Couette-Taylor

flows described in x 2.2, one needs to tie up a few loose
ends:

1. Because the Coriolis force does not seem to affect the
minimal Reynolds number of turbulence (see the closing
comment of x 2.2), the argument above must apply to any
value of q < 2 (the parameter introduced in x 2.3 to charac-
terize the local rotation profile), and not only to situations
with the inner cylinder at rest; however, for q � 1, the geo-
metric term is always comparable to the advection term,
and the argument is less transparent.
2. The gap relative width in Figure 3 is measured with

respect to the mean radius of the rotating cylinders, whereas
a local value is used above. However, the relative gap widths
shown in this figure are all sufficiently smaller than unity to
make the difference between the two quantities negligible in
the scaling argument developed here. Incidentally, this
shows again that turbulent properties are local; e.g., turbu-
lent eddies become larger when one moves outward in a suf-
ficiently wide cylindrical system. Correspondingly, equation
(19) also follows directly from the fact that r is the only
available local scale.
3. The relations derived above imply that 	2 ¼

� ¼ Re��1, but the values quoted in x 2.2 for the last two
quantities differ by a factor of 6. However, it was also
pointed out there that the value of Re� ’ 6� 105 is overes-
timated, leading to a ratio �t=�, which is too large because
of the particular experimental protocol adopted by Taylor
(1936) and Wendt (1933). Also, recent (still unpublished)
experiments on Couette-Taylor flow in the ‘‘ Keplerian ’’
regime (q ¼ 3=2) exhibit sustained turbulence for Reynolds
numbers smaller than the limit of Figure 2, but with a differ-
ent experimental protocol (Richard 2001). Therefore, it is
reasonable to assume that � is a much better measure of 	2

than Re�; this assumption is made in the remainder of this
paper, and � is used everywhere instead of 	2.

The critical value of the relative gap width Dc which sepa-
rates the planar regime from the rotating one obtains when
the values of lM in both regimes are equal. This yields

Dc �
Dr

r

� �
c

� �Rep
� �1=2

; ð23Þ

where Rep � 2000 is the minimal Reynolds number in the
planar limit. This gives Dc � 1=7, which is somewhat larger
than the value of 1=20 shown on Figure 3 (but closer to the
uneducated guess Dc � 1), because of the reduction adopted
above in the value of Re�.

Note also that lM � r=300. One might wonder why such a
small length scale arises, where one would naively expect
lM � r on dimensional grounds. However, the same type of
dimensional argument would also predict that turbulence
sets in for Ree1, which is strongly violated by the empirical
evidence. The two facts have the same physical origin:
the (as yet not understood) mechanism that sustains
turbulence.

Two other explanations of the behavior of the Reynolds
number with relative gap width have previously been pro-
posed in the literature. Zeldovich (1981) assumed that tur-
bulence in these Couette-Taylor flows is controlled by a
competition between the epicyclic (stabilizing) frequency
and the shear rate that is the source of the turbulent
motions; however his findings are inconsistent with some of
the data (see the discussion of this point in the appendix of
Richard &Zahn 1999). Dubrulle (1993) looks for an explan-

9 This reasoning is somewhat similar to the one which imposes that
lM / y in the vicinity of the wall in Couette or channel flows, and which has
lead to the derivation of the well-known ‘‘ law of the wall,’’ describing the
mean structure of turbulent flows close to the wall (e.g., Landau & Lifshitz
1987; Tennekes & Lumley 1972; Lesieur 1987).

10 Remember that Dr and D� have been introduced in equations (17)
and (18) to represent local gradients in order of magnitude.

11 Most notably, the scaling of the Reynolds number with ðDr=rÞ2 in the
rotation regime, and the near coincidence between � andRe��1.
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ation in terms of finite-amplitude instabilities in the WKB
approximation, but this is incompatible with the fact that
the scale r plays a key role in the problem.

I conclude this section by pointing out that the Coriolis
force appears nowhere in the arguments presented in this
section, which suggests that it plays little role in the develop-
ment of turbulence in subcritical Couette-Taylor flows, at
least for q � 1 2. Indeed, in opposition to the inertial (geo-
metric) terms, the Coriolis force does not single out any
length scale. In particular, the ratio of the advection term
(�wrw) to the Coriolis one (�w�) in equation (8) is �1
both at scale lM and at scale Dr for the values jqj � 1 2 of
interest here, and increases with decreasing scale in a Kol-
mogorov cascade picture. However, it does play a role in the
loss of turbulence in simulated rotating flows, but this
apparent paradox cannot be investigated in the framework
of the order-of-magnitude arguments developed in this sec-
tion. The next section is devoted to a discussion of this
point.

3.4. The Role of the Coriolis Force:
Beyond Orders ofMagnitude

The question I want to address here is the following: Why
is turbulence lost in numerical simulations of sheared flows
when even a small amount of rotation is added (and the
resulting flow remaining linearly stable)—in particular for
Couette flows and disk flows in the shearing sheet approxi-
mation—whereas in experiments as different as the Couette-
Taylor and rotating free shear layers, it is maintained (in the
same conditions of linear stability). The forms of the Nav-
ier-Stokes equation for these flows given in x 2 strongly sug-
gest that this is a consequence of the Coriolis force, as this is
the only new force term that is taken into account when
rotation is added to free shear layers and planar Couette
flows in these simulations.

More specifically, clues to the role of the Coriolis force
can be found by inspecting the behavior of plane Couette
and free shear flows with and without rotation. The most
noticeable and important feature is that, in numerical simu-
lations of rotating Couette flows, even a small Coriolis term
is able to suppress the very largest scales of the turbulent
motions. This is particularly obvious, e.g., when comparing
Figures 7 and 20 of Komminaho et al. (1996), which shows
that the very large scales that develop in the streamwise
direction in turbulent flows break up for rotation numbers
as small as a few percent. This feature is quite understand-
able on the basis of the velocity spectra shown in Bech et al.
(1995), which imply that kvk is most likely sensibly smaller
than � at scales larger than lM . A similar feature can also be
indirectly found in Bidokhti & Tritton (1992; see their
Figs. 11 and 14, to be combined with their Fig. 16), who
show that the Reynolds stress tensor magnitude decreases
by a factor12 of at least 10 when the parameter S introduced
in equation (5) varies from 0 to d�1; this suggests that the
size of the largest turbulent scales in these flows is also sub-
stantially reduced under the action of the Coriolis force.13

This indicates that, although equation (17) always provides
reliable orders of magnitude for lM , it underestimates the
relevant eddy scale by a factor of �3 for nonrotating flows
(see the Appendix), while overestimating it by at least the
same factor once rotation is introduced. As a consequence,
the loss of turbulence in the numerical simulations of rotat-
ing Couette flows of Bech & Andersson (1997) and Kommi-
naho et al. (1996) is clearly an effect of the limited small-
scale resolution due to the large box sizes (especially in the
streamwise direction) adopted in these works: the smallest
available scales do not allow these authors to account for
the inertial part of the energy spectrum, while all the larger
scales are wiped out by the Coriolis force. It is more than
likely that, in these simulations, the Coriolis force kills the
large-scale mechanism that has been identified to sustain
turbulence in plane Couette flow simulations (Jiménez &
Moin 1991; Waleffe 1997; Hamilton et al. 1995; see also
x 2.1). The fact that free rotating layers and Couette-Taylor
flows remain turbulent at larger levels of rotation than the
ones to which turbulence is lost in these simulations implies
that a different mechanism for sustaining turbulence is at
work in these flows, and that it operates at scales compara-
ble to, but apparently smaller than, the estimate of equation
(17). This other mechanism has not yet been found in
numerical simulations. It would be interesting to know
whether this change of mechanism is related to the fact that
the Coriolis force apparently selects the direction of instabil-
ity of finite-amplitude defects (Johnson 1963).

The same line of argument applies to the shearing sheet
simulations of Balbus et al. (1996) and Hawley et al. (1999).
Indeed, the effective Reynolds number of these simulations
is not an issue, since the code used by Hawley et al. (1995,
1999) is able to find turbulence (or at least the large-scale
mechanism already alluded to) in nonrotating Couette
flows, and this happens only for Reynolds numbers larger
than at least 1500. In addition, the argument developed in
x 3.2 shows that the Coriolis force by itself should not
change the minimal Reynolds number for the onset of tur-
bulence, an inference confirmed by the fact that turbulence
is seen developing in the rotating free shear layer of experi-
ments of Bidokhti & Tritton (1992) for roughly comparable
Reynolds numbers. Under the assumption (cf. the argu-
ments developed above) that equation (17) provides an esti-
mate for the largest turbulent scale that is overestimated by
a factor of at least 3 in the presence of a Coriolis force term,
one obtains lMdDy=100, with (possibly much) smaller val-
ues more than likely. This is most probably too close to the
largest resolution achieved in the shearing sheet simulations
(the number of zones in any direction being no larger than
250), especially when artificial viscosity is taken into
account, for turbulence to show up in these simulations.

To conclude this section, it is worth noting that some
other numerical questions must be considered to find turbu-
lence in these systems. First, it is well known from experi-
ments with subcritical flows that the way perturbations of
the flow are designed has an influence on the appearance of
turbulence. This suggests that some care must be exercised
in the choice of the initial conditions in numerical experi-
ments; in particular, it might be useful to ensure that at least
some condition of finite-amplitude instability is satisfied in
this choice. Second, the role of the choice of the Courant
number is not completely obvious, even in situations in
which the CFL condition is not violated. For example, in a
series of yet unpublished simulations of linearly stable

12 The noise in the data at large rotation number does not permit a very
precise estimate of this reduction factor, but the value of 10 quoted here
seems a bare minimum.

13 Note that in Bidokhti & Tritton (1992), as pointed out by the authors
themselves, turbulence is not lost, and the flow remains three-dimensional,
although the velocity fluctuations anisotropy is clearly affected by rotation.
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Couette-Taylor flows performed with the ZEUS code in col-
laboration with David Clarke, we did initially find that tur-
bulence would set in for flows that are ‘‘ not too far ’’ from
planar Couette flows (including some roughly Keplerian
flows), but it would eventually disappear when the maximal
allowed time step was reduced, although the CFL condition
was satisfied in all runs. The reason for this behavior has not
yet been completely elucidated, but it appears to have some
direct connection to the question of resolution just dis-
cussed.14 In any case, the disappearance of turbulence in
numerical simulations of Couette-Taylor flows that are
experimentally known to be turbulent is a serious cause of
worry for the reliability of the conclusions drawn from the
published shearing sheet numerical experiments.

4. SUMMARY AND ASTROPHYSICAL IMPLICATIONS

Equations (17) and (18) (x 3.2), along with their conse-
quences, constitute the central findings of this paper. They
express the natural length and velocity scales that are
involved in turbulent transport in subcritical flows in terms
of the local mean characteristics of the flow, and result from
the constraint that the turbulent transport dominates over
the viscous in the framework of the turbulent viscosity
description. The scaling and orders of magnitudes implied
by these relations are supported by the available experimen-
tal and numerical evidence (see the Appendix and the begin-
ning of x 3.4).

These scaling relations have two important consequences.
First, they provide an explanation for the minimum Rey-
nolds number dependence on the relative gap width in Cou-
ette-Taylor experiments, displayed in Figure 3 (x 3.3). A
theoretical explanation of this behavior has long been
sought, but none has satisfactorily been proposed yet; the
phenomenological explanation presented here has the
advantage of connecting apparently unrelated features,
being consistent with all the experimental constraints, and
pointing out the direction in which such a theoretical
explanation might be looked for. Incidentally, the existence
of this phenomenological explanation strengthens the valid-
ity of these scaling laws. Second, the comparison of the vari-
ous flows presented in x 2 implies that disk flows described
in the framework of the shearing sheet approximation
should be turbulent (x 2.4), and the scaling relations
strongly suggest that the absence of turbulence in the avail-
able shearing sheet numerical simulations is due to a lack of
resolution (x 3.4). This follows because the Coriolis force
destroys large-scale fluctuations, thereby affecting in a
major way the nonlinear mechanism through which turbu-
lence is maintained. At present, this mechanism is not
understood, except, to some extent, for plane Couette flows.

Understanding to what extent these results are helpful in
characterizing and quantifying turbulent transport in accre-
tion disks is an important issue. Three factors at least must
be accounted for: the magnitude of the disk pressure, the
vertical scale height, and the presence of a magnetic field;
these factors are not macroscopically independent, but
relate differently to the onset of turbulence.

The disk pressure affects the problem in two a priori dif-
ferent ways: first, the turbulent transport picture presented
in this paper requires the underlying turbulence to be sub-

sonic (see also Huré, Richard, & Zahn 2001); second, turbu-
lent velocity fluctuations require a force to produce them,
and only the pressure force is available to this purpose in the
hydrodynamical case, independently of the details of the
underlying mechanism that sustains this turbulence. The
first constraint is easily quantified: turbulent motions are
subsonic if vM=csd1 (cs is the sound speed); in accretion
disks, cs � �H, and from equation (15), this implies that
HelM (H is the disk scale height). To quantify the second
constraint, note that a given fluctuating blob of size lM
undergoes a velocity change �u � lMðrd�=drÞ � lM� over a
timescale �vM=lM � �, because the coupling to the shear is
the source of turbulent motions at the largest scales; the
largest pressure variation at any scale is �P=� � c2s , and
requiring that the resulting pressure force at scale lM be able
to account for the turbulent velocity fluctuations at this
scale requires15 againHelM .

The turbulent scales (�lM ) are connected to the mean
flow scales through the mechanism that sustains turbulence.
In an accretion disk, only two such mean flow scales are
available locally:H and r. The role of r has already been dis-
cussed; the role of the vertical scale height depends on the
anisotropy of the mechanism that sustains turbulence. In
the absence of constraint on the nature of this mechanism
for rotating shear flows, I examine in turn two limiting
assumptions:

1. This process is ‘‘ isotropic,’’ i.e., the scales it requires to
operate are roughly identical in all directions—shearwise,
streamwise, and spanwise (this is the case, for example, for
the nonlinear mechanismmentioned in x 2.1 for nonrotating
plane Couette flows). In this case, the elementary box in
which this mechanism operates must be of size H, which
implies in particular that Dr ’ H in all the relations used in
the previous sections of this paper. If H=rdDc (cf. eq. [23]),
as expected in most disk models, the rotation regime of Cou-
ette-Taylor flows is irrelevant; instead, the shearing sheet
approximation applies. As argued at the end of x 2.2, the
Coriolis force is not expected to sensibly affect the minimal
Reynolds number of turbulence, so that �t � ðrD�ÞH=
Rep � 10�3csH, and the Shakura-Sunyaev parameter
� � 10�3. Note in this case that the constraint HelM is
always satisfied.
2. The process is not sensitive to the vertical scale height

except through the pressure requirement described above.
As a consequence, as long as He�1=2r � 3� 10�3r (which
is likely to be satisfied in accretion disks), the Couette-Tay-
lor rotation regime applies, and �t ’ �r3d�=dr � ��r2, so
that the Shakura-Sunyaev parameter � � �ðr=HÞ2 lies in
the range 10�3 to 10�1. IfHd�1=2r, the turbulence is super-
sonic. Note, however, that the extra energy dissipation tak-
ing place in shocks makes a supersonic turbulence more
difficult to maintain, and the disk might heat up until
H � lM is satisfied again, or lM might decrease, i.e., the tur-
bulence-maintaining process might be affected and Rem
increased, or the limiting case considered here does not
apply.16 This makes the relevance of supersonic turbulence
to accretion disk theory unclear.

14 A counterintuitive dependence of hydrodynamic simulations on the
Courant number is also visible on Fig. 1 of Porter &Woodward (1994).

15 This argument ignores the possibility of supersonic turbulence.
16 If the Reynolds number is large enough, the disk must be turbulent;

this follows by considering a narrow enough disk portion so thatH exceeds
its width, and at least one of the regimes of the previous sections does apply,
inasmuch as boundary conditions are not essential to the onset of turbu-
lence, as argued above.
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The conclusion of this brief discussion is that in the Sha-
kura-Sunyaev parameterization of the turbulent viscosity in
hydrodynamic disks, either � � 10�3 or � � 10�5ðr=HÞ2,
depending on the unknown characteristics of the mecha-
nism that sustains turbulence. In principle, one should also
check that Re > Rem; since � � lc (where c � cs is the veloc-
ity dispersion and l the mean free path), this translates into
H=le103 in the first case above, and r2=Hle��1 � 105 in
the second, but both requirements are most probably satis-
fied everywhere in astrophysical accretion disks.

It is unclear how the presence of a magnetic field can
modify hydrodynamic shear turbulence. In particular,
even a dynamically nondominant field can easily affect
the mechanism of generation of turbulence, and there-
fore significantly modify the efficiency of the turbulent
viscosity transport, on top of adding a turbulent resistiv-
ity, even if the MHD flow remains linearly stable.17

Conversely, the possible occurrence of hydrodynamic
shear turbulence might possibly affect in a major way
our present understanding of MHD transport and
dynamo processes in accretion disks, which mostly relies
on the physics of the nonlinear development of the mag-
netorotational instability. Clarifying these questions is of
primary importance for accretion disk theory.

To conclude this paper, let me point out that there
is one example of a Keplerian disk that has been
observed with a great luxury of details, and that is not
turbulent, namely, Saturn’s rings. However, the require-
ments discussed above fail on several accounts in ring
systems, because both the particle size d and mean
free path l are comparable to H. For example, in the
first limiting case discussed above, the ring is necessa-
rily laminar, while in the second, because HelM , the
granularity of the system makes scales dlM inaccessible
to the fluid description; the same argument makes
supersonic turbulence most probably irrelevant to ring
systems.

APPENDIX

EVIDENCE FOR THE PROPOSED TURBULENT SCALING

Because Rem is at least of the order of 103, the order-of-magnitude estimates of equations (17) and (18) are sensibly smaller
than the mean flow length and velocity scales to which lM and vM are usually assumed to be comparable. Nevertheless, they
are in good order-of-magnitude agreement with the available evidence. Consider, for example, the simulation of Couette flow
reported in Bech et al. (1995), and further exploited in Bech & Andersson (1996b) to quantify the structure of the Reynolds
stress in the central region of Couette flows. For Couette flows, equation (18) gives vM � Dvx=40. The simulation just men-
tioned has a Reynolds number18 of 5200, i.e., well above the threshold of transition to turbulence. The behavior of the Rey-
nolds stress as a function of the distance to the wall is represented on Figure 1a of Bech & Andersson (1996b), and, after
accounting for the particular normalization adopted in their graph,19 one finds vM ’ Dvx=30 for this simulation, which is
nearly identical to the estimate deduced from equation (18). Even if one takes into account the fact that the value of Dvx rele-
vant for the bulk of the flow is smaller than the one adopted in equation (18) by a factor of �4, the two estimates of vM still
agree within a factor of�3. Another estimate of the same quantity for nonrotating free shear flows is obtained from the repre-
sentation20 of h�vx�vyi in Figure 14 (at Q ¼ 0) of Bidokhti & Tritton (1992), and gives vM � Dvx=10, which differs from the
order-of-magnitude estimate quoted above by a factor of �4. Some indication of the value of lM can also be extracted from
Figure 2 of Bech et al. (1995), which shows the power spectra in the shearwise and spanwise directions. However, the box size
in these directions is large in terms of h, and the resolution of the simulation does not allow the authors to really reach the iner-
tial part of the turbulent spectrum. This is particularly noticeable for kx spectra in the middle of the flow (displayed in the
y ¼ 82 quadrant of this figure), which are nearly flat down to kxh ’ 10, and drop precipitously for larger values of k because
of numerical dissipation, as the limit resolution of the simulation is reached. The kz spectra behave sensibly better, most prob-
ably because the box is 2.5 times smaller in this direction, and show some indications that an inertial spectrum tries to develop
for 8dkzhd30. Because h ¼ Dy=2, this suggests that lM in this simulation is at most within a factor of�3 of the order-of-mag-
nitude estimate deduced from equation (17). Note in passing that, for Couette flows, the inertial spectrum does not need to be
resolved in order for turbulence to be observed in numerical simulations; this is related to the existence of a large-scale nonlin-
ear mechanism that sustains turbulence, as mentioned in x 2.1, and which is most likely at the origin of the more or less flat part
of the spectra at large scales.

17 This can happen, e.g., if the disk scale height is small enough as to not
let any magnetorotational mode become unstable, which is easily realized
in disks with a near equipartition between thermal andmagnetic energies.

18 Note that our definition of the Reynolds number differs from the one adopted in these papers by a factor of 4.
19 A property of Couette flows is that the total mean shear stress 
 ¼ �ð�dhvxi=dy� h�vx�vyiÞ is constant in the shearwise direction (this follows from the

stationarity of the mean flow). Away from the wall 
 ’ ��h�vx�vyi, whereas close to the wall 
 ’ ��dhvxi=dy; consequently, the Reynolds stress is usually nor-
malized to 
=�, velocities to v
 � ð
=�Þ1=2, and one has vM ’ v
 in the bulk of the flow. The value of v
 for this simulation can be obtained in the following
way. Note first that Figure 1a of their paper also displays Re�1


 dhvxi=dy where, for their simulation, Re
 ¼ v
h=� ¼ 82, and where vx is normalized to v
 and y
to the walls half-distance h; this quantity is equal to 1 in the immediate vicinity of the wall. On the other hand, the value of the velocity gradient near the wall in
units of 2Uw=h ¼ Dvx=h can be deduced from Figure 4 of Bech et al. (1995), which relates to the same simulation. The comparison of these twomeasures of the
same quantity yields the required value of v
 =2Uw.

20 Note that vM characterizes turbulent transport, and that h�vx�vyi is usually smaller than the magnitude of velocity fluctuations by a factor of a few.
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