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Abstract The effects of global flow rotation and curvature on the subcritical transition to
turbulence in shear flows are examined. The relevant time-scales of the problem
are identified by a decomposition of the flow into a laminar and a deviation to
laminar parts, which is performed for rotating plane Couette and Taylor-Couette
flows. The usefulness and relevance of this procedure are discussed at the same
time. By comparing the self-sustaining process time-scale to the time-scales
previously identified, an interpretation is brought to light for the behavior of the
transition Reynolds number with the rotation number and relative gap width in
the whole neighborhood (in parameter space) of the non-rotating plane Couette
flow covered by the available data.

1. Introduction:

In the last decade or so, a number of breakthroughs has been achieved in
the understanding of the onset of turbulence in subcritical shear flows, such as
the plane Couette flow and Poiseuille flow, both from an experimental point
of view (e.g., Bottin et al., 1998), and a numerical and theoretical one (e.g.,
Nagata, 1990; Clever and Busse, 1997; Hamilton et al., 1995; Waleffe, 1997;
Waleffe, 1998; Waleffe, 2003; Faisst and Eckardt, 2003). In this context, the
present contribution has two main objectives: characterize the effects of global
flow rotation and curvature in subcritical flows from the available data, and
show that these characteristics can be understood at a semi-quantitative level
from time-scale considerations. Understanding these questions is essential for
geophysical and astrophysical applications, which is one of the motivations of
this work. Data on rotating plane Couette flows and Taylor-Couette flows are
used in this investigation.

Section 2 is devoted to the identification of rotation and curvature charac-
teristic quantities, and relating them to the gross dynamics of the flow. Not
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surprisingly, the associated dimensionless numbers reduce to the shear-based
Reynolds number, the rotation number, and the relative gap width (for Taylor-
Couette flows); the novel point is that the relative gap width is interpreted in
terms of a ratio of dynamically relevant time-scales. The experimental data
are then reviewed in section 3, and the characterization of the available data in
terms of the previously defined dimensionless numbers is performed in section
4. The last section briefly summarizes the most important results, and discusses
their astrophysical implications.

2. The physics of the advection term revisited:

The main objective of this section is to pinpoint the relevant time-scales in
globally subcritical, rotating and curved flows, and to relate them to the various
contributions of the advection/acceleration term. This turns out to be essential
to develop a semi-quantitative understanding of the available data on such flows.
In practice, we consider only rotating plane Couette and Taylor-Couette flows.
Incompressibility is assumed throughout.

Equations of motions

The relevant time-scales are well-known in rotating plane Couette flows, and
derive immediately from the expression of the Navier-Stokes equation in the
rotating frame, which reads

∂u

∂t
+ u.∇u = −

∇π

ρ
− 2Ω× u+ ν∆u, (1)

with obvious notations (in particular, the centrifugal term has been included in
the pressure gradient). They are the shear1 time-scale ts = |S−1|, the viscous
one tν = d2/ν (d is the gap in the experiment), and the rotation time-scale
related to the Coriolis force tΩ = (2Ω)−1 (Ω is the rotation velocity of the
flow in an inertial frame), and relate to the advection term, the viscous term,
and the Coriolis force, respectively. Correlatively, the flow is described by two
dimensionless numbers, the Reynolds number2 Re = tν/ts = |S|d2/ν, and
the rotation number RΩ = sgn(S)ts/tΩ = 2Ω/S.

The situation is less straightforward for Taylor-Couette flows, where the
dimensionless number usually associated to the flow geometry, η = ri/ro (ri
is the inner cylinder radius, ro the outer one) does not obviously correspond to
a ratio of time-scales of the flow. However, on closer inspection, it appears that

1The convention adopted here is that the sign of S is chosen to be positive when the flow is cyclonic, i.e.,
when the contributions of shear and rotation to the flow vorticity have the same sign. With the usual choice
of axes in plane Couette flows, this implies that S = −2Sxy , where Sij is the usual deformation tensor.
2This definition differs from the usual one by a factor of 4; this convention is adopted here for consistency
with the treatment of Taylor-Couette flows.
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this situation arises from a partially incorrect assimilation of the shear time-
scale to the advection term. Indeed, in the case of solid body rotation, the shear
cancels, while the advection term does not, due to the global curvature of the
flow. One must therefore devise a way to isolate the global shear contribution
to the advection term from other contributions.

It turns out that one convenient way to operate such a distinction is to decom-
pose the total flow into its laminar part, and a (not necessarily small) deviation:

u = uL +w. (2)

Although the dynamical relevance of the laminar flow to the turbulent one is
not a priori obvious, this procedure is suggested and justified by the following
considerations:

Inasmuch as this is feasible, a distinction between global shear, rotation
and curvature cannot be operated by a tensorial decomposition of the
advection term. For example, it is well-known that both a pure global
shear and a global rotation, such as the ones present in rotating plane
Couette flows, contribute to the vorticity tensor. In fact, a direct Taylor
expansion of the deformation for small displacements shows that one
needs to go at least to second order to distinguish the two contributions.
Therefore, no tensor constructed from the flow velocity first derivatives
will establish the required distinction, by construction.

The global characteristics of the flow are the same for the laminar and
turbulent solutions (geometry, global time-scales, nature of the boundary
condition, etc). Therefore, one way to make them appear explicitly in
the Navier-Stokes equation is precisely to make the proposed decom-
position, as the laminar solution depends everywhere explicitly on these
global characteristics. In particular, the laminar and turbulent flows share
the same boundary conditions (velocity difference on the boundary, gap
width, etc), so that the relative difference between the laminar and turbu-
lent solution is of order unity. This means that the laminar solution is a
convenient measure of the turbulent one, although their detailed mecha-
nisms and characteristics are of course essentially different. For example,
it turns out that the transition Reynolds number is highly sensitive to var-
ious global and/or qualitative characteristics of the laminar flow, such as
time-scales, or “distance” in parameter space to the linear stability limits
(see section 3).

It is useful to point out where this decomposition leads to for the rotating
plane Couette flow. This is most naturally done in the rotating frame, so that
Eq. (1) becomes
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∂w

∂t
+w.∇w = Sy

∂w

∂x
+ (2Ω + S)wyex − 2Ωwxey −

∇δπ

ρ
+ ν∆w, (3)

where the pressure gradient balancing the laminar flow Coriolis force has been
subtracted out to form the effective generalized pressure δπ. Note that on
the walls, which specify the global characteristics of the flow, the boundary
condition becomes w = 0, quite a featureless constraint: the effect of these
boundaries is now explicitly included in the Navier-Stokes equation through the
dynamical linear forcing terms on the right-hand side. The real usefulness of
this change of point of view comes out when considering Taylor-Couette flows,
as we shall now argue.

In this flow, the laminar solution takes the form uL(r) = rΩ(r)eθ. Note that
the rotating plane Couette flow can be viewed as a limit of small relative gap
width d/r̄ → 0 (r̄ is some characteristic radius of the flow), at constant shear,
and constant rotation. Then, the effect of the global curvature and rotation will
be more easily distinguished from one another if one chooses a formulation of
the Navier-Stokes equation which makes the difference with Eq. (3) explicit.
To this effect, one must define a characteristic rotation velocity Ω̄, and a char-
acteristic shear3 S̄ of the laminar flow. A convenient way to do this is to choose
a characteristic radius r̄, and impose Ω̄ = Ω(r̄), S̄ = S(r̄); the choice of r̄
does not need to be further specified for the time being (this point is discussed
in the next subsection). Defining δΩ = Ω(r) − Ω̄ and δS = S(r) − S̄, the
decomposition of the Navier-Stokes equation of the Taylor-Couette flow leads
to (r, φ, z is the coordinate system in the rotating frame)

∂w

∂t
+w.∇w =− δΩ∂′φw − (2Ω̄ + S̄)wreφ − 2Ω̄wφer −

∇δπ

ρ
+ ν∆w

− (2δΩ+ δS)wreφ − 2δΩwφer, (4)

where ∂′φw ≡ (∂φwr)er+(∂φwφ)eφ+(∂φwz)ez; this definition is introduced
so that the contributions of order 1/r̄ of the derivatives in the linear terms are
separated from the contributions of order 1/d. This equation is similar4 to
Eq. (3), except for the last two terms, which consequently are connected to
the global flow curvature. Note that, although the definition of δΩ and δS
depends on the choice of r̄, the overall variation of these quantities throughout
the flow, ∆(δΩ) and ∆(δS), does not. In fact, |∆(δΩ)| ∼ |∆(δS)| ∼ |S̄|d/r̄,

3The shear of the laminar flow is defined as S = rdΩ/dr = 2Srφ in order to maintain the sign convention
adopted for rotating plane Couette flows for cyclonic and anticyclonic rotation.
4In the identification of the two equations, note that r ←→ y and φ ←→ −x. Also, δΩ ' S̄(r − r̄)/r̄,
an approximation which holds to∼ 10% for the range of η explored in the available experiments, a feature
needed in the comparison of Eqs. (3) and (4).
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as can be checked from the laminar flow profile Ω(r) = A + B/r2. In the
process, four time-scales of the incompressible Taylor-Couette flow have been
identified: they are the shear time-scale ts = |S̄−1|, the rotation time-scale tΩ =
(2Ω̄)−1, a curvature-related time-scale that one can define as tC = |S̄−1|r̄/d,
and, of course, the viscous time-scale tν = d2/ν. This also shows that the
dimensionless geometric number η can be related to the ratio of the shear and
curvature time-scales. Taking the limit d/r̄ → 0 (η → 1), one recovers the
rotating plane Couette relation Eq. (3).

Characteristic quantities, dimensionless numbers, and the
curvature and rotation concepts:

Taylor-Couette flows possess three dimensionless control parameters, which
are usually chosen as the Reynolds numbers associated to the inner and outer
cylinder rotation velocities, Ri and Ro, and η, the ratio of their two radii. The
preceding discussion suggests that one should use instead ratios of time-scales,
which have a more direct dynamical meaning. This defines the shear-based
Reynolds number5 Re = tν/ts, the rotation number RΩ = sgn(S)ts/tΩ, and
a “curvature" number RC = ts/tC . Once a choice of r̄ is operated (see below),
the procedure is completely specified. This three-dimensional parameter space,
in which notable curves and surfaces are drawn, is represented in figure 1.

However, the physical meaning of this procedure is less straightforward than
one would like, and this is related to an obvious weakness of Eq. (4): the
distinction between the rotation and curvature terms is not absolute when the
related time-scales are both dynamically significant. Indeed, any change of
definition of Ω̄ and S̄ results in a correlative change of δΩ and δS. Nevertheless,
the physical meaning is to a large extent unambiguous in at least two different
contexts:

If one changes the rotation velocity of the inner and outer cylinders by the
same quantity, this will change Ω̄ by the same amount (independently of
the choice of r̄), while leaving all other quantities (S̄, δΩ, δS) unchanged.
Such changes are obviously an effect of changes in the flow rotation.

On the other hand, when changes in the flow are operated while main-
taining tΩ . tC , the physical meaning of the distinction between the
characteristic quantities (Ω̄, S̄) and the deviations from these (δΩ, δS)
is blurred. This is the case in particular when the cylinders are counter-
rotating, or when one cylinder is at rest, for any choice of r̄. In such a

5We use the same Reynolds number definition for rotating plane Couette and Taylor-Couette flows, based
on the total gap width and total velocity difference. Consequently, the quoted Reynolds numbers for plane
Couette flows differ from the ones in the literature by a factor of 4.
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context, changes in both parameters (the rotation number and the curva-
ture number) describe the effect of a change in the flow curvature, as they
are both proportional to d/r̄, and vanish if the limit of vanishing global
curvature is taken while enforcing the tΩ . tC relation.

This clearly shows that rotation and curvature are not interchangeable con-
cepts, although they have a non negligible overlap. In this context, the denomi-
nations “rotation number" and “curvature number" are somewhat conventional
and partially misleading, even if justified to some extent by the preceding con-
siderations. In the (RΩ, RC) plane, changes along lines of constant RC cor-
respond to changes of rotation, but there are infinitely many paths involving
changes of both parameters and corresponding to changes of curvature from a
physical point of view. Furthermore, most paths do not lead to any clear-cut
distinction between curvature and rotation changes in the flow. Of course, once
a reference curvature path is chosen (e.g., the path with the inner cylinder at rest,
corresponding to the inviscid linear stability limit on the cyclonic side, shown as
curve (4) on figure 1), every point in the (RΩ,RC) plane can be connected to the
non-rotating plane Couette flow (the origin in the plane), first through a change
of curvature along the chosen curvature path until the desired curvature number
is reached, and then through a change of rotation at constantRC . However, this
distinction is only relative.

Obviously, this situation is intrinsic, as one cannot curve a straight flow, with-
out at the same time making it rotate. The procedure outlined here nevertheless
leads to the definition of well-defined parameters, which have a dynamical inter-
pretation. It is their physical meaning in terms of rotation and curvature which
is partially ambiguous. Furthermore, these parameters turn out to be useful to
understand basic features in the data on the subcritical transition to turbulence,
as discussed in the next section.

The remaining point to be addressed relates to the choice of r̄. The preceding
discussion makes it clear that this choice is not unique. The definition we have
adopted here is r̄ ≡ (riro)

1/2, as suggested in Dubrulle et al., 2004 (ri and ro
are the inner and outer radius, respectively). This choice is partially motivated
by the compactness of the resulting expressions for the dimensionless numbers
introduced above:

Re =
2r̄

ro + ri

r̄|Ωo − Ωi|d

ν
=

2

1 + η
|ηRo −Ri|, (5)

RΩ =
riΩi + roΩo

rori

d

Ωo − Ωi
= (1− η)

Ri +Ro

ηRo −Ri
, (6)

RC =
d

r̄
=

1− η

η1/2
. (7)
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Note that, for the range of values of η explored in the available experiment,
Re ' r̄|∆Ω|d/ν, and RΩ ' (2Ω̄/r̄)(d/∆Ω) (within a few percents).

3. Subcritical transition in rotating plane Couette and
Taylor-Couette flows:

Considering a laminar flow of given dimensionless numbers (rotation, cur-
vature, and Reynolds), two different things can happen when increasing the
Reynolds number: either the flow will undergo a linear instability first (super-
critical transition), or it will undergo a laminar-turbulent transition first (glob-
ally subcritical transition). The second option may happen whether the flow is
linearly unstable or not.

The Reynolds number characterizing subcritical transition in a system is
not a quantity that can be measured with absolute precision, as it depends
to some extent on the experimental protocol used in its determination. For
example, the laminar-turbulent transition Reynolds number is generically larger
than the turbulent-laminar one. Furthermore, the flow is intermittent over a
range of Reynolds numbers in the vicinity of this transition. This leads to some
differences in the determined Reynolds transition values, even when the same
data are used by different authors; however, the dispersion of the data in a given
author’s choice is much smaller. Overall, the resulting range of values (at given
dimensionless numbers) is uncertain within less than a factor of ∼ 2; we shall
ignore this problem here, as we are only interested in characterizing qualitative
trends and orders of magnitude.

With this convention, both supercritical (Re = Rc) and globally subcritical
(Re = Rg) transitions are characterized by surfaces in the three dimensional
space (RΩ, RC , Re). Only particular lines on these surfaces have been probed by
the available experiments. Obviously, the supercritical and subcritical surfaces
meet somewhere in this space, so that one needs to characterize both surfaces.

It turns out, from a practical point of view, that the supercritical surface (man-
ifold (1) in figure 1) is sufficiently well captured by the analytic approximation
derived by Esser and Grossmann, 1996, for Taylor-Couette flows, although it re-
lates only to axisymmetric perturbations (in other words, the non-axisymmetric
perturbations seem to play little role in the definition of the supercritical tran-
sition). The rotating plane Couette flow is included in the limit η → 1. For the
relatively high Reynolds numbers of interest for subcritical transitions to tur-
bulence (> 1000), the dependence of the supercritical surface on the Reynolds
number is very steep, and the surface is well-approximated by the inviscid lin-
ear stability limit (curves (2) of figure 1). This explains that the limit of the
subcritical regime in the (RΩ, RC) plane is well-approximated by the inviscid
limit. Linear instability follows somewhere in the fluid in this limit if
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Figure 1. Stability boundaries in the (Re,RΩ, RC) parameter space. Blue manifold (1):
linear stability threshold. Dark green lines (2): linear stability threshold in the inviscid limit.
Green manifolds (3): extrapolation of the inviscid criteria throughout the full Reynolds space
(partially shown for readability). Red line (4): globally subcritical threshold obtained with inner
cylinder at rest (see text). Dark lines: globally subcritical thresholds obtained at fixed value of
η (plain (5): η = 0.7, dash (6): η = 1) (see text).

−1 6
2Ω(r)

S(r)
6 0, (8)

at this location (this is equivalent to the contraint put by the Rayleigh discrim-
inant). Asking that the fluid is everywhere stable with respect to this criterion
translates into RΩ < −1, or RΩ > (1− η)/η.

The data on subcritical transition discussed here are those of Wendt (1933),
Taylor (1936), Tillmark and Alfredsson (1996), and Richard (2001); they are
represented on figure 2. One could also include data on counter-rotating cylin-
ders (Andereck, Liu and Swinney, 1986; Prigent et al., 2003), but these occupy
only a very area in the (RΩ, RC) plane, and bring little constraint on the trend
of the transition Reynolds number with the rotation and curvature numbers.

The data are well parameterized by the following approximate formula (the
+ and − sign refer to cyclonic and anticyclonic flows, respectively)

R±g (RΩ, RC) = R±PC + a±(η)|RΩ −R∞,±
Ω |+ b±R2

C , (9)

with R+
PC ' 1400, R−PC ' 1100 ∼ R+

PC , 21000 . a± . 61000, 2 × 105 .

b+ . 6 × 105, b− ¿ b+, and where R∞,+
Ω = (1 − η)/η, and R∞,−

Ω = −1.
This is discussed in detail in Longaretti and Dauchot, 2004, and Dubrulle et al.,
2004.
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Figure 2. Data on subcritical transition. Upper left: data of Wendt (1933) and Taylor (1936),
for cyclonic rotation, with the inner cylinder at rest, for varying η; this shows the dependence
on the curvature number in cyclonic flows. Upper right: data of Tillmark and Alfredsson (1996)
for rotating plane Couette flows (η = 1). Lower left and lower right: data of Richard (2001),
for anticyclonic and cyclonic rotation, respectively (η = 0.7). On the last three graphs, the
curvature number is held fixed, so that the data show the dependence of the transition Reynolds
number on the rotation number. The solid lines represent best quadratic or linear fits to the data.

The most notable characteristics of this dependence are the following:

The linear dependence on the rotation number, and quadratic one on the
curvature number.

The rather steep dependence with both numbers (a± and b+ are large
numbers).

The apparent symmetry between cyclonic and anticyclonic rotation num-
ber dependence, and the absence of dependence on the curvature on the
anticyclonic side (b− ' 0).
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The next section discusses these features; in particular, the strength of this
dependence is explained in order of magnitude on the basis of time-scale con-
siderations.

4. Data interpretation:

The linear and quadratic dependence just pointed out can be viewed as the
result of a Taylor expansion. For cyclonic rotation, this expansion is performed
around the non-rotating plane Couette flow, first in terms of RC along curve
(4) on figure 1, and then away from it, at constant RC , in terms of RΩ. For
anticyclonic rotation, the expansion depends only on RΩ, at least for η > 0.7,
and is performed from the marginal stability state, at RΩ ' −1.

Linear dependence

The linear dependence with RΩ is neater on the cyclonic data than on the
anticyclonic one, but the data extend less far on the cyclonic side, unfortunately.
The increased dispersion on the anticyclonic side has several reasons:

Both cylinders need to be rotating at much higher speed than on the cy-
clonic side to reach the subcritical turbulent transition. This automatically
reduces the precision of the measurements.

The quantity RΩ amplifies the uncertainty due to small errors in the
determination of the cylinder angular velocities at transition.

There is an important intrinsic difference between the cyclonic and anti-
cyclonic marginal stability limits. On the cyclonic side, instability begins
at a single location (the inner radius), whereas on the anticyclonic side,
marginal stability applies throughout the fluid (this follows because the
constant angular momentum solution is a laminar solution of the Taylor-
Couette flow). Equivalently 2δΩ(r) + δS(r) = 0 at the anticyclonic
marginal stability limit. Therefore, the fluid is much more sensitive to
a potential linear instability. In particular, the unavoidable Eckmann
circulation can much more easily make the criterion Eq. (8) satisfied
somewhere in the flow on the anticyclonic side than on the cyclonic one.
We believe that this feature most likely explains why Richard’s data show
only a weak dependence of the transition Reynolds number on the rota-
tion number out to |1 + RΩ| ' 0.35, and then a sharp increase to reach
back the linearly varying regime.

Note that the mutual cancellation of a part of the curvature terms in Eq. (4) at
the anticyclonic marginal linear stability limit just pointed out also provides a
natural explanation for the apparent absence of dependence of the anticyclonic
data on the curvature number.
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Quadratic dependence

The quadratic dependence of the data on the gap width when keeping the
inner cylinder at rest has already been pointed out by Zeldovich, 1981, and
Richard and Zahn, 1999. At least three explanations of this behavior have been
put forward in the literature (Zeldovich, 1981; Dubrulle, 1993; Longaretti,
2002). These will be commented below.

Let us first note that, in plane Couette flows, transition occurs at a constant
Reynolds numberRe = S̄d2/ν. Therefore, at a given shear S̄, the scale d is the
characteristic scale at which turbulence obtains in such a system. Conversely, in
the quadratic asymptotic regime, [Re ∝ (d/r̄)2], transition occurs at constant
Re∗ = S̄r̄2/ν (= b+), a point already made by Richard and Zahn, 1999.
Consequently, the characteristic radius r̄ instead of the gap d characterizes the
transition at a given shear. This unambiguously points out curvature and not
rotation as the source of this behavior, consistently with the discussion of section
2.

Dubrulle, 1993, explains the quadratic behavior by considering the growth
of finite amplitude local defects in the laminar profile. However, only WKB
modes of instability created by the defects are considered, for which the scale
r̄ cannot play any role. This is why we believe that this analysis cannot capture
the transition mechanism.

Zeldovich, 1981, phenomenological explanation is based on the two follow-
ing ideas:

The transition Reynolds number may depend on the single time-scale
ratio Ty(r) = 4κ2(r)/S2(r) at some appropriately chosen radius in the
flow: Rg = f(Ty); κ(r) = [2Ω(2Ω + S)]1/2 is the epicyclic frequency,
i.e., the frequency of oscillation of the whole fluid, under the combined
action of the shear and the Coriolis force.

A “split-régime" of instability may occur, in which the transition to tur-
bulence is easier to achieve in the inner portion of the flow than in the
whole flow, once a large enough relative gap width is reached.

Considering the relative ambiguity in the distinction between the rotation
and curvature time-scale discussed in section 2, one may indeed ask whether a
single time-scale would be sufficient to understand the data. This would imply
that Taylor-Couette flows possess a hidden redundancy, and could be described
by two appropriately chosen parameters, and not three. However, the extended
set of data used here does not support this idea, although a larger body of
experimental results is probably needed to ascertain this result.

Longaretti, 2002 has developed an alternate phenomenology of subcritical
shear flow turbulence. It relies on the one hand on a turbulent viscosity descrip-
tion, in which the characteristic length is identified to the top of the Kolmogorov
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cascade; on the other hand it makes use of the constraint that a subcritical shear
flow is out of thermodynamic equilibrium and tries to restore equilibrium by
transporting momentum across the shear, and, to do so, chooses the most effi-
cient of the two means at its disposal (laminar or turbulent transport). This pro-
vides scaling laws for the characteristic length and velocity of turbulent eddies,
by relating them to the Reynolds number of transition to turbulence. By further
noting that for large enough gap widths, the turbulent eddies must unavoidably
scale with the radius and not the gap, the quadratic régime is recovered.

Orders of magnitude

The last point we wish to address is the origin of the large values the co-
efficients a and b which appear in the characterization of the data performed
in Eq. (9). We mostly consider cyclonic flows, for which the physics is best
understood

As mentioned in the introduction, an important breakthrough in the under-
standing of subcritical turbulence in non-rotating plane Couette flow comes
from the work of Waleffe, 1997, who analyzed by the means of quasi-linear
theory a turbulent self-regeneration process previously observed in the numeri-
cal simulations of Hamilton et al., 1995. These last authors have tracked down
turbulence to the smallest unit where it is self-sustained by reducing appropri-
ately the simulation box size and the Reynolds number. A very important feature
of the identified self-sustaining process is that it has a rather long time-scale
compared to the shear:

t+ssp ∼ 100S̄−1. (10)

and that the scales involved in the self-regeneration mechanism are comparable
to the flow width. This time-scale is the shortest of all the mechanisms found
in the systematic reduction of the flow, and thus corresponds to the most robust
one, which involves two streamwise rolls in the spanwise direction. These
streamwise rolls, first observed by Dauchot and Daviaud, 1995, typically scale
on the gap width. Accordingly, it is very likely that such a long time-scale is a
generic feature in non rotating plane Couette flows, because of the large (R+

PC ∼
1500) Reynolds number of transition to turbulence which are always observed
in these systems. Such a large Reynolds number constrains the viscous diffusion
time at the scales involved in the self-regeneration mechanism. Typically for
a length-scale d/4, the equality of the viscous time tν = (d/4)2/ν with t+ssp
would indeed leads to Rg = 1600. Such a scale (d/4) is characteristic of
the thickness of the streaks, apparently the smallest characteristic scale of the
process.

From a physical point of view, one expects that the contributions of either
rotation or curvature become comparable to R+

PC in Eq. (9) when the rotation
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or curvature time-scales decrease to become comparable to t+ssp. Correlatively,
the fact that this happens when the rotation and curvature numbers are ' 1/20
comes as no coincidence. Indeed, the timescale associated with the Coriolis
term is tΩ ' (2Ω̄)−1, while the timescale associated with the curvature terms
is tC ' (δΩ)−1 ∼ S̄r̄/d. They become comparable to t+ssp as defined in
Eq. (10) when RΩ or RC exceeds 10−2, which is remarkably close to the actual
value of 1/20, considering the qualitative nature of the argument. This physical
constraint is also what primarily determines the magnitude of a+ and b+ (once
the form of the dependence on RΩ and Rc is known). Indeed, in rotating plane
Couette flows, requiring a+RΩ & Re+PC when RΩ & 1/20, implies that
a+ ∼ 104. Similarly, in Taylor-Couette flows, requiring that b+R2

C
& Re+PC

when RC & 1/20 leads to b+ ∼ 105.
One can see that the rather large values of the transition Reynolds number,

as well as of the coefficients characterizing the effect of rotation (a+) and
curvature (b+) can be ascribed to a single origin: the rather large ratio of the
turbulence self-regeneration process to the shear time scale. Still, we do not
infer that the self-sustaining mechanism proposed by Waleffe is valid in the
presence of rotation. We just use the fact that in order to modify or even
suppress this mechanism, the rotation or curvature effects must have timescales
of the same order. On the contrary, the above analysis clearly indicates that a
better understanding of this process in the framework of curved shear flows,
and identifying it in the presence of rotation, is of primary importance for future
progress.

The self-sustaining process has not yet been identified at the anticyclonic
marginal stability limit, and is nature is not known. However, one can reverse
the reasoning expressed right above to reach the conclusion that its characteristic
time-scale is also ∼ 100S̄−1. Testing this conjecture would bring support to
the framework developed here to analyze and understand the data.

5. Conclusions and implications:

We feel that this work brings to light a few important points, which we believe
to be of potentially more general applicability than what was done here:

It is both meaningful and useful to decompose the Navier-Stokes equation
into a laminar part of the flow, and a deviation from the laminar flow.
This helps identifying the relevant time-scales in the flow, and isolating
which “portion" of the advection term is directly related to the physics
described by the Reynolds number. The same procedure is also useful to
relate various flows to one another.

The general trends and features of the transition Reynolds number data
can be understood with the help of the previously identified time-scales,
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and over a reasonably extended fraction of the parameter space, once the
turbulence self-sustaining process time-scale is identified at one point in
the parameter space. The procedure in turns constrains to some extent
the time-scale of the self-sustaining process in the domain where data
are available, a point we have only briefly touched upon in the preceding
section.

In the process, we have tried to elucidate a little more the relation between
the flow global rotation and its global curvature. We found that rotation and
curvature effects most probably cannot be accounted for by a single time-scale,
as suggested by Zeldovich, 1981, but that two time-scales are required, in
accordance with the fact that Taylor-Couette flows are characterized by two
dimensionless numbers besides the Reynolds number.

The data described here, and the analysis we have developed, has some
bearing to a related astrophysical problem, namely, the existence of subcritical
turbulence in keplerian accretion disks, a question which has been the object
of an important debate in the astrophysical community over the three or four
past decades. Such disks are observed in relation to the formation of young
stars; they are also believed to be present in a variety of other astrophysical
objects, such as active galactic nuclei, microquasars, and so on. A large scale
keplerian profile (Ω(r) ∝ r−3/2) follows if the disk is cold enough. The profile
can nevertheless stochastically deviate from keplerian on scales comparable to
the disk scale height h ¿ r. Young (proto-)star disks are also probably not
ionized enough for MHD processes to be relevant over a significant fraction of
their extent.

The microscopic transport in these disks is known to be many orders of
magnitude smaller than the one inferred from the observations, so that these
disks are believed to be turbulent. Hydrodynamic Keplerian disks are linearly
stable in their most simple flavors. It was believed until the mid-90’s that they
were nevertheless hydrodynamically turbulent, on the basis of the experimental
evidence of subcritical turbulence in non-rotating Couette flows.

This belief was challenged by the numerical simulations of Balbus et al.,
1996, and Hawley et al., 1999. These authors have studied whether keplerian
disks are locally turbulent, by reducing the Navier-Stokes equation in the disk to
Eq. (3), with “shearing-sheet” boundary conditions (they ignore the disk vertical
stratification), thus asking the question in a framework which is extremely close
to the one studied here. They found that a dynamically significant and stabilizing
Coriolis force prevents the appearance of turbulence for keplerian-like flows
(RΩ = −4/3), up to to the highest resolution achieved in the simulation (2563

with finite-difference codes; see the referenced papers for detail).
These simulations have had a very large impact in the astrophysics commu-

nity, where the now most largely spread opinion is that a linear instability is
needed for turbulence to show up, a somewhat excessive position. However,
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the experimental results of Richard, 2001, seem to imply that keplerian-like
flows should be turbulent at very modest (in astrophysical standards) Reynolds
numbers. The problem is currently reinvestigated from a numerical point of
view (Lesur, Longaretti, Bodo, and Clarke in preparation). Preliminary results
indicate that the Coriolis force does not prevent the existence of turbulence in ro-
tating plane Couette flows, but of course alters the turbulence properties, as one
would expect. However, the relevance of subcritical hydrodynamic turbulence
to accretion disk transport remains to be more precisely investigated.
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Wendt, G. (1993). Turbulente Strömung Zwischen Zwei Rotierenden Konaxialen Zylindern, Ing.

Arch., 4: 577-595.
Zeldovich, Y.B. (1981). On the friction of fluids between rotating cylinders, Proc. Roy. Soc.

London A, 374: 299-312.


