

CFHT

Star Formation at Infrared Wavelengths

Infrared imaging and detectors

Jean-Louis Monin

👷 constellation

Introduction Magnitude systems Atmospheric windows and imaging filters The basics of detection Flat-fielding and Calibration Photons, electrons, noise and performances

eil

rche

tions

emen

ences

stuces

Jean-Louis Monin

IR IMAGING and DETECTORS

First Constellation school, Florence, may 27-29th, 2008

This lecture was held in Florence (Italy) during a Constellation Network school (May 27-29th 2008 at the observatory of Arcetri)

Formation Stellaire & Planétaire

The (PDF) lecture summary (**DRAFT** !)

The (PDF) lecture slides (DRAFT ! 10Mo...) (updated may 21)

This lecture is based (in part) on the following references :

Standard Photometric Systems, M. S. Bessel, 2005, ARAA, 43, 293 Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars, Bessel, Castelli & Plez, 1998, A&A 333, 231

... and has benefited from reading the following PDF files : (Some of them from the lectures of O'Connell, University of Virginia :

Photometric systems Spitzer IRAC pocketguide Spitzer MIPS pocketguide

Introduction

IR imagery started in the 80s (with 8x8 then 32x32 arrays) and now reaches 4 Mpixels detectors.

It shares a lot of characteristics with Visible imagery but also shows huge differences.

Although imagery gives access to extended sources brightness (astrometry, proper motion, polarimetry, etc.), this lecture concentrates on PSF (point-like) sources measurements.

NB. For ground-based observations,

the image quality (seeing w) varies with λ :

Introduction

IR imagery started in the 80s (with 8x8 then 32x32 arrays) and now reaches 4 Mpixels detectors.

It shares a lot of characteristics with Visible imagery but also shows huge differences.

Although imagery gives access to extended sources brightness (astrometry, proper motion, polarimetry, etc.), this lecture concentrates on PSF (point-like) sources measurements.

NB. For ground-based observations,

the image quality (seeing w) varies with λ :

ORION BN Nebula (8x8) TBL 1985

Introduction

IR imagery started in the 80s (with 8x8 then 32x32 arrays) and now reaches 4 Mpixels detectors.

It shares a lot of characteristics with Visible imagery but also shows huge differences.

Although imagery gives access to extended sources brightness (astrometry, proper motion, polarimetry, etc.), this lecture concentrates on PSF (point-like) sources measurements.

NB. For ground-based observations,

the image quality (seeing w) varies with λ :

ORION BN Nebula (8x8) TBL 1985

Magnitude systems (above the atmosphere)

The 2 magnitudes systems : VEGA and AB (ST)

The Vega magnitude system uses the AOV star Vega as a reference. By definition, Vega has a magnitude 0 in every band.

The AB system doesn't make any reference to a given object.

NB. All the filter / bands position in a spectrum are labelled by their wavelength λ (be it for F_{λ}, flux per unit wavelength or F_{ν}, flux per unit frequency)

The 2 magnitudes systems : VEGA and AB (ST)

The Vega magnitude system uses the AOV star Vega as a reference. By definition, Vega has a magnitude 0 in every band.

The AB system doesn't make any reference to a given object.

NB. All the filter / bands position in a spectrum are labelled by their wavelength λ (be it for F_{λ} , flux per unit wavelength or F_{ν} , flux per unit frequency)

Reference fluxes from the visible to the infrared in the VEGA system

Zero mag fluxes in the Cousins - Glass - Johnson system (erg/cm²/s/...)

	V	R	Ι	J	Н	K	Kp	L	L*	Μ	Ν	Q
(µm) λ_{eff}	0.545	0.641	0.798	1.22	1.63	2.19	2.12	3.45	3.80	4.80	10	20
x 10 ⁻²⁰ $f_{ u}$ /Hz	3.636	3.064	2.416	1.589	1.021	0.640	0.676	0.285	0.238	0.153	0.037	0.010
× 10 ⁻¹¹ f_{λ} /Å	363.1	217.7	112.6	31.47	11.38	3.961	4.479	0.708	0.489	0.20	0.011	7.5 10-4

Reference fluxes from the visible to the infrared in the VEGA system

Zero mag fluxes in the Cousins - Glass - Johnson system (erg/cm²/s/...)

	V	R	Ι	J	Н	K	Кр	L	L*	Μ	Ν	Q
(µm) λ_{eff}	0.545	0.641	0.798	1.22	1.63	2.19	2.12	3.45	3.80	4.80	10	20
$ imes$ I O ⁻²⁰ $f_{ u}$ /Hz	3.636	3.064	2.416	1.589	1.021	0.640	0.676	0.285	0.238	0.153	0.037	0.010
× 10-11 f_{λ} /Å	363.1	217.7	112.6	31.47	11.38	3.961	4.479	0.708	0.489	0.20	0.011	7.5 10-4
r-01 10 ⁻⁷ 10 ⁻⁸ 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻¹¹												
10 ⁻¹²								<i>.,</i>				_
10-13		νοσο σ	Dectrum					#	λο (µm))	Fo (Jy)	
10^{-14}		vega s	pecu un					I	3.550		280.9	
× 10 ⁻¹⁶								2	4.493		179.7	
0.1	\/	1 Wavele	ength, λ [μι	10 m]		100		3	5.73 I		115.0	
	V							4	7.872		64.I	

(IRAC data handbook)

The AB (ST) monochromatic (spectroscopic) system Oke & Gunn, 1983, ApJ, 266, 713

ST and AB magnitudes (integrated) through filters

$$m_{\rm ST} = -2.5 \log \frac{\int \lambda F_{\lambda} \, d\lambda}{\int 3.6 \, 10^{-9} \, \lambda \, d\lambda} \qquad m_{\rm AB} = -2.5 \log \frac{\int F_{\nu} \, d\nu}{\int 3.6 \, 10^{-20} \, d\nu}$$

An example in the near IR (CFHT WIRCAM) : AB magnitudes

Quick WIRCam photometric performance table

Filter (click for details)	Y	J	Н	Ks	Low OH- 1	Low OH- 2	CH4 Off	CH4 On	H2 v=1-0 S(1)	K continuum
Point source in median sky brightness - MagAB - Optimal ap.	22.8	22.9	22.6	22.5	20.9	21.0	22.0	22.0	21.1	20.9
Field galaxy in median sky brightness - MagAB - 2.2" ap.	22.1	22.3	21.9	21.8	20.2	20.3	21.3	21.3	20.4	20.2
Conversion from AB to Vega magnitude system (mag)	- 0.66	- 0.96	- 1.40	- 1.99	-0.69	-0.87	-1.35	-1.47	-1.97	-2.08

(10 sigma detection in a 1 hour exposure under 0.7 arcsecond seeing with 1.5 airmass)

From WIRCAM ETC (DIET) :

http://rpm.cfht.hawaii.edu/~wircam/diet/DIET.rpm

http://www.cfht.hawaii.edu/Instruments/Imaging/WIRCam/dietWIRCam.html#P0

From under to above the atmosphere

Atmospheric extinction can be very high in the visible ...

... and much lower in the infrared

From the Redeye manual (CFHT) ΔJ, or ΔH, or ΔK are < 0.1 mag /airmass

Space based IR imaging

(from Bessel, 2005, ARAA, 43, 293)

IRAS: 12, 25, 60 & 100 µm bands (0.5' - 12' resolution) Cohen et al., 1992, Spectral irradiance calibration in the infrared. I - Ground-based and IRAS broadband calibrations, AJ 104, 1650

ISO : map selected areas. ISOCam : 2.5 - 5.2 μm & 4-18 $\mu m.$ Kessler, 2001, ESA-SP, 460, 53

Spizter : IRAC (3.6, 4.5, 5.8 & 8 µm bands) MIPS (24, 70 & 160 µm bands)

NASA/IPAC Infrared Science Archive (IRSA) <u>http://irsa.ipac.caltech.edu/applications/Gator/</u>

2MASS 🔻
COSMOS -
IRAS 🔻
IRTS 🗸
ISO 🗸
MSC -
MSX -
NED Images 🔻
SDSS Images 🔻
Spitzer 🔻
SWAS -
BOLOCAM -

Data Sets

IRSA CATALOGS Select
 2MASS (Two Micron All-Sky Survey)
 IRAS (Infrared Astronomical Satellite)
O Spitzer Space Telescope Legacy Science Programs
MSX (Midcourse Space Experiment)
O COSMOS (Comile Evalution Summe)

COSMOS (Cosmic Evolution Survey)

DENIS (Deep Near Infrared Survey of the Southern Sky)

Atmospheric windows and imaging filters

- the atmosphere is "uniformly" transparent from 0.3μ m to 1μ m.
- A set of filters has been (freely) designed (U, B, V, R, I, z)
- Large detectors (or bootable) exist
- Use of spatial facilities (HST) more for the UV than for the visible.

- the atmosphere is "uniformly" transparent from 0.3μ m to 1μ m.
- A set of filters has been (freely) designed (U, B, V, R, I, z)
- Large detectors (or bootable) exist
- Use of spatial facilities (HST) more for the UV than for the visible.

Bessel, 2005

- the atmosphere is "uniformly" transparent from 0.3μ m to 1μ m.
- A set of filters has been (freely) designed (U, B, V, R, I, z)
- Large detectors (or bootable) exist
- Use of spatial facilities (HST) more for the UV than for the visible.

Bessel, 2005

- the atmosphere is "uniformly" transparent from 0.3μ m to 1μ m.
- A set of filters has been (freely) designed (U, B, V, R, I, z)
- Large detectors (or bootable) exist
- Use of spatial facilities (HST) more for the UV than for the visible.

- The atmosphere has transparent windows up to 20 microns, with significant opaque gaps.
- One is not free to choose the filters outside of the transparent windows
- Smaller detectors available

(JWST)

- The atmosphere has transparent windows up to 20 microns, with significant opaque gaps.
- One is not free to choose the filters outside of the transparent windows
- Smaller detectors available

(JWST)

- The atmosphere has transparent windows up to 20 microns, with significant opaque gaps.
- One is not free to choose the filters outside of the transparent windows
- Smaller detectors available

(JWST)

- The atmosphere has transparent windows up to 20 microns, with significant opaque gaps.
- One is not free to choose the filters outside of the transparent windows
- Smaller detectors available

From ground-based to Spatial imaging

- Longward of $2\mu m$: the atmosphere begins to "glow"
- Huge opaque "wall" exist between 20 and 500μ m
- (note : Upward 300µm -> *sub-millimeter*)

к О

From ground-based to Spatial imaging

- Longward of $2\mu m$: the atmosphere begins to "glow"
- Huge opaque "wall" exist between 20 and 500μ m
- (note : Upward 300µm -> *sub-millimeter*)

Looking through the atmosphere : transmission AND emission

 $I(\tau) = I_o e^{-\tau_{atm}} + B(1 - e^{-\tau_{atm}})$

16/47

Background photons from sky magnitude/arcsec² : La Silla vs. Mauna Kea

L band ; $\lambda = 3.5 \,\mu\text{m}$; $h\nu = hc/\lambda = 5.7 \, 10^{-20} \,\text{J}$ La Silla brightness : 4.3 mag/arcsec². From Bessel et al., 1998 :

$$m = 0 \rightarrow f_{\lambda} = 0.708 \, 10^{-11} \, \text{erg/s/cm}^2/\text{\AA} = 0.708 \, 10^{-10} \, W/\text{m}^2/\mu\text{m}$$
 (1
 $m = 0 \rightarrow N_{\lambda}^o = 1.2 \, 10^9 \, \text{ph/s/m}^2/\mu\text{m}$ (2

$$m = 4.3 \rightarrow N_{\lambda}^{m} = 10^{-4.3/2.5} \times 1.210^{9} = 310^{7} \,\mathrm{ph/s/m^{2}/\mu m}$$
 (3)

M band ; $\lambda = 4.8 \,\mu\text{m}$; $h\nu = hc/\lambda = 4.1 \, 10^{-20} \,\text{J}$ La Silla brightness : 4.3 mag/arcsec². From Bessel et al., 1998 :

$$m = 0 \rightarrow f_{\lambda} = 0.20 \, 10^{-11} \, \text{erg/s/cm}^2/\text{\AA} = 0.20 \, 10^{-10} \, W/\text{m}^2/\mu\text{m}$$
 (4)

$$m = 0 \to N_{\lambda}^{o} = 4.8 \, 10^{8} \, \mathrm{ph/s/m^{2}/\mu m}$$
 (5)

$$m = 0.2 \rightarrow N_{\lambda}^{m} = 10^{-0.2/2.5} \times 4.8 \, 10^{8} = 4 \, 10^{8} \, \mathrm{ph/s/m^{2}/\mu m}$$
 (6)

Comparing source photons with background photons

Band	Mag/" ²
U	22
В	23
V	22
R	21
I	20
J	15.2
H	13.6
К _S	12.7
К	12.3
L	4.3
Μ	0.2
Ν	-6.4
Q	-8.5

This table gives the needed magnitude of a source with a PSF ≈ 1 arcsec² to provide the same number of photons than the sky background.

This yields a very strong constraint on the observing procedure when sources are faint : Jitter, Chopping & Nodding

Subtracting (weak) sky emission I :

N (odd) frames, α & δ offsets Median filtering → sky emission Sky subtraction ! SNR is not uniform across the total field

Subtracting sky (and telescope) strong emission II :

Chopping and Nodding on a bright source (star)

Subtracting sky (and telescope) strong emission III :

Chopping and Nodding on a faint source (galaxie)

Infrared detectors and imaging Surveys The basics of detection

Interaction of photons with atoms in a cristal

Photoconductive effect in cristals

Cristal:

- atoms in a periodic network
- Energy levels \rightarrow Energy bands
- distinction between metals / semi-conductors

As always : dope to increase performances ... with wavelengths Add energy levels to give weaker photons a leg up

Element(s)	Cutoff λ (μm)
Si	1.1
Ge	1.8
Si:In	7.4
Si:Ga	17.8
Si:As	24
Ge:Ga	120
In Sb	5
Hg _(1-x) Cd _(x) Te	λ(x) < 20 μm

IRAS : 12 - 25 - 60 - 100µm Si:As Ge:Ga

Spitzer : 3.6 - 5.8 μm ... 24 - 70 μm InSb Si:As Ge:Ga

25

What makes Infrared imagery demanding

Detection and Readout are built separately and have to be connected together

Hybridization between detection & readout

IR sensitive material

Silicon CCD or CMOS readout

First year commercially available 2008

From small to large (multi-detector) IR arrays

ESO VISTA array

Longer wavelength (space borne) detector are more a collection of bolometers than actual arrays

SPIRE

PACS

Photons, electrons, noise and performances

Imaging detector : what's inside ? (pixel / pixel view)

photons and electrons are quanta

→ Poisson ('shot') Noise

Gaussian, white, independant noises :

$$\sigma^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{1}^{3} + \dots$$

My first SNR computation : how quantum efficiency (mildly) affects the Signal to Noise Ratio

photons :
$$\sigma_{\rm ph} = \sqrt{N_{\rm ph}}$$
 ; $SNR({\rm ph}) = \sqrt{N_{\rm ph}}$
 $N_{\rm e} = \eta N_{\rm ph}$

electrons: $\sigma_{\rm e} = \sqrt{N_{\rm e}}$; $SNR({\rm e}) = \sqrt{N_{\rm e}} = \sqrt{\eta} \sqrt{N_{\rm ph}}$

$$SNR(e) = \sqrt{\eta} SNR(ph) \lesssim SNR(ph)$$

$$\stackrel{1.0}{\longrightarrow} \sqrt{0.88} \approx 0.94$$

$$\stackrel{0.8}{\longrightarrow} 0.6 \qquad \text{InSb QE} \qquad 32/47$$

Global Signal to noise ratio per frame

Good and bad signals :

magnitude == Flux (W/m2/Hz) \rightarrow photon flux \rightarrow electron flux (Source and Background) Dark current \rightarrow electron flux x Integration time : N_S, N_B, N_D

Varying and fixed noise : statistical noise : $\sigma_X = \sqrt{N_X}$ readout noise : σ_{RON} $SNR = \frac{N_S}{\sqrt{N_S + N_B + N_D + \sigma_{RON}^2}}$ n frames $\rightarrow SNR \times \sqrt{n}$

Global Signal to noise ratio per frame

Good and bad signals :

magnitude == Flux (W/m2/Hz) \rightarrow photon flux \rightarrow electron flux (Source and Background) Dark current \rightarrow electron flux x Integration time : N_S, N_B, N_D

Varying and fixed noise :
statistical noise :
$$\sigma_X = \sqrt{N_X}$$

readout noise : σ_{RON}

$$SNR = \frac{N_S}{\sqrt{N_S + N_B + N_D + \sigma_{RON}^2}}$$
n frames $\rightarrow SNR \times \sqrt{n}$
But N_S is obtained by
N_S=(N_S+N_B)-N_B
subtract the background)

$$SNR = \frac{N_S}{\sqrt{N_S + 2(N_B + N_D + \sigma_{RON}^2)}}$$
(unless B measured with a very high precision)

Global Signal to noise ratio per frame

Good and bad signals :

magnitude == Flux (W/m2/Hz) \rightarrow photon flux \rightarrow electron flux (Source and Background) Dark current \rightarrow electron flux x Integration time : N_S, N_B, N_D

(unless B measured with a very high precision)

which one dominates ?

34/47

Fixed readout noise : σ_L Variable photon noise : $\sigma_{\rm ph} = \sqrt{N} (N = N_{\rm S} + N_{\rm B} + N_{\rm D})$

From peak pixel to PSF (N pixels)

pixel signal : Random Variable (x, σ)

$$SNR_{\text{peak}} = \frac{x}{\sigma}$$

PSF
$$X = \Sigma x_i \approx Nx$$
 $\sigma'^2 = \Sigma \sigma^2 \approx N\sigma \rightarrow \sigma' = \sqrt{N}\sigma$
 $SNR_{PSF} = \frac{X}{\sigma'} = \frac{Nx}{\sqrt{N}\sigma} \approx \sqrt{N}SNR_{peak}$

ISAAC SW (ESO) Exposure time simulator (ETC)

http://www.eso.org/observing/etc/

Object Setup

: blackbody Source type Blackbody temperature: 4000 K Source magnitude : 17 Source geometry : Seeing limited Seeing : 0.8 arcsec

one frame < DIT

180000 e-

10.00 e-/pixel/DIT

0.15 arcsec/pixel

Atmosphere Setup

	Total exposure time	: 2.6510 seconds
Alrmass : 1.2	Number of detector integrations (decimal value)	: 0.27 DCR
Char Cohur	Signal-to-noise	: 20.00
Sky Setup	Number of pixels for PSF area	: 93.00 pixels
Sky magnitude : 14	Total number of e- in PSF area (object only)	: 16131.91 e-
Instrument Cotun	Total number of e- in PSF area (object only, 1 DIT)	: 60851.27 e-/DIT
filter is (wide bond) U	Sky bkg. value with sky lines (e/pixel, 1DIT)	: 23302.69 e-/pixel/DIT
chieghing, C2	Max. intensity at central pixel per DIT (e-, object+sky)	: 25089.79 e-/DIT
OD JECTIVE: 52		100000

Observation Setup

DIT : 10 sec SNR: 20 (+/- 50%) Detector saturation (e-) : Detector Readout Noise : Plate scale in arcsec/pixel :

(no dark current : I e/s ?)

PSF

$$N_{\text{px}} = 93 \quad [\approx \pi \left(\frac{2 \times 0.8}{0.15}\right)^2]$$

$$S = 16132$$

$$\sigma^2 = 10^2 + 23302 \times 93 \times \frac{2.65}{10} + 16132 = 774^2$$

$$SNR = \frac{16131}{774} = 20.83$$

Peak pixel

$$N_{\text{px}} = 1 \quad (!)$$

$$S = (25090 - 23302) \times \frac{2.65}{10} = 474$$

$$\sigma^2 = 10^2 + 23302 \times \frac{2.65}{10} + 474 = 82^2$$

$$SNR = \frac{474}{82} = 5.77$$

From magnitudes to e/pixel

ISAAC ETC : 23302.69

From magnitudes to e/pixel

SNR variations with DIT and / or seeing

(peak SNR $\propto arpi^{-2}$)

Flat-fielding and Calibration

HF : pixel to pixel response

Flat-fielding

Flat-fielding

LF : Optics (and electronics)

Photometric Calibrations O'Con

O'Connell lectures :

http://www.astro.virginia.edu/class/oconnell/astr511/lectureindex.html

Flat field :

- (unknown) Pixel' response distribution R(i,j)
- Uniform Source [sky @ dawn, screen, etc.] U
- I) Measure flat-field

3) FF calibration

2) Observe complex source : S(i,j)

$$X(i,j) = U \cdot R(i,j)$$
$$Y(i,j) = R(i,j) \cdot S(i,j)$$

l(i,j)

$$(i,j) = Y(i,j)/X(i,j) = S(i,j)/U \alpha S(i,j) \forall i,j$$

Photometry

- Pointlike Source : FLUX (one or more pixels) == Jy/pixel
- Extended Source : BRIGHTNESS (ADU/pixel) == Jy/arcsec²

Standard stars : same Airmass4Spectral type, Magnitude

IR imagery : FITS format

FITS Header :

```
SIMPLE =
                    Т
                           / Standard FITS format (NOST-100.0)
                            / # of bits storing pix values
BITPIX =
                    16
                     2
NAXIS =
                            / # of axes in data array
                          / # pixels/axis
NAXISI =
                    2080
NAXIS2 =
                    2048
                             / # pixels/axis
ORIGIN = 'ESO '
                              / European Southern Observatory
   (...)
DATE-OBS= '2001-12-10T03:49:03.978' / Date of observation
EXPTIME =
                  180.0025
                                / Total integration time
   (...)
INSTRUME= 'FORSI'
                                / Instrument used
TELESCOP= 'ESO-VLT-U3'
                                  / ESO Telescope Name
                             / 04:18:50.4 RA (J2000) pointing
RA = 64.710280
DEC =
                28.18850
                              / 28:11:18.6 DEC (J2000) pointing
   (...)
     = '04:23:12.811'
                             / ST at start
ST
AIRMASS =
                  1.65200
                               / Averaged air mass
IMAGETYP= 'OBJECT '
                                 / Observation type
FILTER I = 'I_BESS '
                             / Filter | name
   (...)
HIERARCH ESO DET OUTPUTS =
                                         4 / # of outputs
   (...)
HIERARCH ESO DET OUT4 CONAD =
                                        6.07 / Readout noise per output (e-)
HIERARCH ESO DET OUT I RON =
```

 \rightarrow N_{ADU} (max) = 2¹⁶ = 65536

1994 - C. 1994 -

 $SNR(ADU) \neq SNR(e)$ 3.26 / Conversion from ADUs to electrons \rightarrow N_{e-} = 3.26 N_{ADU}

HIERARCH ESO : OBS, TPL, DPR, TEL, ADA, INS, DET

ISAAC LVV (ESO)

Source type : blackbody Blackbody temperature: 4000 Source magnitude : 15 Source geometry : Seeing limited : 0.6 arcsec Seeing Atmosphere Setup Airmass : 1.2 Sky Setup Sky magnitude : 3.9 Instrument Setup wide band L objective: L3 **Observation Setup** DIT : 0.11 sec SNR: 20 (+/- 50%)

Chopping mode : S = (S+B) - B

Total exposure time	:	6086.9336 seconds
Number of detector integrations (decimal value)	:	55335.76 (chopping) UCR
Signal-to-noise	:	20.00
Number of pixels for PSF area	:	224.00 pixels
Total number of e- in PSF area (object only)	:	38657869.53 e-
Total number of e- in PSF area (object only, 1 DIT)	:	698.61 e-/DIT
Sky bkg. value with sky lines (e/pixel, 1DIT)	:	149454.92 e-/pixel/DIT
Max. intensity at central pixel per DIT (e-, object+sky)	:	149463.54 e-/DIT
Detector deturation (c.)		280000

Detector saturation (e-)	:	289000	e-
Detector Readout Noise	:	50.00 🤅	e-/pixel/DIT
Plate scale in arcsec/pixel	:	0.07 a	arcsec/pixel

$$N_{px} = 224$$

$$S = 698$$
readout
$$224 \times 50^{2}$$
signal
$$698$$
background (twice)
$$224 \times 149454$$

$$SNR_{DIT} = \frac{698}{\sqrt{224 \times 50^{2} + 698 + 2 \times 224 \times 149454}} = 0.085$$

$$0.085 \rightarrow 20 : \times 235 \rightarrow 235^{2} = 55431 \text{ frames}$$

ISAAC LVV (ESO)

Source type : blackbody Blackbody temperature: 4000 Source magnitude : 15 Source geometry : Seeing limited : 0.6 arcsec Seeing Atmosphere Setup Airmass : 1.2 Sky Setup Sky magnitude : 3.9 Instrument Setup wide band L objective: L3 **Observation Setup** DIT : 0.11 sec SNR: 20 (+/- 50%)

Chopping mode : S = (S+B) - B

Total exposure time	•	-6086 - 9336 seconds
Number of detector integrations (decimal value)	•	55335.75 (chopping) UCR
Signal-to-noise	:	20.00
Number of pixels for PSF area	:	224.00 pixels
Total number of e- in PSF area (object only)	:	38657869.53 e-
Total number of e- in PSF area (object only, 1 DIT)	:	698.61 e-/DIT
Sky bkg. value with sky lines (e/pixel, 1DIT)	:	149454.92 e-/pixel/DIT
Max. intensity at central pixel per DIT (e-, object+sky)	:	149463.54 e-/DIT
Detector acturation (a)		280000 0

Detector saturation (e-)	:	289000 e-
Detector Readout Noise	:	50.00 e-/pixel/DIT
Plate scale in arcsec/pixel	:	0.07 arcsec/pixel

$$N_{px} = 224$$

$$S = 698$$
readout
$$224 \times 50^{2}$$
signal
$$698$$
background (twice)
$$224 \times 149454$$

$$SNR_{DIT} = \frac{698}{\sqrt{224 \times 50^{2} + 698 + 2 \times 224 \times 149454}} = 0.085$$

$$0.085 \rightarrow 20 : \times 235 \rightarrow 235^{2} = 55431$$
 frames

WIRCAM (CFHT)

WIRC	am Exposure T	ime Calculator		DI
Type: Point Source	Filter: KS \$	Mag. AB: 22.5	SNR: 10.0	
Seeing: 0.7 😫	Sky: 💿 BRIGHT 🖨	⊖ 5.0 e-/s/pixel	Airmass: 1.50	\$
	RUN DIET Default	Documentation		
Filter=KS Se Type=point source Mag=22.5 Airmass=1.5 Etime= 1758 O	eeing=0.7 "SNR di=3.3pix Sky=BRIGHT Bin=1pix SNR=10.0 Trans=100% SNR ap=Optimal on target			

 \rightarrow x 2 (= Ihour) to measure and subtract the background emission

(10 sigma detection in a 1 hour exposure under 0.7 arcsecond seeing with 1.5 airmass)

Target Setup: blackbodyTarget source flux distribution type: blackbodyParameters: T=3000.0 FTarget source flux scaled to: 1000.0 mJy	13 100 100 100 100 100 100 100 100 100 1	
Target source magnitude: Q = 2.14Target source geometry: Point sour (visible)Atmosphere Setup: 0.80 arcseSeeing: 1.15Instrument Setup: 01	10 μm 0.44 arcsec	10.016
Filter: QIDetector read-out mode: large_capDetector parameters: RON = 15.Dark = 700Observation SetupUser requested:Exposure Time for a given S/N	e-/pixel/DIT e-/pixel/s	
Pixel scale	: 75.000 mas/pixel	
Detector Integration Time for one exposure Number of detector integrations (rounded up) Total exposure time (without overheads) Max. intensity at central pixel per DIT (object+sky) Detector linearity/flat_fielding limit	DIT : 0.0400 s NDIT : 226 INT=NDIT*DIT : 9.040 s : 6.92599e+06 e-/DIT : 1 30000e+07 e-	
Detector saturation limit Radius of <u>S/N reference area</u> Number of pixels in S/N reference area	: 1.80000e+07 e- : 0.438 arcsec = 4 x seeing surface @ : 107 pixels	10µm

VISIR (ESO)

A collection of available IR arrays

Telescope	Country	Tel. Diam.	Detector	"/pixel	FOV(deg²)	BE (m ² deg ²)	date	
VISTA	UK	4 m	8k x 8k	0.30"	0.25	3.14		
UKIRT +WFCAM	UK	3.8 m	4k x 4k	0.40"	0.20	2.27	2003-Q1	
CFHT + WIRCAM	FR-Can-US	3.6 m	4k x 4k		0.11			
INT + CIRSI	UK	2.5 m	2k x 2k	0.45"	0.062	0.31	1999	
VLT +NIRMOS	ESO	8.2 m	4k x 4k	0.21"	0.054	2.71	2002-Q1	
2MASS	US	I.3 m (2 of)	(3 x) 256 x 256	2.0"	0.02	0.080	1998	
NTT-SOFI	ESO	3.5 m	lk x lk	0.292	0.0069	0.066	1998	
WHT + INGRID	UK+NL	4.2 m	lk x lk	0.25	0.0051	0.070	2000	e
VLT-ISAAC	ESO	8.2 m	lk x lk	0.147	0.00175	0.088	operational mid-1999	
Gemini- NIRI f/6	US-UK-Can	8 m	lk x lk	0.116	0.0011	0.055	2000-Q4	
UKIRT+UFTI	UK	3.8 m	lk x lk	0.05	0.00020	0.0023	1999	
VLT+NAOS	ESO	8.2 m	lkxlk	*	~	~		(JL Beuzi

47 /47