
6 Photometric Systems & Astronomy with CCDs

6.1 Vega vs. AB magnitudes

Earlier, we have introduced magnitudes as logarithmic units that express relative
brightnesses. Yet, the apparent magnitude of the Sun in the V filter is understood
to be −26.76 ± 0.02mag and the surface brightness in mag arcsec−2 in a galaxy was
plotted as a function of radius as if they were physical units on some absolute scale.
So how did we get from what is inherently an ambiguous relative unit to a unit with
an absolute physical meaning?

According to the definition of magnitude, we have:

m1 − m2 ≡ −2.5 log
f1

f2

= −2.5 log f1 + 2.5 log f2 (1)

If m2 were the magnitude that corresponds to a known flux density f2 in physical
units of ergs s−1 cm−2 Å−1 (in the case of fλ) or of ergs s−1 cm−2 Hz−1 (for fν) — in
particular if m2 ≡ 0 for that known flux density —, then the term 2.5 log f2 becomes
equivalent to an absolute zeropoint (zp) for the magnitude scale:

m1 = −2.5 log f1 + zp (2)

6.1.1 Vega magnitudes

The ultimate standard and reference for all classical broad-band photometry is the
star α Lyrae (i.e., Vega). By substituting the flux density in a given filter of Vega for
f2 in Eq. (1) and dropping the subscripts “1”, we obtain:

m − mVega = −2.5 log fλ + 2.5 log fλ,Vega

However, this would still leave us with mVega. The final step, then, to yield a usable
physical scale is to set:

mVega ≡ 0 in all filters per definition ⇒ m − mVega ≡ m

Hence:
m = −2.5 log fλ + 2.5 log fλ,Vega (3)

where the last term is the zeropoint, zp(λ), on the Vega magnitude system. For a
flux density outside the Earth’s atmosphere of (3.59 ± 0.08) × 10−9 ergs s−1 cm−2 Å−1

at 5480Å, this zeropoint zp(5480Å) = −21.112 .

As a corollary of the requirement that m = 0 at all wavelengths, the color of Vega in
any pair of filters is 0, as well.
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Fig. 1(a) shows the spectrum of Vega as a function of wavelength. Note, that the
flux density of Vega varies greatly over the UV–near-IR regime, yet the magnitude
corresponding to that flux density is equal to 0 at every wavelength.

Since it is impractical for every observer to observe Vega, a reference set of several
dozens of, generally fainter, secondary standard stars was observed. During WW ii,
Johnson made extensive photo-electric observations, spanning many years, through
standard apertures in his UB V filter system. The UB V filter system was the first
known standardized photometric system. The filter set was later extended toward
the near- and mid-IR with R IJK and L filters.

As progressively more precise magnitude and color measurements of an increasingly
large number of stars, sampling a large range in colors, were placed onto the standard
system of Johnson, slight inconsistencies in magnitude and colors became apparent.
To remain as consistent as possible with earlier work, the V magnitude of Vega
had to be adjusted slightly upward from exactly zero. The current best estimate is
mV = +0.035± 0.012 mag for fλ,V = (3.593± 0.084)× 10−9 ergs s−1 cm−2 Å−1 (Colina
& Bohlin 1994).

More recently, Landolt (1992) published photo-electric UB V RcIc photometry of a
large number of equatorial (Dec∼ 0◦) fields in which stars of very different colors are
relatively close together on the sky (within ∼5′–15′ on the sky). The transformations
of his photometry onto the original system, again meant very slight changes to the
original system. When using Landolt standard stars to photometrically calibrate you
CCD images, you are actually calibrating onto Landolt’s system, and not quite the
original Vega system of Johnson.

Even more recently, Stetson (2000) published a very large database of B V RcIc stan-
dard stellar magnitudes within the Landolt equatorial fields and in many other com-
mon fields across the sky based on (largely archival) CCD observations. His pho-
tometry is reduced onto the Landolt system, but his measurement method differed.
Whereas Landolt used fixed circular apertures of 14′′ with his photomultiplier tube,
and hence often also measured the flux of adjacent fainters stars within that aperture,
Stetson used the technique of PSF fitting, where each star is measured seperately.

. When calibrating CCD images, care needs to be taken to reproduce as close as

possible the measurement method employed to obtain the original standard star

photometry.
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Figure 1: Comparison of the spectrum of α Lyrae (Vega) and a spectrum that is flat in
fν. In the top panel, both are plotted as fλ (in ergs s−1 cm−2 Å−1) versus wavelength
λ (in µm), while in the bottom panel they are presented as fν (in ergs s−1 cm−2 Hz−1)
versus frequency ν (in Hz). Both spectra are equal at the effective wavelength of the
V filter, at 5480Å. The mid- to far-IR portion of the spectrum of Vega was replaced by
the stellar atmospheric model of Kurucz (1979): an actual IR spectrum of Vega would
show a significant additional, non-photospheric component due to its circum-stellar
debris disk.
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Figure 2: In standard field Rubin 149, Landolt (1992) published UB V R I filter photo-
electric photometry of the 8 stars labeled “Ru149” and A through G. The circular
apertures used with his photomultiplier tube had a diameter of 14′′. Since this field is
densely populated with stars, such apertures also included neighboring stars. To use
Landolt’s magnitudes, one has to measure the total signal within synthetic apertures
of the same diameter. Stetson (2000) published standard star photometry for all
labeled stars in the larger general field of the Rubin 149 asterism. His measurements
include many fainter stars that are observable even with large aperture telescopes.
His measurements are reduced onto the Landolt system, but his measurement method
differed. Because he fitted the stellar PSF, his published magnitudes do not include
signal from neighboring stars. To use Stetson’s photometry, one has to reproduce the
same method (see also Bessell 2005).
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6.1.2 AB magnitudes

To avoid the problems with Vega magnitudes — that the flux density that corresponds
to m = 0 differs at every wavelength, and that the flux of Vega can become exceedingly
small at wavelengths outside the UV–near-IR regime1 —, another magnitude system,
the AB or spectroscopic or natural magnitude system, was deviced (Oke & Gunn
1983). In the AB magnitude system, the reference spectrum is a flat spectrum in fν:

fν ≡ const. [ergs s−1 cm−2 Hz−1].

That constant is per definition such that in the V filter: m
V ega
V ≡ mAB

V ≡ 0 (or
more accurately: fν dν ≡ fλ dλ when averaged over the V filter, or at the effective
wavelength of the V filter, λeff = 5480Å.

. Note that the AB magnitude system is expressed in fν rather than fλ!

The flux density in fν is related to the flux density in fλ by:

fν [ergs s−1 cm−2 Hz−1] =
λ2

c
· 108 · fλ [ergs s−1 cm−2 Å−1]

where we used λ ν ≡ c and transformed from fλ dλ to fν dν. The factor 108 is
included, because the natural units of wavelength are cm, not Å. Converting the
Vega magnitude zeropoint gives:

m = −2.5 log fν − (48.585 ± 0.005) (4)

where the exact value of the zeropoint depends somewhat on the literature source
(e.g., Hayes & Latham 1975; Bessell 1988,1990), based on a magnitude at 5556Å for
Vega of 0.035–0.048 mag and a corresponding flux density of (3.56–3.52)×10−20 ergs s−1

cm−2 Å−1 .

The AB magnitude system is also called the spectroscopic magnitude system, because
with its constant zeropoint, it is useable at any wavelength in bandpasses of any width,
and hence, also for narrow-band imaging and spectroscopy. In ground-based broad-
band imaging, however, the Vega magnitude system is still the most common system.
Unless explicitly noted otherwise, one should assume Vega magnitudes.

1and not even due to the stellar atmosphere in the mid-IR–far-IR: there one actually detects the
circumstellar debris ring!
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6.2 Filters, filters and yet more filters

• Johnson-Morgan/“Johnson” — U , B, V , R, I broad-band filters; extended to
the near-IR with J , K, and L. The main disadvantage of the U filter was that
it’s blue cut-off was mainly determined by the transparency of the atmosphere
(rather than by the glass of the filter).

• Kron-Cousins/“Cousins” — Rc, Ic broad-band filters; better behaved in their
red-tail, better positioning in wavelength with respect to UBV .

• Bessell (1979,1990), Bessell & Brett (1988)/“Bessell” — better characterization
and formalization of what the UB V RcR IcIJHKLM broad-band bandpass
curves (resulting from filter plus detector) should look like.

• Strömgren filters — u, b, v and y; medium-band filters, specifically designed
for stellar astrophysics (hot vs. cool stars): u and b straddle the Balmer break
(actually the Ca ii H+K break at ∼4000Å), and u−b and v−y colors provide the
strength of that break and the continuum slope redward of the Balmer break.

• Defined by G. Wallerstein; developed by Canterna (1976); on Geisler (1996)
system of CCD standards; see also Bessell (2001)/ “Washington system” —
C, M , T1 and T2, specifically designed for metallicity studies in old stellar
populations.

• Straižys et al. (1966); Straižys & Zdanavičius (1970)/“Vilnius system” — U ,
P , X, Y , Z, V , and S. Mainly used for stellar classification.

• Gunn, Thuan & Gunn / “Gunn” — u, g, r (later also i, z), have filters with
transmission curves with steeper cut-on and cutt-off; the precursor of the Sloan
and various HST filters.

• 2MASS filters; Jarret et al./“2MASS system” — J , H, Ks; by reducing the
effective wavelength of the K filter from 2.2 to 2.15µm and designing a steeper
red cut-off, the sky background in Ks is significantly darker than in the Johnson
K filter.

• Sloan Digital Sky Survey/“Sloan” — u′, g′, r′, i′, and z′. Square filter transmis-
sion curves with minimal overlap and minimal gaps between the filters. Optimal
broad-band filter set for photometric redshifts and quasar searches.

• Beijing-Arizona-Taiwan-Connecticut filter set; spectro-photometrically calibra-
ted by Yan (2000)/“BATC” — System of 16 medium-band filters in near-
UV through near-IR that avoid night-sky emission lines. Optimal medium-
band filter set for photometric redshifts and (high-redshift) emission-line object
searches.

c© 2006 R.A. Jansen 6



(c)2006 R.A. Jansen

Figure 3: Overview of various filter sets (as labeled) and comparison with the spectra
of an A0V (Vega), G2V (Sun) and M5V star.
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Figure 3: [Continued ] Overview of various filter sets (as labeled).
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7 Types of astronomical observations with CCDs

• Imaging — faithfully (in some way) record the spatial (angular) distribution of
brightness on the sky

• Astrometry — faithfully record the relative or absolute positions of sources on
the sky (regardless of brightness)

• Photometry — faithfully record the relative or absolute brightness of sources on
the sky (regardless of position and possibly regardless of how flux is distributed
on the sky)

• Spectroscopy — faithfully record the relative or absolute flux density as a func-
tion of wavelength or frequency

• Kinematics — faithfully record the relative or absolute velocities of objects or
parts thereof with respect to a suitable standard of rest

• Polarimetry — faithfully record (relative) polarizations (degree and linear/circular)

• Interferometry — faithfully record (relative) phases or phase distributions of
one or more sources.

• Photon timing — faithfully record (relative) arrival times of photons from one
or more sources.

• mixtures of any of the above, e.g., surface photometry, spectrophotometry, inte-

gral field spectroscopy, combining both astrometry and photometry, etc...

For imaging, one has to consider the plate scale and geometric distortions (the latter
particularly for off-axis instruments, but depending on the telescope- and instrument-
design, even on-axis instruments may show significant geometric distortions.

For photometry, one has to consider detection vs. measurement (cf. imaging), aperture

photometry, curve of growth total photometry, PSF fitting, or differential photometry.
Calibration onto an absolute flux system (AB magnitudes) or relative system (e.g.,
with respect to α Lyrae (Vega)).
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