Table 1 Commonly Used Radiometric, Photometric and Photon Quantities

Radiometric			Photometric			Photon		
Quantity	Usual Symbol	Units	Quantity	Usual Symbol	Units	Quantity	Usual Symbol	Units
Radiant Energy	Q _e	J	Luminous Energy	Q_v	lm s	Photon Energy	N _p	*
Radiant Power or Flux	φ _e	W	Luminous Flux	ϕ_V	lm	Photon Flux	$\Phi_p = \frac{dN_p}{dt}$	S-1
Radiant Exitance or Emittance	M _e	W m ⁻²	Luminous Exitance or Emittance	M_{v}	Im m ⁻²	Photon Exitance	М _р	s ⁻¹ m ⁻²
Irradiance	E _e	W m ⁻²	Illuminance	E _v	lx	Photon Irradiance	Ep	s ⁻¹ m ⁻²
Radiant Intensity	l _e	W sr-1	Luminous Intensity	I _v	cd	Photon Intensity	I _p	S-1 SI-1
Radiance	L _e	W sr ⁻¹ m ⁻²	Luminance	L _v	cd m ⁻²	Photon Radiance	L _p	s-1 sr-1 m-2

^{*} Photon quantities are expressed in number of photons followed by the units, eg. photon flux (number of photons) s⁻¹. The unit for photon energy is number of photons.

Symbols Key:

J: joule Im: lumen
W: watts s: second
m: meter cd: candela

sr: steradian lx: lux, lumen m-2

Table 3 Spectral Parameter Conversion Factors

	Wavelength	Wavenumber*	Frequency	Photon Energy**
Symbol (Units)	λ (nm)	υ (cm ⁻¹)	ν (Hz)	E _P (eV)
Conversion Factors	λ	10 ⁷ /λ	3 x 10 ¹⁷ /λ	1,240/λ
	10 ⁷ /υ	υ	3 x 10¹0 υ	1.24 x 10 ⁻⁴ ບ
	3 x 10 ¹⁷ /v	3.33 x 10 ⁻¹¹ v	ν	4.1 x 10 ⁻¹⁵ v
	1,240/Ep	8,056 x Ep	2.42 x 10 ¹⁴ Ep	Ep
Conversion Examples	200	5 x 10 ⁴	1.5 x 10 ¹⁵	6.20
	500	2 x 10 ⁴	6 x 10 ¹⁴	2.48
	1000	10 ⁴	3 x 10 ¹⁴	1.24

When you use this table, remember that applicable wavelength units are nm, wavenumber units are cm-1, etc.

^{*} The S.I. unit is the m⁻¹. Most users, primarily individuals working in infrared analysis, adhere to the cm⁻¹.

^{**} Photon energy is usually expressed in electron volts to relate to chemical bond strengths. The units are also more convenient than photon energy expressed in joules as the energy of a 500 nm photon is $3.98 \times 10^{-19} \text{ J} = 2.48 \text{ eV}$