Table 1 Commonly Used Radiometric, Photometric and Photon Quantities | Radiometric | | | Photometric | | | Photon | | | |----------------------------------|-----------------|------------------------------------|-----------------------------------|-----------------|--------------------|-------------------|----------------------------|---------------------------------| | Quantity | Usual
Symbol | Units | Quantity | Usual
Symbol | Units | Quantity | Usual
Symbol | Units | | Radiant Energy | Q _e | J | Luminous Energy | Q_v | lm s | Photon Energy | N _p | * | | Radiant Power or
Flux | φ _e | W | Luminous Flux | ϕ_V | lm | Photon Flux | $\Phi_p = \frac{dN_p}{dt}$ | S-1 | | Radiant Exitance
or Emittance | M _e | W m ⁻² | Luminous Exitance
or Emittance | M_{v} | Im m ⁻² | Photon Exitance | М _р | s ⁻¹ m ⁻² | | Irradiance | E _e | W m ⁻² | Illuminance | E _v | lx | Photon Irradiance | Ep | s ⁻¹ m ⁻² | | Radiant Intensity | l _e | W sr-1 | Luminous Intensity | I _v | cd | Photon Intensity | I _p | S-1 SI-1 | | Radiance | L _e | W sr ⁻¹ m ⁻² | Luminance | L _v | cd m ⁻² | Photon Radiance | L _p | s-1 sr-1 m-2 | ^{*} Photon quantities are expressed in number of photons followed by the units, eg. photon flux (number of photons) s⁻¹. The unit for photon energy is number of photons. Symbols Key: J: joule Im: lumen W: watts s: second m: meter cd: candela sr: steradian lx: lux, lumen m-2 **Table 3 Spectral Parameter Conversion Factors** | | Wavelength | Wavenumber* | Frequency | Photon Energy** | |---------------------|-------------------------|----------------------------|----------------------------|---------------------------| | Symbol (Units) | λ (nm) | υ (cm ⁻¹) | ν (Hz) | E _P (eV) | | Conversion Factors | λ | 10 ⁷ /λ | 3 x 10 ¹⁷ /λ | 1,240/λ | | | 10 ⁷ /υ | υ | 3 x 10¹0 υ | 1.24 x 10 ⁻⁴ ບ | | | 3 x 10 ¹⁷ /v | 3.33 x 10 ⁻¹¹ v | ν | 4.1 x 10 ⁻¹⁵ v | | | 1,240/Ep | 8,056 x Ep | 2.42 x 10 ¹⁴ Ep | Ep | | Conversion Examples | 200 | 5 x 10 ⁴ | 1.5 x 10 ¹⁵ | 6.20 | | | 500 | 2 x 10 ⁴ | 6 x 10 ¹⁴ | 2.48 | | | 1000 | 10 ⁴ | 3 x 10 ¹⁴ | 1.24 | When you use this table, remember that applicable wavelength units are nm, wavenumber units are cm-1, etc. ^{*} The S.I. unit is the m⁻¹. Most users, primarily individuals working in infrared analysis, adhere to the cm⁻¹. ^{**} Photon energy is usually expressed in electron volts to relate to chemical bond strengths. The units are also more convenient than photon energy expressed in joules as the energy of a 500 nm photon is $3.98 \times 10^{-19} \text{ J} = 2.48 \text{ eV}$