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Smith Chart

The Smith chart is one of the most useful graphical tools  for high
frequency circuit applications.  The chart provides a clever way to
visualize complex functions and it continues to endure popularity
decades after its original conception.

From a mathematical point of view, the Smith chart is simply a
representation of all possible complex impedances with respect to
coordinates defined by the reflection coefficient.

The domain of definition of the
reflection coefficient is a circle of
radius 1 in the complex plane.  This
is also the domain of the Smith chart.
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The goal of the Smith chart is to identify all  possible impedances  on
the domain of existence of the reflection coefficient.  To do so, we
start from the general definition of line impedance  (which is equally
applicable to the load impedance)
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This provides the complex function ( ) ( ){ }( ) Re , ImZ d f= Γ Γ  that
we want to graph.  It is obvious that the result would be applicable
only to lines with exactly characteristic impedance Z0.

In order to obtain universal curves, we introduce the concept of
normalized impedance
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The normalized impedance  is represented on the Smith chart  by
using families of curves that identify the normalized resistance  r
(real part) and the normalized reactance  x (imaginary part)

( ) ( ) ( )Re Imz d z j z r jx= + = +

Let’s represent the reflection coefficient  in terms of its coordinates

( ) ( ) ( )Re Imd jΓ = Γ + Γ

Now we can write
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The real part  gives
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= 0

Add a quantity equal to zero

Equation of a circle
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The imaginary part  gives
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Equation of a circle



Transmission Lines

© Amanogawa, 2000 - Digital Maestro Series 142

The result for the real part indicates that on the complex plane with
coordinates (Re( Γ), Im(Γ)) all the possible impedances with a given
normalized resistance r  are found on a circle  with

{ } 1
, 0

1 1
r

r r+ +
Center = Radius =  

As the normalized resistance r varies from 0 to ∞ , we obtain a
family of circles completely contained inside the domain of the

reflection coefficient | Γ | ≤ 1 .
Im(Γ )

Re(Γ )

r = 0

r →∞

r = 1

r = 0.5

r = 5



Transmission Lines

© Amanogawa, 2000 - Digital Maestro Series 143

The result for the imaginary part indicates that on the complex
plane with coordinates (Re( Γ), Im(Γ)) all the possible impedances
with a given normalized reactance x  are found on a circle  with

{ }1 1
1 ,

x x
Center = Radius =  

As the normalized reactance x varies from -∞ to ∞ , we obtain a
family of arcs contained inside the domain of the reflection

coefficient | Γ | ≤ 1 .
Im(Γ )

Re(Γ )

x = 0

x →±∞

x = 1

x = 0.5

x = -1
x = - 0.5
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Basic Smith Chart techniques for loss-less transmission lines

� Given Z(d)   ⇒   Find  Γ(d)
Given Γ(d)   ⇒   Find  Z(d)

� Given ΓR and ZR        ⇒   Find  Γ(d) and Z(d)
Given Γ(d) and Z(d)  ⇒   Find  ΓR and ZR

� Find dmax and dmin (maximum and minimum locations for the
voltage standing wave pattern)

� Find the Voltage Standing Wave Ratio (VSWR)

� Given Z(d)   ⇒   Find Y(d)
Given Y(d)   ⇒   Find Z(d)
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Given Z(d)   ⇒   Find  Γ(d)

1. Normalize the impedance

( ) ( )
0 0 0

d
d

Z R X
z j r j x

Z Z Z
= = + = +

2. Find the circle of constant normalized resistance r
3. Find the arc of constant normalized reactance x
4. The intersection of the two curves indicates the reflection

coefficient in the complex plane.  The chart provides
directly the magnitude and the phase angle of Γ(d)

Example : Find  Γ(d), given

( ) 0d 25 100       with    50Z j Z= + Ω = Ω
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1. Normalization

  z (d) = (25 + j 100)/50

          = 0.5 + j 2.0

2. Find normalized
    resistance circle

r = 0.5

3. Find normalized
    reactance arc

x = 2.0

4. This vector represents
    the reflection coefficient

Γ (d) = 0.52 + j0.64

|Γ (d)| = 0.8246

       ∠∠ Γ (d) = 0.8885 rad
         = 50.906 °

 50.906 °

1.

0.8246
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Given Γ(d)   ⇒   Find  Z(d)

1. Determine the complex point representing the given
reflection coefficient Γ(d) on the chart.

2. Read the values of the normalized resistance r and of the
normalized reactance x that correspond to the reflection
coefficient point.

3. The normalized impedance is

( )dz r j x= +

and the actual impedance is

( ) ( )0 0 0 0(d) dZ Z z Z r j x Z r j Z x= = + = +
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Given ΓR and ZR    ⇐⇒   Find  Γ(d) and Z(d)

NOTE:  the magnitude  of the reflection coefficient  is constant  along
a loss-less transmission line terminated by a specified load, since

( ) ( )d exp 2 dR RjΓ = Γ − β = Γ

Therefore, on the complex plane, a circle  with center at the origin

and radius | ΓR | represents all possible reflection coefficients
found along the transmission line.  When the circle  of constant
magnitude of the  reflection coefficient is drawn on the Smith chart,
one can determine the values of the line impedance  at any location .

The graphical step-by-step procedure is:

1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.
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2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.

3. Starting from the point representing the load, travel on
the circle in the clockwise direction, by an angle

2
2 d 2 d

πθ = β =
λ

4. The new location on the chart corresponds to location d
on the transmission line.  Here, the values of Γ(d) and
Z(d) can be read from the chart as before.

Example :  Given

        025 100           50RZ j Z= + Ω = Ωwith

      find

         ( ) ( ) 0.18Z d d dΓ = λand for       
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θ
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ΓR

zR

∠ ΓR

θθ = 2 β d
   = 2 (2π/λ) 0.18 λ
   = 2.262 rad
   = 129.6°

z(d)

Γ (d)Γ(d) = 0.8246 ∠-78.7°
        = 0.161 – j 0.809 z(d) = 0.236 – j1.192

Z(d) = z(d) × Z0 = 11.79 – j59.6 Ω

Circle with constant | Γ |
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Given ΓR and ZR     ⇒   Find dmax and dmin

1. Identify on the Smith chart the load reflection coefficient
ΓR or the normalized load impedance ZR .

2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.  The circle intersects the real axis
of the reflection coefficient at two points which identify
dmax (when Γ(d) = Real positive) and dmin (when Γ(d) =
Real negative)

3. A commercial Smith chart provides an outer graduation
where the distances normalized to the wavelength can be
read directly.  The angles, between the vector ΓR and the
real axis, also provide a way to compute dmax and dmin .

Example : Find dmax and  dmin for

025 100   ;  25 100     ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
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ΓR

ZR

∠ ΓR

2β dmin = 230.9°
dmin = 0.3207λ

2β dmax = 50.9°
dmax = 0.0707λ

Im(Z R) > 0

Z j ZR � � �25 100 500� �    ( )
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ΓR

ZR

∠ ΓR

2β dmin = 129.1°
dmin = 0.1793 λ

2β dmax = 309.1°
dmax = 0.4293 λ

Im(Z R) < 0

Z j ZR � � �25 100 500� �    ( )
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Given ΓR and ZR  ⇒  Find the Voltage Standing Wave Ratio (VSWR)

The Voltage standing Wave Ratio or VSWR is defined as

max

min

1
1

R

R

V
VSWR

V

+ Γ
= =

− Γ

The normalized impedance  at a maximum location  of the standing
wave pattern is given by

( ) ( )
( )

max
max

max

1 1
!!!

1 1
R

R

d
z d VSWR

d

+ Γ + Γ
= = =

− Γ − Γ

This quantity is always real  and ≥ 1.  The VSWR is simply obtained
on the Smith chart, by reading the value of the (real) normalized
impedance, at the location dmax where Γ is real  and positive .
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The graphical step-by-step procedure is:

1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.

2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.

3. Find the intersection of this circle with the real positive
axis for the reflection coefficient (corresponding to the
transmission line location dmax).

4. A circle of constant normalized resistance will also
intersect this point.  Read or interpolate the value of the
normalized resistance to determine the VSWR.

Example : Find the VSWR  for

1 2 025 100   ;  25 100     ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
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ΓR1

zR1

zR2

ΓR2

Circle with constant | Γ |

z(dmax )=10.4

For both loads
VSWR = 10.4

Circle of constant
conductance r = 10.4
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Given Z(d)  ⇐⇒   Find Y(d)

Note: The normalized impedance and admittance are defined as

( )
( )

( )
( )

1 1
( ) ( )

1 1
d d

z d y d
d d

+ Γ − Γ
= =

− Γ + Γ

Since

( )

( )
( ) ( )

4

1
14

4 11
4

d d

d
d

z d y d
dd

λ Γ + = −Γ  
λ + Γ +  − Γλ   ⇒ + = = =  λ + Γ   − Γ +  
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Keep in mind that the equality

( )
4

z d y d
λ + =  

is only valid for normalized impedance and admittance. The actual
values are given by

0

0
0

4 4

( )
( ) ( )

Z d Z z d

y d
Y d Y y d

Z

λ λ   + = ⋅ +      

= ⋅ =

where Y0=1 /Z0 is the characteristic admittance  of the transmission
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line.
The graphical step-by-step procedure is:

1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.

2. Draw the circle of constant reflection coefficient
amplitude  |Γ(d)| =|ΓR|.

3. The normalized admittance is located at a point on the
circle of constant |Γ| which is diametrically opposite to the
normalized impedance.

Example :  Given

025 100       with    50RZ j Z= + Ω = Ω

find YR .
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z(d) = 0.5 + j 2.0
Z(d) = 25 + j100 [ Ω ]

y(d) = 0.11765 – j 0.4706
Y(d) = 0.002353 – j 0.009412 [ S ]
z(d+λ/4) = 0.11765 – j 0.4706
Z(d+λ/4) = 5.8824 – j 23.5294 [ Ω ]

Circle with constant | Γ |

θ = 180°
   = 2β⋅λ/4
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The Smith chart can be used for line admittances, by shifting the
space reference to the admittance location .  After that, one can
move on the chart just reading the numerical values as
representing admittances.

Let’s review the impedance -admittance  terminology:

Impedance   =   Resistance + j Reactance

       Z R jX= +

Admittance  =   Conductance + j Susceptance

              Y G jB= +
On the  impedance  chart, the correct reflection coefficient is always
represented by the vector corresponding to the  normalized
impedance .  Charts specifically prepared for admittances  are
modified to give the correct reflection coefficient in correspondence
of admittance.
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Smith Chart for
Admittances

00.20.55

-0.2

0.2

2 1

0 5

-0 5

3

-3

-2

2

-1

1

Positive
(capacitive)

susceptance

Negative
(inductive)

susceptanceΓ

y(d) = 0.11765 – j 0.4706

z(d) = 0.5 + 2.0
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Since related impedance  and admittance  are on opposite sides of
the same Smith chart, the imaginary parts always have different
sign.

Therefore, a positive (inductive) reactance  corresponds to a
negative (inductive) susceptance , while a negative (capacitive)
reactance  corresponds to a positive (capacitive) susceptance .

Numerically, we have

( )( ) 2 2

2 2 2 2

1
z r j x y g j b

r j x

r j x r jx
y

r j x r j x r x
r x

g b
r x r x

= + = + =
+

− −= =
+ − +

⇒ = = −
+ +


