L3 Physique CORRECTION Partiel Astrophysique février 2007

- 1- Chaque m² d'astéroide reçoit de l'énergie dans le visible (émis par le soleil à la température T_{\odot}) et ré-émet dans l'infrarouge (comme un corps noir à la température T). Par m², on égale le flux reçu $L/4\pi d^2$ et le flux émis σT^4 et on obtient $T = (L/4\pi\sigma)^{1/4}d^{-1/2}$. $\alpha = -0.5$. Si la distance est multipliée par 4, la température est divisée par 2.
- 2- On écrit $L/4\pi d^2 = 4\pi R_\odot^2 \sigma T_\odot^4/4\pi d^2 = \sigma T^4$ et on obtient $T = T_\odot \sqrt{R_\odot/d}$. Numériquement, on a $T = 6000 \times 1/10 \times \sqrt{7/15} = 600/\sqrt{2} = 400 \,\mathrm{K}$.
- 3- En comptant la masse disponible et le nombre de particules (y compris les électrons), on obtient $1/\mu = 2X + 3Y/4 + Z/2 = 1.4 + 0.225 + 0.005 = 1.63$
- 4- ρ_o est la masse volumique au centre de l'étoile. $M_r(r) = \int_0^R \rho_o(1 r/R) \, 4\pi r^2 \, dr = \pi \rho_o R^3 (4/3 1) = \pi \rho_o R^3/3$. On en déduit que $\overline{\rho} = M/(4/3\pi R^3) = \rho_o/4$. $\overline{\rho}$ n'est pas égale à $\rho_o/2$ car son calcul est pondéré par $4\pi r^2$.
- 5- $\lambda = \lambda_1 : \tau \gg 1$, $I(\lambda_1) = B(T_2)$; idem pour $I(\lambda_3)$. En λ_2 , on a $\tau = 0$ et $I(\lambda_2) = B(T_1) > B(T_2)$. On observe ce qui ressemble à une "raie d'émission" qui est en fait le continu $B(T_1)$ plus brillant que $B(T_2)$, visible lorsque le milieu 2 devient transparent : $\tau(\lambda_2) = 0$. NB. En toute rigueur, il faudrait comparer $B(T_1)e^{-10}$ et $B(T_2)$.