	_	
NOM:		Prénom :

L3 Physique PARTIEL Astrophysique Mecredi 29/04/09

Durée 1 heure - calculatrice autorisée - Documents interdits (une feuille de notes A4 autorisée) Remplir Nom et Prénom - Répondre sur la feuille

π		3.1415926					
σ_S	=	$5.67 10^{-8} \mathrm{W.m^{-2}.K^{-4}}$	Stefan	1 AU	=	$15010^6{\rm km}$	Unité Astronomique
k	=	$1.3810^{-23}\mathrm{J.K^{-1}}$	Boltzman	$1~{ m M}_{\odot}$	=	$210^{30}\mathrm{kg}$	Masse solaire
h	=	$6.62610^{-34}\mathrm{J.s}$	Planck	$1~{ m L}_{\odot}$	=	$3.8610^{26}\mathrm{W}$	Luminosité Solaire
e	=	$1.610^{-19}\mathrm{C}$	charge de l'électron	$1~R_{\odot}$	=	$710^8\mathrm{m}$	Rayon Solaire
c	=	$310^8{\rm m.s^{-1}}$	vitesse lumière (vide)	1 pc	=	$3.110^{16}\mathrm{m}$	parsec
ϵ_o	=	$8.8410^{-12}\mathrm{F.m^{-1}}$	Permittivité du vide	1 an (moyen)	=	$3.1610^7{ m s}$	année moyenne
G		6.710^{-11} J.m.kg ⁻²	Constante gravitation	1 AL	=	$9.510^{15}\mathrm{m}$	Année Lumière
a	=	$7.56 10^{-16} \mathrm{J.m^{-3}.K^{-4}}$	2e constante de Stefan	$ T_{\odot}$	=	$6000\mathrm{K}$	T surface soleil

On rappelle la définition de la magnitude apparente m d'une étoile à la longueur d'onde λ si F est le flux reçu (en W.m⁻², F_o étant un flux de référence) à cette longueur d'onde :

$$m = -2.5 \log \frac{F}{F_o}$$

On définit également la magnitude absolue M de la même étoile comme la magnitude apparente qu'elle aurait si elle était située à une distance de 10 parsec.

EXERCICE 1: Betelgeuse a une magnitude absolue $M \approx -5$ et une magnitude apparente $m \approx 0$.

 \bullet Calculer la distance D de Betelgeuse en parcsec.

• Si Betelgeuse était distante de 1 kpc, quelle serait sa magnitude apparente ? Sa magnitude absolue ?

EXERCICE 2:

ullet Rappeler l'expression de la luminosité L d'une étoile en fonction de son rayon R et de sa température de surface T.

On considère une planète en orbite à la distance d du soleil (rayon R_{\odot} , température T_{\odot}), dont la température est définie par léquilibre entre lénergie reçue par unité de surface et son rayonnement de corps noir à cette température.

 \bullet Montrer que dans ces conditions la température T de la planète peut s'écrire :

$$T = T_{\odot} \sqrt{\frac{R_{\odot}}{d}}$$

- Rappeler la relation qui lie la température T (en K) d'un corps noir et la longueur d'onde λ_{max} de son maximum d'émission (en μ m).
 - Montrer que cette relation permet d'interpréter le maximum de la courbe d'émission du soleil sur la figure 1

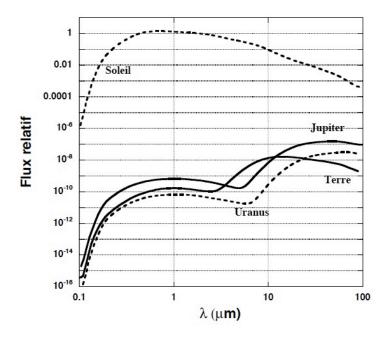


Figure 1: Emission du soleil et des planètes en fonction de λ exprimée en μ m.

La figure représente également le spectre de quelques planètes dont la terre. Ce spectre est constitué de deux maxima, l'un à plus courte longueur d'onde étant la reproduction atténuée du maximum solaire (de manière identique pour toutes les planètes) et l'autre à plus grande longueur d'onde étant du à leur émission thermique propre,

• A quoi est du le maximum identique pour toutes les planètes dans leur courbe d'émission ?

• Si on considère la terre et les autres planètes comme des corps noirs (avec une seule température !), montrer que la relation T, λ_{max} appliquée à la terre est cohérente avec une température proche de 300 K.

 \bullet A partir de la figure 1, pensez-vous que la température moyenne du corps noir "terre" est plutôt plus faible ou plus élevée que $300\,\mathrm{K}$?

• Donnez une estimation de la température de corps noir de Jupiter et d'Uranus. Justifiez l'ordre de grandeur des valeurs trouvées.

EXERCICE 3:

• Montrer que si les étoiles ont toutes la même masse volumique moyenne ρ_o (par exemple 1000 kg.m⁻³), on a :

$$\frac{M}{M_{\odot}}=(\frac{R}{R_{\odot}})^3$$

 \bullet La valeur exacte de ρ_o est-elle importante ?

On suppose de plus que la luminosité varie comme le cube de la masse : $\frac{L}{L_{\odot}}=(\frac{M}{M_{\odot}})^3$

• Montrer qu'on a alors :

$$\frac{T}{T_{\odot}} = (\frac{R}{R_{\odot}})^{7/4}$$