La comète 67P/Churyumov-Gerasimenko à l'heure de la mission Rosetta

Eric Quirico IPAG Universit<u>é Grenoble Alpes</u>

" Les Grecs appellent "comète" et les Romains "étoiles chevelues" celles qui sont hérissées d'une touffe de poils couleur de sang, se dressant à leur sommet comme une chevelure.

Les Grecs nomment "Pogonias" (barbues), celles qui traînent à leur partie inférieure une crinière en forme de longue barbe.

Les "Acontias", présages d'événements tout à fait imminents, filent comme des javelots.

Les "Certias" ont la forme d'une corne.

Les "Lampadias" imitent les torches ardentes. Les "Hippias", des crinières de chevaux animées d'un mouvement très rapide et tournoyant sur ellesmêmes.

On rencontre aussi les comètes "Boucs" d'aspect poilu, enveloppées d'une sorte de nuage.

Il est arrivé une fois qu'une crinière s'est transformée en lance...".

Pline l'Ancien, 77 ap. JC

Comment étudie-t-on les comètes ?

ROSETTA: A Comet rendezvous Mission + Philae lander for in situ studies

study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the solar system.

OSIRIS

• H. Sierks (PI,Max Planck MPS, Gottingen),

NAC FOV 2.2x2.2 °, 3 mirrors 4"/px, f/8

WAC FOV 12x12°, 2 mirrors 21 "/px f/5.6

NAC: 11 Filters [250-1000 nm] +2 lre-focussing lens WAC: 14 Filters [230-750 nm] CCD: 2048 x 2048 pixel ; squared pixel =13.5 μm

Premières images

OSIRIS-Caméra NAC 24 Mars - 4 May

5 →2 millions km from 67P

Solar dist: 4 AU

Outburst during 27 -- 30 April 2014

•Coma 1300 km wide, originated by volatils like CO and CO₂

credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Juillet 2014 : première surprise...

7 July 2014

Lamy et al. (2007) HST observations

11 July2014

Binary shape with 2 lobes!

Rosetta Nears Comet 67P/Churyumov-Gerasimenko - late July 2014 Credit: ESA/Rosetta/NAVCAM Collage/Processing: Marco Di Lorenzo/Ken Kremer

70% of the surface observed

Mass = 10^{13} kg

ρ=470 ±45 kg/m³

Porosity: 70-80%

Nucleus structure

- contact binary?
- monolith?

Différenciation d'un noyau cométaire

Different geological structures indicating erosion, re-deposition of materials

Smooth terrains : Anubis, Hapi, Imhotep **Big depressions** : Aten, Hatmehit, Nut

surfaces covered by regolith : Ash, Babi, Ma'at

Rocky consolidated materials surfaces: Aker, Anuket, Apis, Atum, Bastet, Hathor, Khepry, Maftet, Serqet.

The nucleus is heavily fractured at several scales; fractures produced by the rapid heating-cooling cycles that are experienced cometary day and orbit

200

Aker Region: 200 m long fractures in a more consolidated material.

Low structural strength (< 20 Pa)

Ash - Splitting and Talus

Thomas et al., 2015

Small-scale cracking possibly resulting from insolation weathering

Sierks et al., 2015

NAC: 2014-08-21T13:43:04.658

Puits actifs

- The pit has a very peculiar morphology, with horizontal layers and vertical striations.
- Many jets can be linked to this hole, apparently starting from the bright walls on both sides.
 Diameter : 50-300 m, depth 10-200 m
- →endogenic activity: explosive activity + collapse processes

Vincent et al., 2015

Imothep: terrains lisses

Cracks, Uniform Deposits, Material transport or Multiple Fluid Events?

Auger et al., 2015, A&A, in press

NAC_2014-10-05T16.09.11.549Z_ID30_1397549900_F22

Dunes & wind tails in HAPI

HAPI shows aeolian ripple field, and several boulders appear to have wind tails

aeolian dust transport may be of significance

Estimated gas velocity = 335 m/s, comparable to gas flow velocities seen in most fluid dynamics calculations

Thomas et al., 2015; Sierks et al., 2015

Activité de la comète

NAC images 25-26 July 12 m/px

WAC images, filer OI 9-10 September 3.5 m/px

Rajeunissement de surface

Variations de couleur

The 67P surface is heterogeneous: the central region, which is also a clear source of activity looks brighter .

25 July data: res 56m/px, 360-535-743 color maps

I August data: res 18.5m/px, 480-535-649 color maps

Imhotep region Sept 18 04h01

5 Sept 08h, phase 70°

Rochers clairs ~ 1 m

•Appear in all types of morphologic regions but some regions show a much higher concentration of these features: Imhotep, Khepri...

 Concentrated in the areas that receive the lowest insolation: often surrounded by shadows.

Pommerol et al., 2015, A&A

CONSERT et SESAME-PP

Kofman et al. (2015) Science Ciarletti et al. (2015) A&A Lethuillier et al. (2016) A&A Basse porosité dans les premiers mètres

Fig. 3. Particle spatial distribution by type: fluffy, compact, and small compact detected during the bound-orbit phase. Fluffy particles, plotted as clusters, i.e., only the detection of each shower is reported, seem the more dispersed particles together with, although to a lesser extent, small compact particles.

MIDAS

Figure 3 | AFM topographic images of particle E, showing its sub-units and their size distribution. a, A $14\mu m \times 37\mu m$ overview image with a pixel resolution of 210 nm and the colour scale representing the height, z. b, As in a, but with identified grains outlined in cyan. c, A three-dimensional $14\mu m \times 34\mu m$ view (corresponding to region indicated by the red dashed box in a; rotated and cropped). d, Cumulative distribution of the equivalent diameters of the grains (red circles), with error bars in grey (where the errors are given as the linear addition of the 1σ statistical uncertainty and the systematic uncertainty; see Methods). The left scale shows the cumulative number of grains and the right scale shows the probability that particles have equivalent diameters below the specific values.

High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko

Nicolas Fray¹*, Anaïs Bardyn^{1,2}*, Hervé Cottin¹*, Kathrin Altwegg³, Donia Baklouti⁴, Christelle Briois², Luigi Colangeli⁵, Cécile Engrand⁶, Henning Fischer⁷, Albrecht Glasmachers⁸, Eberhard Grün⁹, Gerhard Haerendel¹⁰, Hartmut Henkel¹¹, Herwig Höfner¹⁰, Klaus Hornung¹², Elmar K. Jessberger¹³, Andreas Koch¹¹, Harald Krüger⁷, Yves Langevin³, Harry Lehto¹⁴, Kirsi Lehto¹⁵, Léna Le Roy³, Sihane Merouane⁷, Paola Modica^{1,2}, François-Régis Orthous-Daunay¹⁶, John Paquette⁷, François Raulin¹, Jouni Rynö¹⁷, Rita Schulz¹⁸, Johan Silén¹⁷, Sandra Siljeström¹⁹, Wolfgang Steiger²⁰, Oliver Stenzel⁷, Thomas Stephan²¹, Laurent Thirkell², Roge

Kenneth

Juliette

Orgueil IOM

Normalized intensity

Murchison IOM

Poussières stratosphériques et Antarctiques

La composition de la surface

Visible, InfraRed and Thermal Imaging Spectrometer

VIRTIS combines an imaging spectrometer (M) and a high resolution spectrometer (H).

VIRTIS – M is a slit spectrometer; acquires hyperspectral images with a max spatial resolution of 250 μ rad, using an internal scan mirror, in the spectral range 0.25-5 μ m.

VIRTIS –H is a high-resolution infrared spectrometer in the 2-5 μ m range. It uses a prism and a grating to achieve a spectral resolution as high as 3000 on a matrix detector identical to the VIRTIS-M IR FPA.

Spectroscopie de réflectance

VIRTIS-M imaged 67P/CG surface within 0.4-5 µm

Here we focus on the chemical interpretation of the spectra of ice-free regions

COMETARY SCIENCE

The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta

F. Capaccioni,^{1*} A. Coradini,¹[†] G. Filac M. C. De Sanctis,¹ D. Bockelee-Morvan E. Quirico,⁴ P. Cerroni,¹ V. Mennella,⁵ A E. Palomba,¹ E. Ammannito,⁷ M. A. Bar A. Blanco,¹⁰ M. Blecka,¹¹ R. Carlson,¹² M. Combi,¹³ J. Crovisier,² T. Encrenaz P. Irwin,¹⁷ R. Jaumann,^{3,18} E. Kuehrt,³ Y P. Palumbo,¹⁹ G. Piccioni,¹ U. Schade,²⁰ N. Biver,² L. Bonal,⁴ J.-Ph. Combe,⁶ D. 1 D. Grassi,¹ M. Gudipati,^{12,23} A. Longoba G. Rinaldi,¹ K. Stephan,³ M. Cartacci,¹ A S. Jacquinod,² R. Noschese,¹ G. Peter,²⁵

I/F

W

Photometric correction

Comète sombre= Organiques + Minéraux opaques

P

Chondritic comet (C/Si – S/Si – Fe/S – Mg/Si)

The 3.2 µm band

х

Normalized 3.2 micron Band Depth 0.25 0.20 0.15 0.10

2

Other ROSETTA instruments

Ptolemy Wright et al., 2015

• No detection of POM. May be present, but minor with respect to other species.

Cosac Goessman et al., 2015

- R-COOH major no detection in Cosac
- Amino groups minor significant in Cosac (~50% of species)

Cosima Fray et al., Tuesday Talk

- Refractory N/C ~0.05 > Consistent
- Fe,S co-detection => FeS likely

Photolytic residues ?

- Form complex organics from simples ices
- Large variety of « 3 µm band »

Un lien avec les météorites primitives ?

- R-COOH highly plausible
- CH₂/CH₃, aro-H plausible
- NH₄⁺ plausible, but -NH₂ weak

	Abundances		
Compounds	(%)	$\mu g g^{-1} (ppm)$	Ref.
Macromolecular material	1.45		26
Carbon dioxide		106	27
Carbon monoxide		0.06	27
Methane		0.14	27
Hydrocarbons: aliphatic		12–35	28
aromatic		15–28	29
Acids: monocarboxylic		332	27, 30
dicarboxylic		25.7	31
a-hydroxycarboxylic		14.6	32
Amino acids		60	4
Alcohols		11	33
Aldehydes		11	33
Ketones		16	33
Sugar-related compounds		~60	34
Ammonia		19	35
Amines		8	36
Urea		25	37
Basic N-heterocycles (pyridines, quinolines)		0.05–0.5	38
Pyridinecarboxylic acids		>7	39
Dicarboximides		>50	39
Pyrimidines (uracil and thymine)		0.06	40
Purines		1.2	41
Benzothiophenes		0.3	42
Sulfonic acids		67	43
Phosphonic acids		1.5	44

Sephton 2002 Nat. Prod. Rep.

Merci de votre attention !