The infrared range corresponds to vibrational energies in molecules and solids

000000000

... but not forget thermal emission!

Spatial resolution: 100s km to 40 nm

Adapted from Hitchcock et al. 2002

★I - Photon - matter interaction (basics)
★II - Part II - Instrumentation and practical issues
★III.1 - Analysis of geo-cosmo-materials in the laboratory
★III.2 - Earth and planet observation

Part I - Photon - matter interaction (basics)

Optical constants also characterize optical properties of solids and liquids

Teledetection surface models
Atmospheric models (radiative transfer)

 $\chi(\omega)=\chi_1(\omega)+i\chi_2(\omega)$

$$\chi_1(\omega) = rac{1}{\pi} \mathcal{P}\!\!\int\limits_{-\infty}^{\infty} rac{\chi_2(\omega')}{\omega'-\omega}\,d\omega'$$

and

$$\chi_2(\omega) = -rac{1}{\pi} \mathcal{P} \!\!\!\int\limits_{-\infty}^\infty rac{\chi_1(\omega')}{\omega'-\omega} \, d\omega'$$

Fig. 4. Optical constants n (top) and k (bottom) of the pyroxene glasses of the compositions $Mg_xFe_{1-x}SiO_3$ for x=0.4, 0.5, 0.6, 0.7, 0.8, 0.95 and 1.00. Both in the UV/VIS/NIR and in the FIR beyond the vibrational bands, the n curves clearly fan out according to the iron content of the samples (increasing n values with growing iron content). Note the huge fanning out of the k curves (logarithmic scale!). For the sake of clearness, in the lower graph, the curves are labelled by the index xof the formula. In both graphs, dotted lines indicate regions of interpolation and/or extrapolation

Loi de Beer-Lambert

 $dI = -I\alpha \, dx$

Établie pour l'étude des solutions diluées
Milieu latéralement homogène
Faisceau rigoureusement collimaté
Extrapolation aux phases condensées
Conditions spécifiques

 α : coefficient d' extinction cm⁻¹

10

e : épaisseur

 $N: mol.cm^{-3}$

 σ : section efficace d'absorption cm²/mol

 $I = I_0 \exp(-\alpha e)$ $I = I_0 \exp(-Ne\sigma)$

Born-Oppenheimer approximation

Decoupling of electronic, vibrationnal and rotational motions

 $H = T_N + T_e + V_{ee} + V_{NN} + V_{eN}$

 $m\ddot{x} = -kx$ $\ddot{x} + \omega^2 x = 0$

 $x(t) = A.\cos(\omega t + \varphi)$

- v : frequency vibration
- μ : reduced mass
- k : bonding strength
- m_A et m_B : masses of atoms A and B

			Liaison:	≡С-Н	=С-Н	- C-H
C-C	1200 cm ⁻¹	1	Fréquence:	~3300 cm ⁻¹	~ 3100 cm ⁻¹	~ 2900 cm ⁻¹
C=C	1650 cm ⁻¹	↑k	k (N.m ⁻¹):	593	523	458
C≡C	2150 cm ⁻¹	+	Type de liaison:	sp-s	sp²-s	sp ³ -s
7-0-	P	9.1	Longueur (Å):	1,08	1,10	1,12

$$\overline{\nu} \left[cm^{-1} \right] = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

µ dependency

Liaison	v (cm ⁻¹)	m ₂ (g)	μ (g)	
С-Н	3000	1	0,923	1
C-C	1200	12	6,000	
C-O	1100	16	6,857	
C-Cl	800	35,5	8,968	
C-Br	550	80	10,43	
C-I	~500	127	10,96	•

 $\uparrow \mu$

Oscillateur anharmonique

 $1.5 D_{eq.}$

$$U_{k}(R) = \frac{1}{2}k(R - R_{e})^{2} + k_{3}(R - R_{e})^{3} + \dots$$
$$G_{v} = \omega_{e}(v + \frac{1}{2}) - \omega_{e}x_{e}(v + \frac{1}{2})^{2} + \omega_{e}x_{e}y_{e}(v + \frac{1}{2})^{3} + \dots$$

Electric anharmonicity

$$\langle v | \boldsymbol{\mu}(\boldsymbol{R}) | v' \rangle = \boldsymbol{\mu}(\boldsymbol{R}_e) \langle v | v' \rangle + \left(\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{R}} \right)_{\boldsymbol{R}_e} \langle v | (\boldsymbol{R} - \boldsymbol{R}_e) | v' \rangle$$

$$+ \frac{1}{2} \left(\frac{\partial^2 \boldsymbol{\mu}}{\partial \boldsymbol{R}^2} \right)_{\boldsymbol{R}_c} \langle v | (\boldsymbol{R} - \boldsymbol{R}_e)^2 | v' \rangle + \cdots$$

Potential energy

Selection rules

 $\Delta v = \pm n$

0-1 Fundamental 0-2 First overtone 0-3 Second overtone

cm ⁻¹	vibrational constants of diatomic molecules				
Molecule	ω _e	ω _e x _e	$\omega_e y_e$		
⁴⁰ Ar ₂	25.74		<u></u>		
¹³⁸ Ba ¹⁶ O	669.76	2.02	-0.003		
¹² C ¹⁶ O	2169.81358	13.28831	0.010511		
$^{1}H_{2}$	4401.21	121.33	0.812		
¹ H ³⁵ Cl	2990.946	52.8186	0.2243		
$^{127}I_{2}$	214.50	0.614			
¹²⁷ I ³⁵ Cl	384.29	1.501			
²³ Na ³⁵ Cl	366.0	2.0			
²³ Na ¹ H	1172.2	19.72	0.160		
$^{23}Na_2$	159.12	0.7254	-0.00109		
$^{14}N_{2}$	2358.57	14.32	-0.00226		
¹⁴ N ¹⁶ O	1904.20	14.075	0.011		
¹⁶ O ₂	1580.19	11.98	0.0474		
¹⁶ O ¹ H	3737,76	84.881	0.540		

Data taken from K. P. Huber and G. Herzberg, Molecular and Molecular Structure: Constants of Diatomic Molecules, Van Nostrand-Reinhold, New York, 1979.

Transition between two levels: Lorentziand profil

$$L(\omega) = \frac{\gamma}{2\pi} \frac{1}{(\omega - \omega_0)^2 + \gamma^2 / 4}$$

$$\gamma = \gamma_{rad} + \gamma_{nonrad} + \gamma_{coll} + \dots$$

Intensity = strength of coupling

 $FWHM \propto \frac{1}{\gamma}$

Absorption band

✓ Series of lines
✓ Distribution discrète (low P gas)
✓ Continuum (liquid/solid)

 $E = \frac{h^2}{8\pi^2 I} J(J+1) + \frac{h}{2\pi} \sqrt{\frac{k}{\mu}} (v +$

 $\Delta J = \pm 1$

2 Series = Two branchs

Inhomogeneous broadening

Gas (Maxwellian distribution)

Heterogeneity in the solid

- Impurities
- defects

Figure 8.2 The Voigt profile, formed by the convolution (8.29) of the Gaussian profile with the Lorentzian profile, effectively sums Lorentian profiles (solid curves) centered at all frequencies ω' , weighted by the value of the Gaussian profile (dashed curve) at those frequencies.

Polyatomic molecules

N atoms : 3N-6 or 3N-5 (linear) vibrations

Harmonic assumption: * 3N-6 (5) independant oscillators * Normal coordinates = lin. Comb. of atomic coordinates

$$\eta_i = \xi_i \sqrt{m_i}$$
$$\frac{d}{dt} (\dot{\eta}_i) + \sum_j b_{ij} \eta_j = 0$$

$$\eta_i = \sum_{j}^{3N} M_{ij} q_j$$
$$T = \frac{1}{2} \sum_{i}^{3N} \dot{\eta}_i^2$$

$$H = T + V = \sum_{i}^{3N-6} (\dot{Q}_{1}^{2} + \lambda_{i}Q_{i}^{2})$$

$$|\psi_{\text{vib}}(Q_{1}, \dots, Q_{3N-6})\rangle = \prod_{i}^{3N-6} N_{v_{i}}H_{v_{i}}(\zeta_{i})\exp(-\zeta_{i}^{2}/2)$$

$$\dot{Q}_{i} + \lambda_{i}Q_{i} = 0 \qquad i = 1, \dots, 3N$$

$$Q_{i} = Q_{i}^{0} \sin(t\sqrt{\lambda_{i}} + \delta)$$

$$E_{\text{vib}} = \sum_{i}^{3N-6} hv_{i}(v_{i} + \frac{1}{2})$$

Polyatomic molecules

N atoms : 3N-6 or 3N-5 (linear) vibrations

Harmonic assumption: * 3N-6 (5) independant oscillators * Normal coordinates = lin. Comb. of atomic coordinates

CH₄ : ponctual group T_d

Mode	Fréquence (cm ⁻¹)	Symétrie
ν ₁	2914.2	A ₁
ν ₂	1526.0	E
ν ₃	3020.3	F ₂
V4	1306.2	F, I

• Two modes same energy

IR activity:Role of symetry

Tables compute band position, intensity and IR/Raman activity

Vibrational modes in solids

 $q = 2\pi \frac{n}{Na}$ $\exp(-iqNa) = 1$ $u_{2n} = A\exp(-\omega(q)t - q.2n.a)$

 $\omega_{\pm}^{2} = f(M_{1}M_{2})^{-1} \left[(M_{1} + M_{2}) \pm \sqrt{M_{1}^{2} + M_{2}^{2} + 2M_{1}M_{2}} \cos qa \right]$

		Tab	leau XI.4			
Molécule:	HCl	HCN	CO ₂	NH ₃	HgCl ₂	C ₆ H ₆
Vapeur:	2886	2089	2349	3336	355	993
Cristal:	2725	2097	2344	3223	314	990
E cob. office 3	161	-8	+5	113	41	3

- Frequency

Vibration propagation : vibron Translation : phonon Hindered rotation : libration

Photon-phonon coupling

Momentum conservation

$$\vec{k}=\vec{q}=\frac{2\pi}{\lambda}\vec{n}\sim 0$$

Overtones and combinations modes reflect VDOS

 $\nu(\vec{k}=\vec{0})$

a) direct mechanism

b) indirect mechanism

CO₂: dispersion curves and VDOS

Static and dynamic effects

- STATIC=Symmetry of the molecule in the crystal is lower than in gas
- DYNAMIC=Phase and out-of-phase interactions of neighbouring vibrators

Figure III.3: Illustration des effets dits statique et dynamique. A) la bande v_5 d'un cristal de CH₃I; B) la même bande pour des molécules de CH₃I diluées à 10 % dans un cristal de CD₃I (d'après Poulet et Mathieu 1970).
Fundamental modes SO₂

*) Within the molecule, the orthogonal axes x and z lie in the molecular plane with the latter coincident with the molecular C₂ axis, y is normal to both.

Figure III.4: Les bandes fondamentales v_1 (a), v_2 (b) et v_3 (c). Ces spectres ont été effectués avec un échantillon polycristallin (couche mince) à une température d'environ 112 K. Pour les 3 modes, la composante de droite est due à l'isotope³⁴S¹⁶O. Le profil des bandes est dû au dédoublement LO-TO.

Splitting LO-TO

Overtone and combination modes in solid SO₂

Figure III.10: La bande $2v_3$ du cristal de SO_2 . Ce spectre a été enregistré à partir d'un échantillon de 1 cm d'épaisseur obtenu par croissance à partir de la phase liquide. Les flèches délimitent la gamme de dispersion du mode $2v_3$ déduite de celle du mode fondamental v_3 .

Figure III.11: Les bandes v_1+3v_3 et $3v_1+v_3$ d'un cristal de SO₂. Ce spectre a été enregistré à partir d'un échantillon de 1 cm d'épaisseur obtenu par croissance à partir de la phase liquide. Les flèches délimitent la gamme de dispersion des modes v_1+3v_3 et $3v_1+v_3$ déduites de celles des modes fondamentaux v_1 et v_3 . Le continuum à quatre phonons n'est pas observé ici, du fait de sa très faible intensité.

Figure III.12: La région $[v_1 + v_2; 3v_2]$ du cristal de CO₂ à 20 K (d'après Bini et al. 1991).

Mode	Molecular symmetry	Site symmetry	Factor group symmetry	Activity
	D.,.h	S ₆	T _h	
x-N,				
vo	Σ,*	^,	Ag	Raman
			E	Raman
R _x , R _y	<i>II</i> ,	E_{i}	T _r	Kaman
т.	Σ,	A.,	A,	-
T _s , T _r	II	E.,	E. T.	- Infrared
	Dzh	D3b	D _{6h}	
R-N ₂				
vo	Σ.+	A'1	Ais	Raman
			B _{1u}	
R _x , R _y	П	E"	E _{1g}	Raman
			E ₂ ,	Acoustic
T <u>.</u>	Σ,*	A [*] ₂	B _{2g}	-
	in a state of the second	F '	A _{2u}	Acoustic
1, 1,	11 _u	E		Kaman
			Ciu .	an en anter a ser a s

Quadripolar transitions in solid N2

Carbonates

Ionocovalent solids : - vibrations of anions - external modes of cations

Aragonite

 $\frac{4 \text{ formular units:}}{4 \text{ anions } \text{CO}_3^{2-}}$ $4 \text{ cations } \text{Ca}_2^+$ 57 Vib/Lib + 3 T

Fig. V.6 Symétrie de l'ion CO_3^{2-} libre et dans l'aragonite.

Solid CO

Mode vibrationnel	Fréquence (cm ⁻¹)	Attribution vibrationnelle principale (%)	Principal niveau perturbateur (%)
$3v_4: A_1+F_1+2F_2$	3870.49 3930.92	3v ₄ (83 %) 3v ₄ (97 %)	$v_1 + v_4 (15\%)$ $v_3 + v_4 (2\%)$
v_2+2v_4 : A ₁ +A ₂ +2E+F ₁ +F ₂	4142.86	v ₂ +2v ₄ (93 %)	$v_3 + v_4 (2\%)$
v ₁ +v ₄ : F ₂	4223.46	v ₁ +v ₄ (83 %)	3v ₃ (15 %)
v ₃ +v ₄ : F ₂	4319.21	v ₃ +v ₄ (92 %)	3v ₃ (3 %)
$2v_2+v_4$: F ₁ +2F ₂	4348.77 4379.10	$2\nu_2 + \nu_4 (85 \%)$ $2\nu_2 + \nu_4 (100 \%)$	v ₃ +v ₄ (12%) 3v ₃ (0%)
$v_2 + v_3$: $F_1 + F_2$	4543.76	v ₃ +v ₄ (85 %)	$2v_2 + v_4$ (14 %)

Figure III.19: Effet de la température sur le structure fine de la bande v_3 de CH₄ piégée en matrice de Krypton (d'après Chamberland et al. 1973).

Part II - Instrumentation and practical issues

FTIR spectroscopy

Fig. 1.8 Series of apodization functions and their corresponding instrument line shape functions; in each case the equations representing the shapes of the apodization and ILS functions are given, together with the full width at half-height, $\Delta v_{1/2}$, and the amplitude of the largest side lobe, S, as a percentage of the maximum excursion. (a) Boxcar truncation; (b) trapezoidal; (c) triangular; (d) triangular squared; (e) Bessel; (f) cosine; (g) sinc²; (h) Gaussian apodization. (Reproduced from [5], by permission of the Optical Society of America; copyright © 1981.)

Mono and FPA detectors for fast imaging

There are two separate optics within the microscope to optimize the homogeneity of the infrared and the visual light

Focal Plane Array (FPA)-

Detector

The size of the FPA-Detector element is 2.56×256 mm Using the 15x objective total measurement area corresponds to 2.56mm $15=177\mu$ m

The size of each pixel is 177μ m\64 (number of pixels) =2.6µm (depending on the wavelenght)

HYPERION 3000

Improve spatial resolution and signal-to-noise ratio

+ source luminance (Csl Globar, synchrotron, tunable laser)+ objective diffraction

Theoretical spatial resolution is almost never reached for complex heterogeneous natural samples

ATR = Attenuated Total Reflectance spectroscopy

- Improve spatial resolution (factor 2-4)
- Spectra not strictly similar to transmission spectra

Distance/µm

AFMIR = combined FTIR + AFM

- A new generation of instrument operating at ultra highspatial resolution (~40 nm)
- Real potential still to be tested
- Not easy to implement: developments in sample preparation
- Will be continously improved thanks to laser development

Sample preparation: a critical issue

- ☑ Quantification
- ☑ Spectral quality
- ☑ Band saturation and signal-to-noise ratio

Absorption and radiative transfert

- Solid sample must be thin enough (< tens of micrometers)
- Reflection/transmission at each dioptre => interferences

- Control thickness and planeity/rugosity by interfgerometry (de 10-100 nm à ~ 100 μm)
- Controlled conditions of deposition and annealing (substrate, température, deposition rate)
- Monocrostalline or polycrystalline samples.
- Contamination (eau, CO2...).
- Index gradient possible for the first monolayers.

Fig III-5: Spectres du méthane obtenus pour différentes épaisseurs. Les interférences dans la ligne de base correspondent respectivement à $0.9' \mu m$ (a), $1.25 \mu m$ (b) et $1.8 \mu m$ (c).

C2H6 ice films on CsI and Si substrates. Planeity and refractive index control the continuum and n-artifact in the absorption band.

Spectroscopic criterion of crystal quality: vibrational relaxation

Naphtalene of breathing mode at 1362 cm-1 contrôled by temperature, for a monocrystal with excellent quality.

CS2 - n_1+n_3 . Relaxation by cristallographic defects in a polycristal (bottom) phonon interaction in a monocristal (top).

Cristal growth from the liquid phase

Measurements on pellets

✓ Robust material (resistant to grinding)
✓ Scattering and water contamination
✓ Quantification difficult: require radiative transfert and scattering modeling
✓ No control on crystal orientation

Ultramicrotomy

Standard thin section (30 μ m): limited to NIR in transmission, epoxy contamination.

Double-polishing : suitable for faint feature in NIR (e.g. structural OH)

✓ thins (~ 1 µm)✓ ultra-thin (20-200 nm)

✓ Epoxy vs Organic matter✓ Hard material = difficult

Pressing (soft samples)

• ISO 7 clean room, under an ISO 5 laminar hood.

• Micromanipulation by hand

MEB images (SE2)

Crushed on diamond window

Crushed on Germanium window

Part III - Applications

III.1 - Geomaterials in the laboratory

Minerals

Organic matter

Water + fluids

Usual minerals

Silicates	Tectosilicates
	Inosilicates
	Nesosilicates
	Phyllosilicates

Si polymorphs, Feldspaths, ... Amphiboles, pyroxens, ... Olivines, Garnets, ... Micas, Chlorites, serpentine, ...

Carbonates

Sulfates

Sulfides

Phosphates

Oxides/Hydroxides

Mineralogy of cometary grains

10 µm

L2083 E11

10 µm

5 kV

10 kV

5 kV

20 µm

Merouane et al. 2014 A&A

Linear combination of end-members

- 1. Fe and Mg end members of olivine (forsterite: Mg_2SiO_4 and fayalite: Fe_2SiO_4 , noted as Fo and Fa, respectively, in the following sections).
- 2. Mg end member and Ca–Mg solid solution of pyroxene (enstatite: $MgSiO_3$ and diopside: $CaMgSi_2O_6$ noted as En and Di, respectively, in the following sections).
- 3. Amorphous compounds of Fe and Mg olivine end members compositions and an amorphous compound of pyroxene Mg end member composition.

 Table 3

 Silicate Composition of Each Particle Given by Our Fitting Procedure

Particle	ol/(ol+px)	Mg/(Mg+Fe)	Ca/(Ca+Mg)	Amorphous Content
L2021 C5	0.7	1	0	35%
L2021 D7	0.1	1	0.6	0%
L2021 Q3	1	0.95		0%
L2036 AE3	0	1	0	0%
L2036 AE4	1	0.45		0%
L2036 AG1	0.15	1	0.025	80%
L2071 E36	1	0.75		5%
L2076 H1	0.3	1	0.075	0%
L2079 J1	0.7	1	0	45%
L2083 B7	0.95	1	0	0%
L2083 E11	0.65	1	0	0%
L2083 E15	0.35	1	0	0%

Mg-Rich Silicate Crystals in Comet Hale–Bopp: ISM Relics or Solar Nebula Condensates?

FIG. 1. Silicate features in Comet Hale–Bopp at four epochs, fitted with smooth curves (smoothed over ~0.24 μ m at all epochs except over ~0.48 μ m at 2.8 AU) using a least-squares algorithm (Bevington 1969). The silicate features are shown by the flux-to-continuum ratios (Hanner *et al.* 1994b), with continuum parameters from Wooden *et al.* (1999). The silicate features flux/cont are derived from the HIFOGS spectra on 1996 October 07–14 UT at 2.8 AU (preperihelion) (*heavy black line*), 1997 February 14–15 UT at 1.2 AU (preperihelion) (*heavy gray line*), 1997 April 11 UT at 0.93 AU (~perihelion) (*thin black line*), and June 24–25 UT at 1.7 AU (post-perihelion) (*dotted line*). The principal peaks of the crystalline ortho-pyroxene at 9.3 and 10.5 μ m and of crystalline olivine at 10.0, 11.2, and 11.8 μ m (Koike *et al.* 1993) are marked (*vertical hairlines*).

 $Emission \sim B(I,T)*e(I)=B(I,T)*abs(I)$

THE INFRARED SPECTRUM OF COMET HALE-BOPP*

J. Crovisier¹, K. Leech², D. Bockelée-Morvan¹, T.Y. Brooke³, M.S. Hanner³, B. Altieri², H.U. Keller⁴, E. Lellouch¹

Probing water in geomaterials

Hydroxyls and molecular water in clays

Layer type	Interlayer	Group*	Subgroup	Species
1:1	None or H ₂ 0 only	Serpentine-kaolin $x \sim 0$	Serpentines	Chrysotile, lizardite, amesite, berthierine, cronstedtite. et
8 . on	(Eds.), N	nd G. Brown	Kaolins	Kaolinite, dickite, nacrite, halloysite
	None	Talc-pyrophyllite	Talcs	Talc, willemseite
		x ~ 0	Pyrophyllites	Pyrophyllite, ferripyrophyllite
	Hydrated exchangeable	Smectite x ~ 0.2-0.6	Saponites	Saponite, hectorite, sauconite, stevensite, etc.
	cations		Montmorillonites	Montmorillonite, beidellite, nontronite, volkonskoite, etc.
	Hydrated	Vermiculite	Trioctahedral vermiculites	Trioctahedral vermiculite
	exchangeable cations	x ~ 0.6-0.9	Dioctahedral vermiculites	Dioctahedral vermiculite
2:1	Non-hydrated	True mica	Trioctahedral true micas	Phlogopite, biotite, lepidolite
	terrora ellega	x = 0.5-1.0	Dioctahedral true micas	Muscovite, illite, glauconite, tobelite, paragonite, etc.
	Non-hydrated cations	Brittle mica $x \sim 2.0$	Trioctahedral brittle micas	Clintonite, bityite, anandite, kinoshitalite
			Dioctahedral brittle micas	Margarite
	Hydroxide sheet	Chlorite x variable	Trioctahedral chlorites	Clinochlore, chamosite, nimite, pennantite, baileychlore
			Dioctahedral chlorites	Donbassite
			Di,trioctahedral chlorites	Cookeite, sudoite

FIG. 15.3 (*left*). Hydroxyl absorption of A, talc; B, hectorite; C, saponite; D, phlogopite; E, biotite; F, biotite. The mica spectra were obtained from single flakes at normal (N) and 45° incidence (R). The spectra of hectorite and saponite correspond to anhydrous K-saturated specimens.

FIG. 15.4 (*centre*). Hydroxyl absorption of randomly oriented samples of A, pyrophyllite; B, beidellite; C, rectorite; D, muscovite or paragonite; E, margarite; F, Wyoming montmorillonite; G, Skyrvedalen montmorillonite; H, Woburn montmorillonite; J, nontronite and K, ferric celadonite.

FIG. 15.5 (*right*). Hydroxyl absorption of A, kaolinite; B, dickite; C, nacrite; D, Pugu kaolin (disordered). R indicates randomly oriented specimens, and N films at normal incidence. Spectra (Figs 3, 4, 5) from Farmer and Russell (1964).

FIG. 15.3 (*left*). Hydroxyl absorption of A, talc; B, hectorite; C, saponite; D, phlogopite; E, biotite; F, biotite. The mica spectra were obtained from single flakes at normal (N) and 45° incidence (R). The spectra of hectorite and saponite correspond to anhydrous K-saturated specimens.

FIG. 15.4 (*centre*). Hydroxyl absorption of randomly oriented samples of A, pyrophyllite; B, beidellite; C, rectorite; D, muscovite or paragonite; E, margarite; F, Wyoming montmorillonite; G, Skyrvedalen montmorillonite; H, Woburn montmorillonite; J, nontronite and K, ferric celadonite.

FIG. 15.5 (*right*). Hydroxyl absorption of A, kaolinite; B, dickite; C, nacrite; D, Pugu kaolin (disordered). R indicates randomly oriented specimens, and N films at normal incidence. Spectra (Figs 3, 4, 5) from Farmer and Russell (1964).

OH cationic environment controls OH peak positions

TABLE 15. I. Band frequencies (cm⁻¹) in the hydroxyl stretching region of the infrared spectrum of some synthetic talcs, from Wilkins and Ito (1967)

Tala	OH ion vibration frequency close to									
composition	Mg Mg Mg	Mg Mg R	Mg R R	RRR						
Mg100	3676.6	North Carl	1998 <u>L</u>	31 12 12						
Mg84Ni16	3676.5	3661.9	3644.8	netsh <u>aa</u> n						
Mg76 Ni24	3676.6	3662.3	3645.2	3624 . 1						
Mg52 Ni48	3676.5	3662.5	3645.9	3625.0						
Mg28 Ni77	3676.7	3662.9	3646.2	3625.9						
Mg1 Ni99			3646.9	3627 . 2						
Mg54 Co46	3677.4	3661.4	3643.3	3622.3						
Mg ₉₂ Zn ₈	3676.6	3664.4	3649.7							
Mg86 Zn14	3676.8	3665.2	3651.6	3634.6						
Mg52 Fe48	3678.3	3663.5	3646.0	3624 . 2						
Mg92 Mn8	3677.1	3663.6	3650.0							
Mg55 Cu45	3676.0	3669.9	3663.7	3656.3						

FIG. 15.2. OH stretching vibrations of synthetic Mg–Ni talcs. 5-7.5 mg samples in KBr disks (from Wilkins and Ito, 1967).

Cations in octahedral layers of micas

Easy to implement Probe only octahedric catrions bound to OH Whatever the cation (e.g. NMR, Fe)

Well-known standards

Sample	Zavalye C	69G	31	B. Patom	655 6	Taiheisan C	E8/2 G	5/1	Oya C	933/3	132	133G
Cation	(I)	(II)	(III)	(ľ v)	(V)	(VI)	(VII)	(VIII)	(IX)	(X)	(XI)	(XII)
Si	3.96	3.94	3.94	3.46	3.64	3.72	3.65	3.69	3.99	3.88	3.96	3.84
Al _{IV}	0.04	0.06	0.06	0.54	0.36	0.28	0.35	0.31	0.01	0.02	0.04	
Fe ³⁺										0.10		0.16
Alvi	0.05	0.05	1.10	1.11	0.08	0.16	0.68	0.13	0.93	8.8	14.1	
Fe ³⁺	0.96	1.15	0.17	0.41	1.08	1.07	0.79	1.30	0.25	1.47	1.32	0.75
Fe ²⁺	0.26	0.36	0.07	0.13	0.12	0.14	0.10	0.07	0.44		0.07	1.05
Mg	0.73	0.41	0.64	0.35	0.66	0.67	0.43	0.50	0.31	0.53	0.54	0.55
K	0.89	0.83	0.91	0.74	0.90	0.82	0.78	0.78	0.73	0.43	0.65	0.59
Na		0.01	0.07	0.01		0.18	0.01		0.18	0.08	0.02	0.03
Ca	0.10	0.03		0.06					0.02	0.02	0.01	
Mg				0.07				0.02		0.05		

Besson et al. Clay Minerals (1987) 22, 465-478 Slonimskaya et al. Clay Minerals (1986), 377-388

Si substitution in T

In O layer

Interfoliar

Wave number (cm ⁻¹)	Cation pair	Zavalye (I)	69G (II)	31 (III)	B. Patom (IV)	655 (V)	Taiheizan (VI)	E8/2 (VII)	5/1 (VIII)
3495	Fe ²⁺ Fe ²⁺	hani <mark>- a</mark>	6.5	<u>en (d. ele) (</u>	<u>n an ai ach</u>	<u></u>			
3505	MgMg	9.1	3.0	2.9		8.4	9.9		5.0
3531*	$Fe^{2+}Fe^{3+}$ $Fe^{3+}Fe^{3+}$	30.0	49.8	3.2	20-2	28.0	30.1	14.9	35.9
3545	Fe ³⁺ Fe ³⁺	ts, T <u>16</u> sig	3.6	t in <u>te</u> nto	lty Inte	4.3	auto <u>na</u> r tea		11.5
3560	Mg Fe ³⁺	54.0	30.0	16.4	6.9	38.3	35.6	32.8	23.1
3580	Fe ²⁺ Al	2.6	un - a d	1.7	8.1	6.8	11-4	7.6	8.9
3605	Mg Al	4.3	6.8	46.8	26.7	10.4	8.8	12.9	12.0
3620	Al Al			12.8	22.6	3.2	3.3	27.6	3.6
3640	Al Al	in <u>un</u> co	dic <u>a o</u> l i	16-2	15.2	0.6	0.9	4.2	
χ ²		1.55	0.65	0.23	0.29	0.12	0.75	1.01	0.13
(3528	Fe ²⁺ Fe ³⁺	21.1	23.0	3.2	6.0	6.3	2.1	0.9	
* { 3534	Fe ³⁺ Fe ³⁺	8.9	26.8		14.2	21.7	28.0	14.0	35.9

FIG. 1. Decomposition of the IR spectrum of Zavalye celadonite.

FIG. 2. Decomposition of the IR spectrum of celadonite 69G.

Lorentzian profiles

Free parameters: ✓ Position ✓ FWHM ✓ Integrated intensity

Absorption coefficient similar for all components

Wave number (cm ⁻¹)	Cation pair	Zavalye (I)	69G (II)	31 (III)	B. Patom (IV)	655 (V)	Taiheizan (VI)	E8/2 (VII)	5/1 (VIII)
3495	Fe ²⁺ Fe ²⁺	ine <u>, 1075</u> San <u>t,</u> A	6.5	eph laufi	u <u>tan</u> hirmani		walio bie	*	
3505	MgMg	9.1	3.0	2.9	111010(91	8.4	9.9		5.0
3531*	Fe ²⁺ Fe ³⁺ Fe ³⁺ Fe ³⁺	30.0	49.8	3.2	20-2	28.0	30.1	14.9	35.9
3545	Fe ³⁺ Fe ³⁺	ta, T <u>he</u> ab	3.6	t in <u>te</u> no	13 <u>2 loci</u>	4.3	quatrical to a		11.5
3560	Mg Fe ³⁺	54.0	30.0	16.4	6.9	38.3	35.6	32.8	23.1
3580	Fe ²⁺ Al	2.6	un - a d	1.7	8.1	6.8	11.4	7.6	8.9
3605	Mg Al	4.3	6.8	46.8	26.7	10.4	8.8	12.9	12.0
3620	Al Al	uo area pe		12.8	22.6	3.2	3.3	27.6	3.6
3640	Al Al	era <u>una</u> en	dic <u>a o</u> l i	16.2	15.2	0.6	0.9	4.2	
χ²		1.55	0.65	0.23	0.29	0.12	0.75	1.01	0.13
(3528	Fe ²⁺ Fe ³⁺	21.1	23.0	3.2	6.0	6.3	2.1	0.9	
* { 3534	Fe ³⁺ Fe ³⁺	8.9	26.8	1000 City	14.2	21.7	28-0	14.0	35.9
All and a second second									

 TABLE 2. Correlations between OH stretching frequencies and octahedral cations to which the hydroxyl groups are coordinated, and integrated optical densities of IR band (%).

FIG. 5. Decomposition of the IR spectrum of gauconite 655.

Wave number (cm ⁻¹)	Cation pair	Zavalye (I)	69G (II)	31 (III)	B. Patom (IV)	655 (V)	Taiheizan (VI)	E8/2 (VII)	5/1 (VIII)
3495	Fe ²⁺ Fe ²⁺	han i à	6.5		e m ail und		ti ha na ana	_	
3505	MgMg	9.1	3.0	2.9		8.4	9.9		5.0
3531*	$\left. \begin{array}{c} \operatorname{Fe}^{2+}\operatorname{Fe}^{3+} \\ \operatorname{Fe}^{3+}\operatorname{Fe}^{3+} \end{array} \right\}$	30.0	49.8	3.2	20.2	28.0	30-1	14.9	35.9
3545	Fe ³⁺ Fe ³⁺	ts, T <u>he</u> ab	3.6	t k <u>ote</u> nse	187 . <u>2 .</u> for i	4.3	quitt <u>ing</u> tou) <u> </u>	11.5
3560	Mg Fe ³⁺	54.0	30.0	16.4	6.9	38.3	35.6	32.8	23.1
3580	Fe ²⁺ Al	2.6	lee n nd	1.7	8.1	6.8	11.4	7.6	8.9
3605	Mg Al	4.3	6.8	46.8	26.7	10.4	8.8	12.9	12.0
3620	Al Al			12.8	22.6	3.2	3.3	27.6	3.6
3640	Al Al	199 <u>199</u> cu	aic <u>a o</u> r	16.2	15.2	0.6	0.9	4.2	
χ²		1.55	0.65	0.23	0.29	0.12	0.75	1.01	0.17
(3528	Fe ²⁺ Fe ³⁺	21.1	23.0	3.2	6.0	6.3	2.1	0.9	
* (3534	Fe ³⁺ Fe ³⁺	8.9	26.8	In the	14.2	21.7	28.0	14.0	35.9

 TABLE 2. Correlations between OH stretching frequencies and octahedral cations to which the hydroxyl groups are coordinated, and integrated optical densities of IR band (%).

FIG. 3. Decomposition of the IR spectrum of leucophyllite 31.

FIG. 4. Decomposition of the IR spectrum of Bolshoi Patom glauconite.

$C_{AI}+C_{Fe3}+C_{Fe2}+C_{Mg}=2$

 $C_{\rm Al} = (2W_{\rm AlAl})_{\rm calc} + (W_{\rm AlFe^{2+}})_{\rm calc} + (W_{\rm AlFe^{3+}})_{\rm calc} + (W_{\rm AlMg})_{\rm calc}.$

W : Integrated absorbance of the Lorentzian component

Insights into long and short range orders in extraterrestrial proto-serpentines

Insights into long and short range orders in extraterrestrial proto-serpentines

Beck et al., 2014

Water in Earth mantle: where and how much?

- hydrated mineals (phyllosilicates, amphiboles, ...)

- nominally anhydrous minerals (olivines, pyroxenes, ringwoodite, ...

After N. Bournhonnet, stage DEA / dir. J. Ingrain Beamline SA5 - LURE (Orsay)

Abundance estimation

Calibration with standards (hydrogen measured by mass spectrometry)

Figure 1. DRIFT spectra of the whole soil (a), of the HS-extracted soil (b) and of the oxidized s Chernosol.

Multi-variate statistical approaches

Waruru et al. 2015, Soils and Foundations

Estimate soil quality for ingeneering purposes

Fig. 6. Mid-infrared absorbance spectra for calibration (n=135) and validation (n=120) of soil samples after removal of the noisy part ($<600 \text{ cm}^{-1}$) of the signal (spectra is shown in both wavenumbers (cm⁻¹) and wavelength (nm) for easy reference, where [(10,000,000/wavenumbers)=wavelength)].

Table 1Soil properties and methods.

Soil property	Method of determination	Reference
Air-dried moisture content (W)	Gravimetric (%)	Islam et al. (2003)
Particle-size distribution	Hydrometer (%)	Gee and Bauder (1986)
tClay, tSi, tSa Exchangeable Ca (eCa), Mg (eMg)	1:10 soil-to-1.0 N KCL extraction followed by AAS $(cmol(+)kg^{-1})$	Shepherd and Walsh (2002)
Exchangeble Na (eNa)	1:10 soil-to-1.0 N KCL extraction followed by AES $(cmol(+) kg^{-1})$	Shepherd and Walsh (2002)
Exchangeable K (eK)	1:10 soil-to-modified Olsen solution extraction followed by AAS $(cmol(+)kg^{-1})$	Shepherd and Walsh (2002)
Cation exchange capacity (CEC)	Sum of $eCa+eMg+eNa+eK$ (cmol(+)kg ⁻¹)	Shepherd and Walsh (2002)
ESP	Ratio [(eNa/CEC)*100] (%)	Viscarra Rossel et al. (2008)
Sodium-ion concentration	1:5 soil-to-water extract read on Na-ion electrode meter (Na5, mg kg ⁻¹)	Irvine and Reid (2001)
Soil organic carbon (SOC)	Dry combustion using CN analyzer (%)	Viscarra Rossel et al., 2008
Atterberg limits: LL, PL, LS	BSI BS: 1377 (%)	BSI (1975)
Plasticity index (PI)	Numeric difference ($PI=LL-PL$) (%)	BSI (1975)
Coefficient of extensibility (COLE)	from LS data [(COLE=(Lm-Ld)/Ld)] (unit); where Lm=length moist soil (=140 mm), Ld=length dry soil (140–LS mm)	Igwe (2003)
Volumetric shrinkage (VS)	From COLE data, $VS = [(COLE + 1)^3 - 1]^*100$ (%)	Igwe (2003)
Activity number (A)	A=PI/tClay (%)	Fratta et al. (2007)

