

Disk-jet coupling in *AGN*: caveats on unification with *XRBs*

Francesca Panessa

FUNDAMENTAL PLANE FOR BH ACTIVITY

Merloni et al. 2004, Falcke et al. 2004

AGN: WITH JETS, WITHOUT JETS

With jet:

- ✓ Large scale radio lobes
- ✓ Compact luminous cores often with apparent luminal motions

Radio Loud

Without jet:

- ✓ Faint radio sources
- ✓ Emission confined to sub-kpc scale

Radio Quiet

AGN with JETS Radio Loud

X-RAYS: Accretion disc + hot corona + jet(?)

AGN with JETS Radio Loud

If both X-rays and radio are jet dominated

AGN without JETS Radio Quiet

X-RAYS: Accretion disc + hot corona

AGN without JETS

Radio Quiet

If X-rays come from accretion and radio from ?

AGN without JETS of low luminosity Radio Quiet

Low Luminosity Radio Galaxies
VLA + Chandra

Low Luminosity RQ AGN (Palomar)
VLA + Chandra/XMM

X-ray and radio from the same component? Jet/outflow are disk related (jet, disc-corona)

Panessa et al. 2007

AGN without JETS of high luminosity

Radio Quiet

INTEGRAL AGN sample 20-40 keV

→ Slope consistent with efficient accretion

Panessa et al. 2015

JET-DISK COUPLING

ORIGIN OF RADIO EMISSION IN RADIO QUIET

ARE WE SURE THAT THIS IS A JET?

The European VLBI Network (EVN) survey of local nuclei < 22 Mpc

- 6 and 20 cm survey
- 90 microJy/beam
- Linear scales 0.05 pc @10 Mpc

Giroletti & Panessa 2009, Bontempi et al. 2012, Panessa & Giroletti 2013

- Single compact
- Double at one freq.
- Double at both freq.
- ✓ Jet like structure
- ✓ Non detection (8/23)

Figure 1. Images of NGC 3227 at 1.7 GHz (left) and 5 GHz (right). Contours are traced at $(-1,1,2,4,...) \times$ the $\sim 3\sigma$ noise level, which is 0.13 and 0.08 mJy beam⁻¹ at 1.7 and 5 GHz, respectively. HPBWs are shown in the lower left corner, and their size is 2.9 mas \times 17.3 mas in P.A. -44° and 7.2 mas \times 13.5 mas in P.A. 50° at 1.7 and 5 GHz, respectively.

- Thermal (torus/corona)
- Non thermal (jet base)

Figure 3. NGC 4138 at 1.7 GHz (left) and 5 GHz (right). Contours are traced at $(-1,1,2,4,...)\times$ the $\sim 3\sigma$ noise level, which is 0.14 and 0.09 mJy beam⁻¹ at 1.7 and 5 GHz, respectively. HPBW are shown in the lower left corner, and their size is 8.5 mas \times 17.7 mas in P.A. 14° and 2.4 mas \times 3.7 mas in P.A. 8° at 1.7 and 5 GHz, respectively.

- Flat/inverted spectrum
- Steep spectrum

Figure 2. NGC3982 at 1.7 GHz (left) and 5 GHz (right). Contours are traced at $(-1,1,2,4,...)\times$ the $\sim 3\sigma$ noise level, which is 0.20 and 0.09 mJy beam⁻¹ at 1.7 and 5 GHz, respectively. HPBW are shown in the lower left corner, and their size is 6.4 mas \times 11.4 mas in P.A. 4° and 5.7 mas \times 6.8 mas in P.A. 85° at 1.7 and 5 GHz, respectively.

NGC 4051

Giroletti & Panessa 2009, ApJL

Linear size < 0.31 pc (BLR size 0.006 pc)

✓ Log $L_{5 \text{ GHz}}/L_{2-10 \text{ keV}} < -5.8$

H₂O Maser coincident with core

See also Tarchi et al. 2011, A&A

ORIGIN OF RADIO EMISSION IN RADIO QUIET

Possible physical mechanisms in Radio-Quiet:

- ✓ Synchrotron emission from a jet:
 - ✓ Mostly sub-relativistic and weak jets
 - ✓ Possible outflows

✓ Free-free emission from a molecular torus or corona

✓ Maybe ADAF

DISK-JET COUPLING

No significant correlation at VLBI sub-pc scales

DISK-JET COUPLING

Most of the VLA emission is resolved out!!!

NGC 5273: a LLAGN with no jet

- ✓ VLA flux of 0.6 mJy
- ✓ VLBI non detection!!!(3 σ peak < 90 microJy at 1.6 GHz)
 - 95 % of the VLA flux resolved at 20-300 mas scale
 - significant variability
- \checkmark Log L_{5 GHz}/L_{2-10 keV} < -6
- \checkmark Log L_X/L _{EDD} = -3.2

Resolved radio emission or variable radio source?

SIMULTANEITY - VLBI monitoring of a RQ AGN!

BE CAREFULL WHEN USING RADIO DATA for correlations in AGN and XRB unification:

- CHECK SPATIAL RESOLUTION! PHYSICAL SCALE...
- ✓ CHECK THERMAL VS NON-THERMAL ORIGIN!
- ✓ CHECK THE EFFICIENCY STATE OF THE AGN!

Open position in Rome coming soon:

- Two years post-doc
- ✓ X-ray/radio + theory of TDE and FRB
- → Jet formation and propagation in different systems

francesca.panessa@iaps.inaf.it