IPAG

Accueil du site > Science pour tous > Faits Marquants > Archives 2016 > Premières observations réussies du Centre Galactique avec GRAVITY - Le chasseur de trou noir fonctionne maintenant avec les quatre Télescopes Unités du VLT


                             


Rechercher

OSUG - Terre Univers Environnement OSUG

Premières observations réussies du Centre Galactique avec GRAVITY - Le chasseur de trou noir fonctionne maintenant avec les quatre Télescopes Unités du VLT

Une équipe européenne d’astronomes a observé le centre de la Voie Lactée au moyen de l’instrument GRAVITY récemment installé sur le Very Lage Telescope de l’ESO en recombinant pour la première fois les faisceaux issus des quatre télescopes de 8,2 mètres de diamètre. Les résultats obtenus donnent un aperçu des futures découvertes extraordinaires de GRAVITY lorsqu’il sondera les champs gravitationnels extrêmement intenses qui règnent à proximité du trou noir central super-massif, offrant la perspective de tester la validité de la théorie de la relativité générale d’Einstein.

L’instrument GRAVITY fonctionne désormais de concert avec les quatre Télescopes Unités de 8,2 mètres de diamètre du Very Large Telescope (VLT) de l’ESO. Les résultats des premiers tests augurent des résultats scientifiques de classe mondiale à venir.

JPEG - 123 ko
Image du centre galactique.
Pour les observations avec GRAVITY, l’étoile IRS 16C a été utilisée comme référence, la cible étant l’étoile S2. La position du centre galactique, qui abrite un trou noir (invisible) de 4 million de fois la masse du soleil, est représentée par une croix rouge.

GRAVITY fait partie intégrante de l’Interféromètre du VLT. En combinant les faisceaux issus des quatre télescopes, il peut atteindre une résolution spatiale et une précision astrométrique comparables à celles d’un télescope de 130 mètres de diamètre. Les gains correspondants – en termes de pouvoir de résolution et de précision sur la position d’un objet, sont d’un facteur 15 – comparés à un seul Télecope Unité de 8,2 mètres de diamètre, ce qui permettra à GRAVITY d’effectuer des mesures astronomiques incroyablement précises.

L’un des objectifs premiers de GRAVITY est de faire des observations précises de l’environnement du trou noir de 4 millions de masses solaires situé au centre de la Voie Lactée [1]. Bien que la position et la masse du trou noir soient connues depuis 2002, grâce à des mesures précises des mouvements des étoiles en orbite autour de cet objet massif, GRAVITY permettra aux astronomes de sonder, avec une précision inédite, le champ gravitationnel près du trou noir, offrant ainsi la possibilité de tester de façon unique la validité de la théorie de la relativité générale d’Einstein.

A cet égard, les premières observations effectuées au moyen de GRAVITY se sont révélées très excitantes. L’équipe GRAVITY [2] a pointé l’instrument en direction d’une étoile baptisée S2, dont la période orbitale autour du trou noir central de notre galaxie est de seulement 16 ans. Ces observations attestent de l’extrême sensibilité de GRAVITY, qui s’est avéré capable de détecter cette étoile de faible luminosité en quelques minutes à peine.

L’équipe sera prochainement capable d’obtenir des mesures de position ultra-précises de l’étoile en question – comparables à la mesure de la position d’un objet sur la Lune avec une précision centimétrique. L’équipe pourra en déduire la compatibilité – ou non – de son mouvement autour du trou noir avec les prédictions de la théorie de la relativité générale d’Einstein. Les nouvelles observations indiquent que le centre galactique constitue un laboratoire idéal, conforme à nos attentes.

« Ce fut un moment fantastique pour toute l’équipe quand la lumière de l’étoile à l’orbite rapide S2 a interféré pour la première fois, venant couronner huit années de dur labeur » précise Franck Eisenhauer, responsable scientifique de GRAVITY et membre de l’Institut Max Planck pour la Physique Extraterrestre, Garching, Allemagne. « Nous avons d’abord stabilisé les franges d’interférence sur une étoile plus brillante à proximité puis nous avons réellement pu voir les franges de la faible étoile S2 en seulement quelques minutes, pour la plus grande joie de toute l’équipe ». À première vue, ni l’étoile de référence ni l’étoile en orbite ne possèdent de compagnons massifs dont la présence aurait perturbé tant les observations que leur analyse. « Ce sont des sondes idéales », ajoute Einsenhauer.

Ce premier élément de succès n’est pas trop précoce. En 2018, l’étoile S2 sera à son point le plus proche du trou noir, distante de 17 heures-lumière seulement, se déplaçant à quelques 30 millions de kilomètres par heure, soit 2,5% de la vitesse de la lumière. C’est à cette distance que les effets de la relativité générale seront les plus conséquents et que les observations de GRAVITY produiront leurs résultats les plus importants [3]. Cette opportunité ne se représentera que 16 ans plus tard.

Contact scientifique local

Karine Perraut


[1] Le centre de la Voie Lactée, notre propre galaxie, se situe dans la constellation du Sagittaire (L’Archer), à quelques 25 000 années-lumière de la Terre.

[2] Le consortium GRAVITY se compose des Instituts Max Planck pour la Physique Extraterrestre (MPE) et pour l’Astronomie (MPIA), du LESIA à l’Observatoire de Paris, de l’IPAG, unité mixte de l’Université de Grenoble Alpes et du CNRS, de l’Université de Cologne, du Centre Pluridisciplinaire d’Astrophysique de Lisbonne et de Porto (SIM) et de l’ESO.

[3] Pour la toute première fois, l’équipe pourra mesurer deux effets relativistes d’une étoile en orbite autour d’un trou noir massif : le décalage gravitationnel des longueurs d’onde vers le rouge ainsi que la précession du péricentre. Le décalage vers le rouge résulte de la perte d’énergie que subit la lumière de l’étoile pour échapper à l’intense champ gravitationnel du trou noir massif. L’autre effet est la déviation de l’orbite de l’étoile de l’ellipse parfaite. Lorsque l’étoile passe près du trou noir, l’ellipse tourne d’un demi-degré environ dans le plan orbital. Un effet semblable est observé pour l’orbite que décrit Mercure autour du Soleil – mais avec une amplitude 6500 fois plus faible qu’à proximité du trou noir. Mais la distance rend l’effet plus difficile à observer au centre galactique que dans le Système Solaire


Sous la tutelle de:

tutelles

Sous la tutelle de:

CNRS Université Grenoble Alpes